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Transmission of the malaria parasite Plasmodium falciparum from the human to the

mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during

a blood meal, become activated to initiate sexual reproduction. Because gametocytes

are the only parasite stages able to establish an infection in the mosquito, they are crucial

for spreading the tropical disease. During gametocyte maturation, different repertoires of

genes are switched on and off in a well-coordinated sequence, pointing to regulatory

mechanisms of gene expression. While epigenetic gene control has been studied

during erythrocytic schizogony of P. falciparum, little is known about this process during

human-to-mosquito transmission of the parasite. To unveil the potential role of histone

acetylation during gene expression in gametocytes, we carried out a microarray-based

transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor

trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to

histone hyper-acetylation in these stages. Comparative transcriptomics identified 294

transcripts, which were more than 2-fold up-regulated during gametocytogenesis

following TSA-treatment. In activated gametocytes, which were less sensitive to TSA,

the transcript levels of 48 genes were increased. TSA-treatment further led to repression

of ∼145 genes in immature and mature gametocytes and 7 genes in activated

gametocytes. Up-regulated genes are mainly associated with functions in invasion,

cytoadherence, and protein export, while down-regulated genes could particularly be

assigned to transcription and translation. Chromatin immunoprecipitation demonstrated

a link between gene activation and histone acetylation for selected genes. Among the

genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring

finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated

signaling pathway. Immunochemistry demonstrated PfRNF1 expression mainly in the

sexual stages of P. falciparum with peak expression in stage II gametocytes, where the
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protein localized to the nucleus and cytoplasm. Pfrnf1 promoter and coding regions

associated with acetylated histones, and TSA-treatment resulted in increased PfRNF1

levels. Our combined data point to an essential role of histone acetylation for gene

regulation in gametocytes, which can be exploited for malaria transmission-blocking

interventions.
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INTRODUCTION

The mosquito-borne disease malaria is the most devastating
infectious tropical disease in the world, causing∼200million new
cases and more than 400,000 casualties annually (World Malaria
Report, WHO, 2016). Malaria is caused by intracellularly living
protozoa of the genus Plasmodium, with P. falciparum being
the causative agent of malaria tropica, the most severe form of
malaria.

The complex life-cycle of P. falciparum involves an initial
round of replication in the human liver and subsequent 48-h
replication cycles in the red blood cells (RBCs) that are pivotal for
malaria pathogenesis. The virulence of P. falciparum is attributed
to its ability to efficiently evade the host immune response, which
includes molecular escape mechanisms to avoid complement and
antibody recognition with the latter particularly depending on
antigenic variation (reviewed in Scherf et al., 2008; Recker et al.,
2011; Dinko and Pradel, 2016; Schmidt et al., 2016).

Immune evasion of P. falciparum is mediated by a
tightly regulated transcription program with well-coordinated
sequences of gene activation and silencing caused by chromatin-
mediated epigenetic regulatory mechanisms (Duraisingh et al.,
2005; Freitas-Junior et al., 2005; reviewed in Duraisingh and
Horn, 2016). A major part of epigenetic control involves
histone post-translational modifications (PTMs). Among others,
these include histone acetylation and methylation, which are
mediated by specialized transferase enzymes, including histone
acetyltransferases (HATs), which promote DNA accessibility, as
well as histone methyl transferases (HMTs) which can either act
as promotors or inhibitors of DNA accessibility, dependent on
the methylation site (Lopez-Rubio et al., 2007; Sautel et al., 2007).
Histone PTMs can also be reversed, e.g., via histone deacetylases
(HDACs) which remove the acetyl groups and thus inhibit gene
expression. The genome of P. falciparum encodes five plasmodial
HDACs; i.e., PfHDAC1 and 3, PfHda2 and the two type III silent
information regulators PfSir2A and PfSir2B (Joshi et al., 1999;
Gardner et al., 2002; reviewed in Cui and Miao, 2010) and four
HATs, including the previously reported MYST and PfGNC5
(Cui et al., 2007a; Miao et al., 2010). Further, the genes coding
for 10 SET (Su(var)3-9-’Enhancer of zeste-Trithorax)-domain-
containing HMTs, termed PfSET1-10 were identified (Cui et al.,
2008; Volz et al., 2010).

To date, histone PTMs were particularly studied during the

expression of virulence-associated clonally variant multigene

families, like the var gene family, which encodes the P. falciparum

erythrocyte membrane protein PfEMP1 (Lopez-Rubio et al.,

2007, 2009; Petter et al., 2011; reviewed in Llinás et al., 2008; Cui

and Miao, 2010; Duffy et al., 2014; Duraisingh and Horn, 2016).

Only a single var gene is expressed during replication of the RBC
parasites at any one time, whereas all other var genes remain
silent. Switching var expression and thus PfEMP1 structure alters
the antigenic type of the infected RBCs and in consequence
pathogenesis of the tropical disease. The expression of var genes
relies on epigenetic mechanisms that induce dynamic changes in
the chromatin structure (reviewed in Duffy et al., 2012). Only the
active var gene copy assumes a euchromatic state characterized
by both acetylated lysine 9 and tri-methylated lysine 4 of histone
3 (H3K9ac and H3K4me3, respectively; Lopez-Rubio et al.,
2007; Salcedo-Amaya et al., 2009). On the other hand, var gene
silencing is linked to H3K9 tri-methylation (H3K9me3) and
further involves Sir2A and B and the class II HDAC PfHda2
(Duraisingh et al., 2005; Freitas-Junior et al., 2005; Lopez-Rubio
et al., 2009; Tonkin et al., 2009; Coleman et al., 2014).

Recent work has further unveiled epigenetic control
mechanisms during gametocyte commitment, when the RBC
parasites enter the sexual pathway to form gametocytes,
thus enabling parasite transmission from the human to the
mosquito vector (reviewed in Josling and Llinás, 2015).
Gametocyte commitment, which is proposed to be triggered
by environmental signals (reviewed in Kuehn and Pradel,
2010; Bennink et al., 2016), is closely linked to the plasmodial
heterochromatin protein PfHP1. This regulator usually binds
specifically to H3K9me3 to maintain the heterochromatin state,
resulting in var gene silencing and suppression of gametocyte
commitment (Flueck et al., 2009; Pérez-Toledo et al., 2009;
Brancucci et al., 2014). Conditional depletion of PfHP1 leads to
hyper-induction of gametocytes caused by the de-repression of
the ap2-g gene, which encodes the AP2-G transcription factor, a
member of the apicomplexan Apetala2/ethylene response factor
(AP2/ERF) DNA-binding protein family (Balaji et al., 2005;
Kafsack et al., 2014; Sinha et al., 2014). Besides PfHP1, PfHda2
appears to be involved in the silencing of ap2-g gene expression
in non-committed parasites, probably by removing acetylated
histone residues allowing for their methylation leading to the
binding of PfHP1 (Coleman et al., 2014). Once the ap2-g gene is
activated and AP2-G becomes synthesized, the protein acts as a
transcriptional switch that controls gametocyte differentiation by
activating the transcription of early gametocyte genes (Kafsack
et al., 2014; Sinha et al., 2014; reviewed in Voss et al., 2014;
Josling and Llinás, 2015).

Once gametocyte commitment is induced, a total of about
20% of plasmodial genes are specifically expressed. These are
needed for gametocyte maturation, but also for preparing the
parasite to rapidly adjust to the mosquito midgut environment
and to undergo gametogenesis, after the gametocytes are
taken up by the blood-feeding female Anopheles (Florens
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et al., 2002; Lasonder et al., 2002; Le Roch et al., 2003). A
suppression subtractive hybridization study identified 126 genes
that changed in expression during initiation of gametogenesis,
amongst others with putative functions in signaling, cell
cycle, and gene expression (Ngwa et al., 2013). However,
the mechanisms underlying differential gene regulation during
gametocyte maturation and gametogenesis up to date have not
been investigated.

The therapeutic use of epigenetic inhibitors in treatment of
cancers has been known for more than a decade, and several
HDAC inhibitors like vorinostat and romidepsin havemeanwhile
been approved for anticancer therapy (e.g., reviewed in Schobert
and Biersack, 2017; Zagni et al., 2017). Also, the antimalarial
effects of inhibitors targetingHAT andHDAC enzymes have been
explored in the past (e.g., Cui et al., 2007b; Andrews et al., 2008,
2009, 2012a; Chaal et al., 2010;Wheatley et al., 2010; Sumanadasa
et al., 2012; Engel et al., 2015; Alves Avelar et al., 2017; Chua
et al., 2017). Additional studies showed that HDAC inhibitors
also exhibit gametocytocidal activities in vitro, indicating that the
enzymes are essential for gametocytogenesis (e.g., Hansen et al.,
2014; Sun et al., 2014; Trenholme et al., 2014).

To date, only a few studies have investigated the
transcriptional changes in P. falciparum following treatment
with HDAC inhibitors. An initial study reported a general
deregulation of gene expression following treatment with the
HDAC inhibitor trichostatin A (TSA) during the erythrocytic
replication cycle with up to 60% of the genome affected (Hu
et al., 2010). Follow-up experiments, though, comparing
the transcription profiles in blood stage parasites following
treatment with three different HDAC inhibitors, could only
detect an overlap for two genes with altered expression (Andrews
et al., 2012b). The effect of HDAC inhibitors on gene expression
in gametocytes has hitherto not been addressed, amongst others
due to the technical challenge of harvesting high numbers of
pure gametocyte stages.

To unveil the potential role of histone acetylation during
gene expression in gametocytes, we now have carried out a
microarray-based transcriptome analysis, in which we compared
the transcriptomes of gametocytes treated with TSA and of
untreated gametocytes. We show that TSA-treatment results in
the deregulation of 453 genes, demonstrating a crucial role of
histone PMTs in preparing the parasite for human-to-mosquito
transmission.

MATERIALS AND METHODS

Antibodies
Primary antibodies used in this study included: rabbit anti-
(tetra)-acetyl histone H4 K5, 8, 12, 16ac (H4Kac4) (Millipore;
note: according the manufacturer’s material data sheet this
antibody may cross-react with other acetylated histones like
H2B); rabbit anti-H3K9ac (Diagenode); rabbit anti-PfHP1
(Brancucci et al., 2014); rabbit IgG antibody (Millipore);
mouse/rabbit anti-Pfs230 (Ngwa et al., 2013; Simon et al., 2016),
rabbit anti-Pfs25 (BEI Resources); mouse anti-Pf39 (Scholz et al.,
2008); rabbit anti-HA (Sigma Aldrich); mouse anti-proteasome
SU α5 (Aminake et al., 2012), and anti-PfActinI (Ngwa et al.,

2013). Mouse anti-PfRNF1 was generated for this study (see
below). For indirect immunofluorescence assays (IFAs), the
following dilutions of the antibodies were used: anti-H4KAc4
(1:200), anti-H3K9ac (1:200), mouse/rabbit anti-Pfs230 (1:200),
anti-Pfs25 (1:1,000), anti-PfRNF1 (1:20), anti-PfHP1 (1:300),
and anti-proteasome SU α5 (1:50). For Western blot (WB)
analysis the following dilutions were used: anti-H4Kac4 (1:1,000),
anti-H3K9ac (1:1,000), anti-Pf39 (1:1,000), anti-PfActinI (1:200),
anti-PfRNF1 (1:200), rabbit anti-HA (1:1,000). For chromatin
immunoprecipitation (ChIP) assays, 1 µg of each antibody (anti-
H4Kac4, anti-H3K9ac, anti-PfHP1, IgG) was used.

Parasite Culture
P. falciparum strain NF54 was used in this study. The parasites
were cultivated in vitro in RPMI 1640 medium supplemented
with 10% heat-inactivated human serum as described (Ifediba
and Vanderberg, 1981) and cultures were maintained at 37◦C
at an atmosphere of 5% O2, 5% CO2, and 90% N2. Cultures
were synchronized by repeated sorbitol treatment as described
(Lambros and Vanderberg, 1979). To generate gametocytes, the
cultures were kept at high parasitaemia and gametocytogenesis
was induced following addition of lysed RBCs. As soon as
stage I gametocytes started to emerge in the culture, the culture
medium was supplemented with 50 mM N-acetyl glucosamine
(GlcNac) for ∼5 days to kill the asexual blood stages (Fivelman
et al., 2007). The gametocyte culture was then maintained in
normal culture medium without GlcNac until immature (stage
II–IV) or mature stage V gametocytes were harvested and
enriched by Percoll gradient purification (Kariuki et al., 1998). In
order to obtain activated gametocytes, Percoll-enriched mature
gametocytes were incubated with 100 µM xanthurenic acid (XA)
for 30 min, 1 or 6 h at room temperature (RT). Giemsa-staining
of purified gametocyte smears was used to confirm purity of
the samples. The human erythrocyte concentrate and serum
used in this study were purchased from the Department of
Transfusion Medicine (University Hospital Aachen, Germany).
The University Hospital Aachen Ethics commission approved all
work with human blood, the donors remained anonymous, and
serum samples were pooled.

Malstat Assay
To determine the antimalarial effect of the histone deacetylase
inhibitor TSA (Sigma-Aldrich), a Malstat assay was performed
as described previously (Aminake et al., 2011). Synchronized
ring stages of P. falciparum strain NF54 were plated in triplicate
in 96-well plates (200 µl/well) at a parasitaemia of 1% in the
presence of TSA dissolved in 0.5% vol. ethanol (5 µM to 0.06
nM). Chloroquine, dissolved in double-distilled water, served as
a positive control in the experiments. Incubation of parasites
with ethanol alone at a concentration of 0.5% vol. was used
as negative control. Parasites were cultivated in vitro for 72 h,
resuspended, and aliquots of 20 µl were removed and added to
100 µl of the Malstat reagent in a 96-well microtiter plate. The
assessment of parasite lactate dehydrogenase (pLDH) activity
was obtained by adding 20 µl of a mixture of NBT (Nitro Blue
Tetrazolium) and diaphorase (1:1; 1 mg/ml stock each) to the
Malstat reaction, and optical densities were measured at 630 nm.
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Each compound was tested four times, and the IC50 values were
calculated from variable-slope sigmoidal dose-response curves
using the GraphPad Prism program version 4.

Gametocyte Toxicity Test
P. falciparum strain NF54 parasites were grown at high
parasitaemia to induce gametocyte formation. Upon appearance
of stage II gametocytes, 1 ml of culture was aliquoted in triplicate
in a 24-well plate in the presence of TSA at asexual blood stage
IC50 (29 nM) and IC90 (0.26 µM) concentrations. Incubation
of parasites with ethanol at a concentration of 0.5% vol. and
chloroquine (IC50), dissolved in double-distilled water, were used
as negative controls. The proteasome inhibitor epoxomicin (60
nM), diluted in DMSO, served as a positive control in the
experiments. The gametocytes were cultivated for 10 d with
daily medium replacement. For the first 2 days of cultivation,
the gametocytes were treated with the inhibitors, subsequently
the medium was inhibitor-free. Every second day, Giemsa-
stained blood smears were prepared and the gametocytemia was
evaluated by determining the numbers of gametocytes of stages
II to V in a total number of 1,000 erythrocytes in triplicate.
The student’s t-test was used to determine significant differences
between TSA-treated and untreated samples.

Macrogamete and Zygote Development
Assays
Equal volumes of mature gametocyte cultures were incubated
with TSA at IC50 or IC90 concentrations or with 0.5% vol. ethanol
for negative control for 1 h at 37◦C. Subsequently, the cultures
were activated with 100 µM XA and incubated for 30 min
(macrogamete development assay) or 12 h (zygote development
assay) at RT. An equal volume of each sample was then coated on
Teflon slides and the cells were immunolabeled with anti-Pfs25
as described below. The numbers of Pfs25-positivemacrogametes
or zygotes, as distinguished by their round shapes, were counted
for a total number of 1,000 erythrocytes, which were visualized
by differential interference contrast in triplicate, using a Leica
DMLS microscope at 1,000-fold magnification. Zygotes were
distinguished from macrogametes by their larger nuclei through
Hoechst nuclear stain 33342 (Molecular Probes). The student’s
t-test was used to determine significant differences between TSA-
treated and untreated samples.

Indirect Immunofluorescence Assay
P. falciparum cultures (of the wild-type NF54 strain or the
PfRNF1-HA-Strep-expressing transfectant line) were air-dried
on glass slides and fixed for 10 min in a methanol bath at
−80◦C. For membrane permeabilization and blocking of non-
specific binding, fixed cells were successfully incubated in 0.01%
saponin/0.5% BSA/PBS and 1% vol. neutral goat serum (Sigma-
Aldrich)/PBS each for 30 min at RT. For labeling of PfHP1,
the air-dried samples were fixed with 4% paraformaldehyde/PBS,
pH 7.4, for 10 min at RT and subsequently treated with 0.1%
vol. Triton X-100/125 mM glycine (Carl Roth)/PBS at RT for
30 min, followed by blocking of non-specific binding sites with
3% BSA/PBS for 1 h. Preparations were then incubated with
the primary antibody diluted in 0.01% saponin/0.5% BSA/PBS

for 1.5 h each at 37◦C. Binding of primary antibody was
visualized by incubating the preparations with Alexa Fluor
488-conjugated goat anti-mouse or anti-rabbit IgG secondary
antibody (Molecular Probes) diluted in 0.01% saponin/0.5%
BSA/PBS for 1 h at 37◦C. The different parasite stages were
detected by double-labeling with stage-specific antibodies, i.e.,
polyclonal rabbit or mouse antisera directed against PfMSP1
for the detection of asexual blood stages and Pfs230 and Pfs25
for the detection of gametocytes and activated gametocytes,
respectively. This was followed by incubation with Alexa Fluor
594-conjugated goat anti-rabbit or anti-mouse IgG secondary
antibodies (Molecular Probes) diluted in 0.01% saponin/0.5%
BSA/PBS for 1 h at 37◦C. Nuclei were highlighted by treatment
with Hoechst nuclear stain 33342 for 1 min at RT and cells
were mounted with anti-fading solution AF2 (Citifluor Ltd) and
sealed with nail varnish. In cases where double-labeling was not
employed, counterstaining of erythrocytes was performed using
0.05% Evans Blue/PBS (Sigma-Aldrich) for 1 min. Digital images
were taken using a Leica AF 6000 microscope and processed
using Adobe Photoshop CS software.

Western Blot Analysis
Percoll-enriched immature (stages II–IV) and mature (stage V)
gametocytes (of the wild-type NF54 strain or the PfRNF1-HA-
Strep-expressing transfectant line) were harvested as described
above and erythrocytes were lysed with 0.05% saponin/PBS
followed by a washing step with PBS to remove the hemoglobin.
The pellets were resuspended and sonicated in NP-40 lysis
buffer (50 mM Tris HCl pH 8.0, 150 mM NaCl, 1% vol. NP-
40) supplemented with a protease inhibitor cocktail (Roche
Diagnostics, Germany). SDS-PAGE loading buffer was then
added to the lysates, heat-denatured for 10 min at 95◦C,
and separated via SDS-PAGE and transferred to Hybond ECL
nitrocellulose membrane (Amersham Biosciences) according to
the manufacturer’s protocol. Membranes were blocked for non-
specific binding by incubation in Tris-buffered saline containing
5% skim milk and 1% BSA, followed by incubation with the
respective rabbit or mouse antibody for 2 h at RT. After washing,
the membranes were incubated with an alkaline phosphatase-
conjugated anti-rabbit or anti-mouse IgG secondary antibody
(Sigma-Aldrich) for 1 h at RT and developed in a solution of
nitroblue tetrazolium chloride (NBT) and 5-bromo-4-chloro-3-
indoxyl phosphate (BCIP; Sigma-Aldrich) for 5–30min. Scanned
blots were processed using Adobe Photoshop CS software.

Histone Hyper-Acetylation Assay
To investigate histone hyper-acetylation caused by TSA-
treatment, hyper-acetylation assays were carried out as previously
described (Andrews et al., 2012b). Percoll-enriched immature
(stages II–IV) and mature (stage V) gametocytes were treated
with TSA at IC90 concentrations or with 0.5% vol. ethanol
(negative control) for 1 and 6 h at 37◦C, respectively.
Protein lysates were generated, employed to SDS-PAGE and
histone hyper-acetylation was analyzed by WB analysis using
anti-H4Kac4 and anti-H3K9ac antibodies as described above.
Immunoblotting with anti-Pf39 antisera was used as loading
control. Histone hyper-acetylation was quantified from three
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to six different experiments by measuring the band intensities
via the Image J programme. When immunoblotting with anti-
H4Kac4 antibody, total acetylation bands were quantified. The
related band intensity was normalized to Pf39 and compared with
respect to untreated samples.

Microarray Analysis
Total RNA was isolated from enriched immature (stages II–IV)
and mature (stage V) gametocytes and gametocytes at 1 h post-
activation following treatment with TSA at IC90 concentrations
or with 0.5% vol. ethanol (untreated control) for 1 and 6 h,
respectively, using the Trizol reagent (Invitrogen) according
to the manufacturer’s protocol. Quality of RNA samples were
assessed using a ND-1000 (NanoDrop Technologies, Thermo
Scientific) and by agarose gel electrophoresis. The microarray
experiments were carried out as described previously (Kafsack
et al., 2012). Briefly, synthesis of first strand amino-allyl
cDNA was performed using Superscript II reverse transcriptase
(Invitrogen). The amino-allyl cDNA was then cleaned and
concentrated using the Zymo DNA clean and concentrator-
5 column (Zymo Research) followed by coupling with Cy5
dye (GE Healthcare). The reference pool consisted of a
mixture RNA from asexual blood stages and gametocytes,
in which synthesis of first strand amino-allyl cDNA was
performed as describe above, and coupled with the Cy3 dye.
Equal amounts of Cy5-labeled samples from each treatment
and the Cy3-labeled reference pool were subjected to array
hybridization for 17 h at 65◦C using a P. falciparum
DNA Agilent microarray chip (Agilent Technologies AMADID
#037237) containing the 5,363 coding genes (Bozdech et al.,
2003). The arrays were scanned using the Agilent scanner
G2600D (Agilent Technologies). Normalized intensities were
extracted using the Agilent Feature Extraction Software version
11.5.1.1 and uploaded to the Princeton University Microarray
Database (PUMA.princeton.edu) for analysis. After background
subtraction, the log2 of the (Cy5/Cy3) intensity ratio was
extracted. Raw intensity data have been submitted to the NCBI
Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/) under accession number GSE99223. Transcript abundance
of treated samples were compared to that of untreated samples.
For the selection of up- and down-regulated genes, a cut-off value
of greater than 2-fold for at least one of the two time-points
with a consistent up- or down-regulation for both time-points
was chosen. A cut-off value of greater than 2-fold for both time
points was considered significant. Data were analyzed using the
database PlasmoDB (http://plasmodb.org/plasmo; Aurrecoechea
et al., 2009) and Microsoft Excel 2010.

Real-Time RT-PCR
To validate the microarray data, total RNA was isolated
from enriched immature (stages II–IV) and mature (stage V)
gametocytes following treatment with TSA at IC90 concentration
or with 0.5% vol. ethanol (untreated control) for 1 h as described
above. One microgram of each total RNA sample was used for
cDNA synthesis using the SuperScript III First-Strand Synthesis
System (Invitrogen), following the manufacturer’s instructions.
The synthesized cDNA was first tested by diagnostic PCR for

asexual blood stage contamination using primers specific for the
gene encoding the apical membrane antigen AMA-1 (Peterson
et al., 1989; Narum and Thomas, 1994) and for gametocyte-
specificity using primers specific for the gene encoding the
LCCL-domain protein PfCCp2 (Pradel et al., 2004; Ngwa et al.,
2013). Controls without reverse transcriptase were also used
to investigate potential genomic DNA (gDNA) contamination
by using pfccp2 primers (for primer sequences, see Table S1).
Primers for quantitative real time RT-PCR to confirm the up-
regulation of selected genes as identified by microarray analysis
were designed using the Primer 3 software (http://frodo.wi.mit.
edu/primer3/) and tested on gDNA in conventional PCR to
confirm primer specificity (for primer sequences, see Table S1).
Real time RT-PCR measurements were performed using the Bio-
Rad iQ5 Real-Time Detection System. Reactions were performed
in triplicate in a total volume of 20 µl using the maxima SyBR
green qPCRmaster mix according to manufacturer’s instructions
(Thermo Scientific, Germany). Controls without template and
without reverse transcriptase were included in all real time RT-
PCR experiments. Transcript expression levels were calculated
by the 2−1Ct method (Livak and Schmittgen, 2001) using the
endogenous control gene encoding the P. falciparum seryl tRNA-
ligase (PF3D7_0717700) as reference (Salanti et al., 2003), which
was confirmed not to be affected in its transcript levels by TSA-
treatment.

Chromatin
Immunoprecipitation-Quantitative PCR
To provide evidence for a link between gene expression and
histone acetylation for selected genes identified by microarray
analysis, ChIP assays combined with subsequent-quantitative
PCR (ChIP-qPCR) were carried as previously described (Flueck
et al., 2009). Mature (stage V) gametocytes were enriched by
Percoll gradient purification, treated with either 0.5% vol. ethanol
(untreated) or TSA at IC90 concentrations for 6 h (TSA-treated)
and then resuspended in RPMI 1640 medium containing human
erythrocyte concentrate at 5% haematocrit. Crosslinking of
gametocyte chromatin was triggered by incubation of the cultures
with 1% formaldehyde (Sigma-Aldrich) for 10 min at 37◦C and a
termination of the reaction by addition of 0.125M glycine diluted
in doubled-distilled water. The RBCs were then lysed using 0.15%
saponin/PBS and crosslinked nuclei harvested and separated
from cytoplasmic proteins by the use of a 0.25 M cytoplasmic
lysis buffer (20 nM Hepes, 10 mM KCl, 1 mM EDTA, 1 mM
EGTA, 0.65% NP-40, 1 mM DTT, 1x protease inhibitor cocktail).
The nuclei of 108 mature gametocytes were then pooled and the
nuclei were sheared by sonication with UPH50 (Hielscher) on ice
for 40 intervals with each interval composed of 10 s sonication
and 50 s resting cycles to gain fragment sizes <500 bp. A total
amount of 400–450 ng chromatin was incubated under rotation
with 1 µg antibody (anti-H3K9ac, anti-H4Kac4, anti-PfHP1, and
rabbit IgG antibody for negative control) overnight at 4◦C in the
presence of 20 µl of protein A- and G-coated magnetic beads
(Diagenode). After six washing steps the immunoprecipitated
chromatin was eluted by adding 1% SDS and 0.1 M NaHCO3 as
DNA elution buffer and decrosslinked at 65◦C overnight. DNA
purification was carried out using the PCR and Gel Clean Up
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Kit (Macherey-Nagel). Primers for qPCR for selected genes as
identified by microarrays were designed using Primer 3 software
and tested on P. falciparum gDNA in conventional PCR to
confirm primer specificity (for primer sequences, see Table S1).
Quantitative PCR measurements were performed as described
above. The amount of recovered target DNA gained from
untreated and TSA-treated gametocyte samples was compared to
associated input DNA sample (1:10) and depicted as percentage
of input for each chosen gene.

Recombinant Protein Expression and
Production of Mouse Antisera
A recombinant peptide, corresponding to the N-terminal region
of PfRNF1 (Figure S1A), was expressed as a maltose-binding
protein-tagged fusion protein using the pMALTMc5X-vector
(New England Biolabs). DNA was amplified by PCR using
gene-specific primers (for primer sequences, see Table S1).
Recombinant protein was expressed in E. coli BL21(DE3)RIL
cells according to the manufacturer’s protocol (Invitrogen) and
isolated and affinity-purified using amylose resin according to
the manufacturer’s protocol (New England Biolabs). Polyclonal
antisera were generated by immunization of 6-weeks old female
NMRI mice (Charles River Laboratories) with subcutaneous
injections of 100 µg recombinant protein emulsified in Freund’s
incomplete adjuvant (Sigma-Aldrich) followed by a boost after
4 weeks. Mice were anesthetized at day 10 after the boost by
intraperitoneal injection of a mixture of ketamine and xylazine
according to the manufacturer’s protocol (Sigma-Aldrich), and
immune sera were collected via heart puncture. The immune
sera of three mice immunized were pooled; sera of three
non-immunized mice (NMS) were used as negative control.
Experiments in mice were approved by the animal welfare
committee of the District Council of Cologne, Germany (ref. no.
84-02.05.30.12.097 TVA).

Generation of a PfRNF1-HA-Strep-Tagged
Parasite Line
To tag PfRNF1 with hemagglutinin (HA)-streptavidin (Strep)
at the C-terminus, a 1,230 bp homologous gene fragment was
amplified from P. falciparum NF54 gDNA using gene-specific
primers (for primer sequences, see Table S1). Cloning was done
using the pHAST vector (kindly provided by Alex Maier, ANU
Canberra; Rug and Maier, 2013) with the help of the SacII/XhoI
restriction sites. A P. falciparum strain NF54 culture with 5% ring
stages was loaded with 100µg of the pHAST-PfRNF1 construct in
transfection buffer via electroporation (parameters: 310V 950µF,
13 ms; Bio-Rad gene-pulser) as described (Wirth et al., 2014).
WR99210 was added to a final concentration of 2.5 nM, starting
at 4 h after transfection. WR99210-resistant parasites appeared
after 4 weeks. After 60–90 days of drug pressure, the respective
cultures were investigated for plasmid-integration by diagnostic
PCR. The gDNA of the transfected parasites was isolated using
the NucleoSpin Blood Kit (Macherey-Nagel) according to the
manufacturer’s protocol and used as template in the diagnostic
PCR to test for vector integration (for primer sequences, see Table
S1; for primer location, see Figures S1B,C). Once integration was

confirmed, a clonal dilution was carried out to select for single
PfRNF1-HA-Strep-tagged parasite clones and one clone was used
for characterization.

Determination of Protein Expression of
PfRNF1 Following TSA-Treatment
To determine if the up-regulation of PfRNF1 transcript
expression following TSA-treatment corroborates with the up-
regulation of protein expression, purified mature gametocytes
of the P. falciparum wild-type NF54 strain or the PfRNF1-HA-
Strep-expressing transfectant line were splitted in two equal
volumes and each was pipetted into a pre-warmed 96-well
plate. One part of the culture was treated with TSA at IC90

concentrations and the other part was treated with 0.5% vol.
ethanol (untreated control). The samples were incubated for 24 h
at 37◦C in an atmosphere of 5%O2, 5%CO2, and 90%N2. Protein
lysates were generated, separated via SDS-PAGE and protein
levels were analyzed by WB analysis using anti-PfRNF1 antisera
or anti-HA antibody as described above. Anti-Pf39 antisera
was used as loading control. PfRNF1 levels were quantified for
untreated and TSA-treated samples from six (for the wild-type)
and two (for the transfectant) different experiments bymeasuring
the band intensities by Image J. The related band intensities
were normalized to Pf39 and compared with respect to untreated
samples.

Parasite Sub-cellular Fractionation
Nuclear and cytosolic fractions of P. falciparum strain NF54
parasites were prepared as previously described (Voss et al.,
2002). Enriched immature (stages II–IV) gametocytes were
treated with 0.1% saponin in PBS to lyse RBCs and washed twice
with PBS. The parasite pellet was then resuspended in cold lysis
buffer (20 mM Hepes, pH 7.8, 10 mM KCl, 1 mM EDTA, 1 mM
DTT, 1 mM PMSF, 1% Triton X100) and incubated for 5 min on
ice. The nuclei were pelleted at 2,500 g for 5 min at 4◦C and the
supernatant containing the cytoplasmic proteins was collected.
The nuclear pellet was washed three times with lysis buffer and
resuspended in twice the pellet volume of the extraction buffer
(20 mM Hepes, pH 7.8, 800 mM KCl, 1 mM EDTA, 1 mM
DTT, 1 mM PMSF, 1x protease inhibitor cocktail). Following
incubation under rotation for 30 min at 4◦C, the extract was
cleared by centrifugation at 13,000 g for 30 min and 4◦C. The
supernatant containing the nuclear fraction was then diluted with
1 volume of dilution buffer (20 mMHepes, pH 7.8, 1 mM EDTA,
1 mM DTT, 30% vol. glycerol). The nuclear and cytoplasmic
fractions were subjected to WB using anti-PfRNF1 antisera as
described above.

RESULTS

TSA-Treatment Affects P. falciparum Blood
and Sexual Stage Development
The effect of TSA on the blood and sexual stages of P. falciparum
was tested in vitro. Malstat assays, which measure the pLDH
activities demonstrated that TSA-treatment inhibited blood stage
replication with a mean IC50 value of 29 nM and an estimated
IC90 of 0.26 µM. Chloroquine-treatment was used for positive
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control in the assay and resulted in parasite growth inhibition
with a mean IC50 value of 16 nM (Table 1).

We next tested the effect of TSA on gametocyte development.
In this regard a culture of mainly stage II gametocytes was
grown in 24-well plates in triplicate in the presence of TSA at
IC50 and IC90 concentrations (as determined by Malstat assay)
or in the presence of 0.5% vol. ethanol (untreated control)
for 48 h. The parasites were subsequently cultured for another
8 days without inhibitor. The gametocytemia was determined
every 2 days via Giemsa-stained blood smears. We showed that
the numbers of stage IV and V gametocytes formed on day
10 were 43% less when the stage II gametocytes were treated
with TSA at IC50 concentrations and 67% less when treated
with IC90 concentrations as compared to controls (0.5% vol.
ethanol and 16 nM of chloroquine) (Figure 1A). Treatment of
stage II gametocytes with 60 nM epoxomicin as positive control
resulted in complete elimination of stage IV and V gametocytes
on day 10 (data not shown). We also investigated in detail
the differentiation of gametocytes from stage II to stage V
during incubation with TSA. TSA-treatment particularly affected
gametocytes of stages II and III, but did not result in any delay of
gametocyte maturation compared to the controls (Figure S2).

The effect of TSA on male gamete formation (termed
exflagellation) has already been demonstrated for P. falciparum
(Trenholme et al., 2014). The impairment of exflagellation
by TSA is minor with IC50 values of 0.22 ± 0.04 mM
(Table 1). To determine if TSA-treatment affects the formation
of female macrogametes and zygotes, gametocyte cultures were
incubated with TSA at IC50 and IC90 concentrations or with
0.5% vol. ethanol (untreated control) for 1 h at 37◦C. The
cultures were activated with 100 µM XA and further cultured
for 30 min and 12 h to detect macrogametes and zygotes,
respectively. Both stages were immunolabeled with anti-Pfs25
antibodies and counted for a total of 1,000 erythrocytes in
triplicate. Comparative analyses demonstrated a slight reduction
of macrogamete numbers, when these were treated with TSA at
IC90 concentration, while the numbers of zygotes decreased by 21
and 24%, when treated with TSA at IC50 and IC90 concentrations,
respectively (Figures 1B,C).

Treatment of Gametocytes with TSA
Causes Histone Hyper-Acetylation
To assess the extent of histone acetylation during P. falciparum
gametocyte development, two commercially available histone
acetylation antibodies (anti-H3K9ac and anti-H4Kac4) were used
to detect histone acetylation in gametocytes by IFA. Histone

TABLE 1 | Antimalarial activities of TSA against the P. falciparum blood and

microgamete stages.

Assay Inhibitor IC50 IC90

Malstat assay TSA 29 ± 3.0 nM 0.26 µM

Chloroquine 16 ± 6.0 nM N/A

Exflagellation assaya TSA 0.22 ± 0.040mM N/A

N/A, Not applicable; apublished in Trenholme et al. (2014).

acetylation was detected throughout the nuclei of gametocyte
stages II-V highlighted by Hoechst staining and immunolabeling
of Pfs230, respectively (Figures 2A,B). WB analysis using the
histone acetylation antibodies detected protein bands migrating
at molecular weights of 15 kDa (for anti-H3K9ac) and of 11
and 13 kDa (for anti-H4Kac4). These molecular weights are
in accord with the expected molecular weights of 15.4 kDa
for histone H3 and 11.5 kDa for histone H4. The second
protein band detected by the anti-H4Kac4 antibody might
represent H2B, which has an expected molecular weight of 13.1
kDa, since the antibody also recognizes this acetylated histone
as indicated in the manufacturer’s material data sheet. The
intensities of the protein bands increased, when the gametocytes
were treated with TSA at IC90 concentrations, demonstrating
hyper-acetylation of the histones following TSA treatment
(Figures 2C,D). QuantitativeWB analysis, measuring the protein
band intensity of total acetylated histones showed a significant
increase in their acetylation levels, when the immature and
mature gametocytes were treated with TSA (Figures 2E,F).

TSA-Treatment Results in the Deregulation
of Genes during Gametocyte Development
We next aimed to identify genes deregulated following treatment
of gametocytes with TSA. Immature, mature and activated
gametocytes were treated with TSA for 1 or 6 h, total RNA
was isolated, and the RNA of untreated cultures was used for
comparative controls. Beforehand, the purity of the cell samples
was confirmed via Giemsa smears (Figure S3A). Following cDNA
synthesis, the samples were applied to a P. falciparum DNA
Agilent microarray chip containing DNA spots corresponding to
the 5,363 coding genes of nucleus, mitochondrion and apicoplast
(Bozdech et al., 2003; Kafsack et al., 2012) (Table S2). Genes
with transcript levels greater (i.e., up-regulated genes) or lower
(i.e., down-regulated) than 2-fold compared to the untreated
control (0.5% vol. ethanol) for at least one of the two time-points
combined with a consistent up- or down-regulation for both
time-points were used for further analysis. Changes in transcript
levels greater than 2-fold for both time points compared to the
control were considered significant.

In immature and mature gametocytes a total of 219 and 214
genes, respectively, were identified by comparative transcript
analysis that were more than 2-fold up-regulated in their
expression levels, when these stages were treated with TSA. The
up-regulations for 120 and 76 of these transcripts, respectively,
were considered significant. Accordingly, transcripts of 90 and
66 genes were more than 2-fold down-regulated in TSA-treated
immature and mature gametocytes with a significant down-
regulation being observed for 8 and 11 genes, respectively.
In activated gametocytes, which were less sensitive to TSA-
treatment, the transcript levels of 48 genes were non-significantly
increased and were decreased for 7 genes (Figure 3A, Table S3).
The average up-regulation values for immature, mature and
activated gametocytes were in the range of 1.3 to 3.2-fold absolute
changes (immature: 1 h, 2.32; 6 h, 2.58: mature: 1 h, 2.03; 6 h, 3.16;
activated: 1 h, 1,31; 6 h, 2.36), and the down-regulation values
ranged between 0.7 and 0.5-fold absolute changes (immature: 1 h,
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FIGURE 1 | The effect of TSA on P. falciparum sexual stage development. (A) The effect of TSA on gametocyte development. TSA at IC50 or IC90 concentrations was

added to stage II gametocyte cultures for 2 days. The numbers of stage IV and V gametocytes were determined in 1,000 erythrocytes at day 10 using Giemsa-stained

blood smears. Epoxomicin (60 nM) was used as a positive control (not shown), while 0.5% vol. ethanol and chloroquine (16 nM) were used as negative controls

(ethanol set to 100%). (B) The effect of TSA on macrogamete development. A mature gametocyte culture was incubated with TSA at IC50 or IC90 concentrations or

0.5% vol. ethanol for 1 h at 37◦C. The culture was then activated with 100 µM XA and further cultured for 30 min at RT for macrogamete development.

Macrogametes were detected by immunolabelling with anti-Pfs25 and counted in triplicate in 1,000 erythrocytes. (C) Effect of TSA on zygote development. The

zygote development assay was performed in the same way as the macrogamete development except for the fact that after activation the cultures were incubated for

12 h at RT. Results shown (for A–C) are combined from three independent experiments each performed in triplicate (mean ± SD). *P < 0.05; **P < 0.01; ***P <

0.001; ns, not significant; Student’s t-test.

0.70; 6 h, 0.49; mature: 1 h, 0.62; 6 h, 0.47; activated: 1 h, 0.72; 6
h, 0.51) (Figure 3B). A total of 29 genes that were up-regulated
in their transcript levels were shared by immature, mature and
activated gametocytes, but none of the down-regulated genes
were shared by the three gametocyte stages (Figure 3C).

For each of the identified genes, the microarray-based
transcript data were compared with the transcriptomics data
published in the database PlasmoDB. The comparison revealed
that roughly 23 and 22% of the genes transcriptionally up-
regulated in immature and mature gametocytes following TSA-
treatment, respectively, have their peak expression in mature
stage V gametocytes and in ookinetes (Figure S4; Table S3).
Genes down-regulated in immature gametocytes following TSA-
treatment were mainly expressed in gametocytes of stages II and
V (25 and 23%, respectively), while for the mature gametocytes
58% of down-regulated genes showed their peak expression in
gametocytes of stage V. In activated gametocytes, 42% of genes
up-regulated after treatment with TSA were highly expressed
in ookinetes, whereas all of the down-regulated genes exhibited
peak expression profiles in gametocytes of stage V (Figure S4;
Table S3).

The identified genes were grouped according to their
predicted functions as indicated in PlasmoDB. The in-silico
analyses demonstrated that in TSA-treated immature andmature
gametocytes the up-regulated genes mainly associated with
functions in gene expression and transcription and in antigenic
variation and cytoadherence, or they code for exported proteins.
Furthermore, in immature gametocytes, genes associated with
RBC invasion and proteostasis were significantly up-regulated

(Figure 3D; Figures S5A,B). The up-regulated genes mostly
included ones coding for SURFINs and RIFINs, for the merozoite
surface protein (MSP) family or the rhoptry neck (RON) family
and for the PHIST family (Mphande et al., 2008; Proellocks
et al., 2010; Beeson et al., 2016; Warncke et al., 2016). Also,
genes with functions in the mosquito-specific stages were
activated, when the gametocytes were treated with TSA. Down-
regulated genes included ones assigned to gene expression and
transcription and translation (Figure 3D). Furthermore, genes
with assigned functions in metabolism and signaling as well
as components of the cytoskeleton and the inner membrane
complex were affected in their activation by TSA-treatment
(Table S3).

In TSA-treated immature and mature gametocytes, several
genes with more than 5-fold up-regulated transcription were
identified, i.e., four genes in the immature gametocyte samples
and 16 genes in the mature gametocyte samples (Table 2). The
genes could mostly be assigned to signaling, cell cycle and DNA
replication, gene expression and transcription, and proteostasis,
or they included genes encoding exported proteins. Six of the
genes had unknown function. One gene, encoding for the RBC
invasion-related protein MSRP4 (merozoite surface protein 7-
related protein 4), was identified in both immature and mature
gametocytes.

To validate the microarray array data, a total 32 genes
(immature gametocytes: 15 genes; mature gametocytes: 17 genes)
transcriptionally up-regulated following TSA-treatment were
randomly selected. The gametocyte cultures were treated with
TSA at IC90 concentration or 0.5% vol. ethanol (untreated
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FIGURE 2 | Histone acetylation and hyper-acetylation following treatment of gametocytes with TSA. (A,B) Presence of acetylated histones in gametocytes. Acetylated

histones were detected in the different gametocyte stages (GC stage II-V) via immunolabeling using rabbit anti-H3K9ac (A) and anti-H4Kac4 (B) antibodies (green).

Gametocytes were highlighted with mouse antibodies against the gametocyte marker Pfs230 (red). Nuclei were highlighted by Hoechst nuclear stain 33342 (blue).

Bar, 5 µm. (C,D) Histone hyper-acetylation following gametocyte treatment with TSA. Protein lysates from immature gametocytes (imGC) (C) and mature

gametocytes (mGC) (D) following treatment with TSA at IC90 concentrations or with 0.5% vol. ethanol (untreated control) for 1 and 6 h at 37◦C were subjected to WB

analysis using anti-H3K9ac and anti-H4Kac4 antibodies. Results shown (for A–D) are representative for three to six independent experiments. (E,F) Quantification of

histone hyper-acetylation following gametocyte treatment with TSA. Lysates of imGC (E) and mGC (F) were subjected to immunoblotting as described above and

(Continued)
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FIGURE 2 | Continued

histone acetylation was quantified between TSA-treated and untreated samples by measuring the band intensities via Image J for three or more different experiments;

the values were normalized with the band intensities of Pf39 used as loading control (set to 1). Since the anti-H4Kac4 detected two bands in both imGC and mGC

indicating that the antibody could also detect other acetylated histones, we quantified the total histone acetylation levels from both bands. *P < 0.05; **P < 0.01;

***P < 0.001; ns, not significant, Student’s t-test. According the manufacturer’s material data sheet the rabbit anti-H4Kac4 antibody can cross-react with other

acetylated histones like H2B.

FIGURE 3 | Deregulation of gene expression following treatment of gametocytes with TSA. Immature (imGC) and mature (mGC) gametocytes as well as gametocytes

at 1 h post-activation (aGC) were treated with TSA at IC90 concentrations or with 0.5% vol. ethanol (untreated control) for 1 and 6 h, total RNA was isolated and cDNA

synthesized to be employed in microarray assays. Genes with a relative expression levels greater than 2-fold for at least one of the two time-points combined with a

consistent up- or down-regulation for both time-points were used for further analysis. (A,B) Bar charts showing total up- and down-regulated genes in imGC, mGC

and aGC (A), and mean fold change of deregulated genes in imGC, mGC, and aGC (B) at 1 or 6 h following TSA-treatment. (C) Venn diagram showing the overlap

among deregulated genes in imGC, mGC, and aGC after TSA-treatment. (D) Pie chart showing the detailed number of deregulated genes in the different gametocyte

samples based on the predicted function following TSA-treatment.
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control) for 1 h and total RNA was isolated. Complementary
DNA was synthesized from each sample and purity was
further assessed by diagnostic RT-PCR using stage specific
markers. The tests confirmed the presence of pfccp2 (gametocyte-
specific) transcript in all the gametocyte samples while
ama1 (asexual blood stage-specific) transcript was absent
(Figure S3B), confirming that the gametocyte samples were
devoid of any asexual blood stage contamination. A test for
gDNA contamination in sample preparations lacking reverse
transcriptase using pfccp2-specific primers was negative.

Subsequently, the transcript expression levels of the 32
selected genes were measured via real time RT-PCR in TSA-
treated and untreated samples. Transcript expression was
calculated by the 2−1Ct method (Livak and Schmittgen, 2001)
in which the threshold cycle number (Ct) was normalized to
the Ct of the endogenous control gene encoding P. falciparum
seryl tRNA-ligase (PF3D7_0717700) as reference gene. For
TSA-treated immature gametocytes, we demonstrated a greater
than 2-fold transcriptional up-regulation for 14 out of the
15 (93.3%) up-regulated genes as identified by microarray
analysis (Figure 4A). Accordingly, 14 out of 17 (82.4%) of
the identified up-regulated genes of the TSA-treated mature
gametocyte samples had greater than 2-fold increased transcript
levels compared to the untreated control (Figure 4B), which
strongly validates the microarray results.

Genes Transcriptionally Up-Regulated
Following TSA-Treatment Associate with
Acetylated Histones
ChIP-qPCR assays were employed to investigate a potential
link between histone acetylation and the transcriptional
up-regulation of selected genes following TSA-treatment of
gametocytes. Five genes transcriptionally up-regulated in
TSA-treated mature gametocytes were chosen, i.e., genes
encoding a putative ring finger protein (henceforth termed
pfrnf1, 3D7_0314700), a WD40-domain protein (pfwdtc1,
3D7_1428400), the exported protein PHISTc (3D7_0219800)
and two unknown proteins (PF3D7_0620200, PF3D7_0926600).
For control a gene transcriptionally down-regulated in
TSA-treated mature gametocytes was selected, i.e., pfnep1
(PF3D7_0821500), a gene encoding the ribosomal RNA
small subunit methyl-transferase NEP1 (Figure 5A). For further
controls, the housekeeping genes coding for arginine tRNA-ligase
(PF3D7_1218600) and seryl tRNA-ligase (PF3D7_0717700) were
chosen. Additional controls included two genes that were
previously shown to associate with chromatin bound to PfHP1,
i.e., ap2-g (3D7_1222600) and var gene upsB (PF3D7_0426000)
(Brancucci et al., 2014). For each gene, primers corresponding
to the promotor and coding regions were generated (for primer
locations, see Figure 5A). ChIP assays were performed using
anti-H3K9ac and anti-H4Kac4 antibodies, which were previously
used to precipitate plasmodial chromatin (Crowley et al., 2011;
Gómez-Díaz et al., 2017). For negative control, an IgG antibody
from non-immunized rabbit was used in the assays. For positive
control, anti-PfHP1 antibody was used to precipitate ap2-g and
var upsB (Flueck et al., 2009). The ChIP recovery rates of these

FIGURE 4 | Changes in gene expression after treatment of gametocytes with

TSA. Transcript analysis for 15 up-regulated immature (imGC) (A) and 17

up-regulated mature (mGC) (B) gametocyte genes as identified by microarray

via real-time RT-PCR. Transcript expression levels were calculated by the

2−1Ct method; the threshold cycle number (Ct) was normalized with the Ct of

the gene encoding seryl tRNA-ligase (PF3D7_0717700) as reference. Genes

were considered up-regulated when the fold changes between TSA-treated

and untreated sample were greater than 2-fold. Results shown are

representative for two to three independent experiments.

genes following immunoprecipitation were compared between
chromatin generated from mature gametocytes treated with
TSA at IC90 concentrations for 6 h and from untreated mature
gametocytes via qPCR.

Initially, the presence of PfHP1 in the nuclei of gametocytes
was demonstrated via IFA and compared to PfHP1 localization in
trophozoites and schizonts. As previously described, PfHP1 as a
marker for heterochromatin particularly localized to the nucleus
periphery in trophozoites and schizonts (Flueck et al., 2009;
Pérez-Toledo et al., 2009). Similarly, PfHP1 was predominantly
found at the nucleus periphery of immature and activated
gametocytes, while in mature gametocytes PfHP1 was often
found in concentrated foci within the nuclei (Figure S6).
Immunolabeling with NMS served as negative control and did
not result in any labeling (Figure S7).

The ChIP-qPCR analysis on precipitated acetylated histones
using anti-H3K9ac antibody demonstrated a higher recovery
of the five genes transcriptionally up-regulated in TSA-treated
mature gametocytes (Figure 5B). The increased recovery rates
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FIGURE 5 | Association of genes affected by TSA-treatment with acetylated histone H3. (A) Predicted domain structures of the six genes deregulated in mature

gametocytes by TSA-treatment. Promotor (thin black line) and coding (black box) regions as well as location of the primers specific to the promotor (red line) and to

the coding region (blue line) are indicated. (B) ChIP-qPCR analysis of five up-regulated genes and one down-regulated gene as identified by microarray using rabbit

anti-H3K9ac antibody to demonstrate potential association between the genes and acetylated histone H3. Crosslinked chromatin from mature gametocytes treated

with TSA at IC90 concentrations or with 0.5% vol. ethanol (untreated control) for 6 h was precipitated with rabbit anti-H3K9ac antibody or with rabbit

(Continued)
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FIGURE 5 | Continued

anti-PfHP1antibody and IgG as controls. The immunoprecipitated material was analyzed by qPCR to confirm specific enrichment of selected genes including pfrnf1

(PF3D7_0314700), pfwdtc1 (PF3D7_1428400), phistc (PF3D7_0219800), PF3D7_0620200, and PF3D7_0926600. As a down-regulated gene pfnep1

(PF3D7_0821500) was analyzed. The genes encoding arginine tRNA-ligase a-t-l (PF3D7_1218600) and seryl tRNA-ligase s-t-l (PF3D7_0717700) as well as ap2-g

(PF3D7_1222600) and the var gene upsB (PF3D7_0426000) were used as controls. Primers targeting either the coding regions (cod.) or promoter regions (prom.)

were used for qPCR. The values represent the proportion of chromatin recovered from the input samples. Results shown are representative for two to three

independent experiments.

were detected both when primers corresponding to the promotor
regions or the coding regions were used. A slightly higher
recovery was also seen for the two control tRNA-ligase-
encoding control genes, when the gametocytes were treated
with TSA. No increased recovery rate, on the other hand, was
detected, when primers corresponding to the promotor and
coding regions of pfnep1 were used in the qPCR analyses.
Furthermore, the genes ap2-g and var upsB were precipitated
with the anti-HP1 antibody (Figure 5B). The recovery rates
for the var gene upsB were higher than the ones for ap2-g
and neither of the recovery rates changed upon TSA-treatment
of the gametocytes. Generally, similar higher recovery rates
were observed for the TSA-dependent transcriptionally up-
regulated genes, when the anti-H4Kac4 antibody was used for
precipitation. No higher recoveries of pfrnf1 and pfwdtc1 were
achieved, though, when the promotor regions were amplified,
indicating that these promotors might associate particularly with
acetylated H3 (Figure S8). Furthermore, no higher recovery for
PF3D7_0620200 was detected. The overall high recovery rates
observed when using anti-H4Kac4 antibody for precipitation
might be due to the fact that this antibody also reacts with
acetylated H2B (compare with Figures 2C,D). The combined
data demonstrate an association of acetylated histones with the
five selected genes that were transcriptionally up-regulated in
TSA-treated gametocytes.

Treatment of Mature Gametocytes with
TSA Results in Increased PfRNF1 Synthesis
In a final set of experiments, we aimed to determine, if up-
regulation of transcript expression following TSA-treatment
also corroborates with increased protein synthesis. We selected
one gene, pfrnf1, whose transcript level was up-regulated
in mature gametocytes following TSA-treatment, for further
investigations. In-silico analyses disclose the ring finger-domain
protein PfRNF1 as a putative E3-ligase (Ponts et al., 2008). A
recombinant protein corresponding to the N-terminal region
of PfRNF1 was bacterially expressed and used to generate
antisera against PfRNF1 in mice. IFA were performed in the
different asexual and sexual blood stages of P. falciparum.
Asexual blood stage parasites were highlighted by MSP-1
labeling; gametocytes and activated gametocytes were highlighted
by Pfs230 immunolabeling. The IFA revealed a prominent
expression of PfRNF1 in immature gametocytes with peak
expression in stage II gametocytes. Here, the protein localized
to the gametocyte cytoplasm and nucleus (Figure 6A). PfRNF1
was also detected at low levels in mature gametocytes
and in gametocytes 30 min post-activation as well as in
schizonts.

Expression of PfRNF1, which has a calculated molecular
weight of 135 kDa, was then investigated in immature andmature
gametocytes via WB analysis. A predominant protein band was
detected in both, immature and mature gametocyte lysates, when
immunoblotted with anti-PfRNF1 antisera, which was migrating
at a molecular weight of roughly 200 kDa. An additional
protein band at ∼140 kDa was also observed (Figure 6B). No
protein bands were present in lysates of the non-infected RBC
control. For loading control, immunoblotting with anti-Pf39
antisera, directed against the endoplasmic reticulum-specific
protein Pf39 (Templeton et al., 1997), was performed, and Pf39
was detected in all parasite lysates. We also investigated the sub-
cellular localization of PfRNF1 in gametocytes via WB, using
cytosolic and nuclear fractions of mixed gametocyte cultures.
WB revealed the presence of PfRNF1 as a 200-kDa protein in
both fractions (Figure 6C). Antibodies against PfActin1, which
is predominantly present in the cytoplasm and to a minor level
in the nuclei were used as a fraction control. The purity of the
fractions was further confirmed by immunoblotting with anti-
H4Kac4 antibody, which labeled histones in the nuclear fraction,
but which did not result in any protein band in the cytoplasmic
fraction (Figure 6C).

To validate the protein expression data, we generated
a P. falciparum transfectant line, which expresses PfRNF1
C-terminally tagged with HA-Strep (Figure S1B). Successful
integration was confirmed by diagnostic PCR (Figure S1C).
Subsequent WB analyses, using rabbit anti-HA antibody,
detected a protein band with an approximate molecular weight of
200 kDa in lysates of immature gametocytes from the transfectant
line, but not from wild-type parasites used as a negative control
(Figure 6D). Further, no protein band was detected in lysates
of non-infected RBCs. The combined WB data indicate that
PfRNF1 migrates at a higher molecular weight than expected,
which might be caused by PTMs. When the PfRNF1-HA-Strep-
expressing parasite line was used in IFA and immunolabeled
with anti-HA antibody, a similar protein expression pattern was
observed as has been described above (Figure S9).

Finally, we assessed whether treatment of mature gametocytes
with TSA results in up-regulation of PfRNF1 on the protein
level. In this regard, mature gametocytes, both of the wild-type
strain and the PfRNF1-HA-Strep-expressing transfectant line,
were treated with TSA at IC90 concentration or 0.5% vol. ethanol
(untreated control) for 24 h, lysates were generated and PfRNF1
was detected by WB analysis using the anti-PfRNF1 antisera.
Immunoblotting revealed increased PfRNF1 levels in lysates of
TSA-treated gametocytes compared to the untreated control
for both wild-type and transfectant (Figure 7A, Figure S10A).
Quantitative WB analysis showed a significant up-regulation of
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PfRNF1 following TSA-treatment as compared to the untreated
control (Figure 7B, Figure S10B).

DISCUSSION

Histone PTMs are emerging as major regulatory mechanisms
thought to modulate gene expression in eukaryotes. While
these mechanisms have been extensively studied during the
erythrocytic replication of P. falciparum, little is known about this
process during parasite human-to-mosquito transmission. In this
study, we aimed to determine the role of histone acetylation and
deacetylation in the control of gene expression in P. falciparum
gametocytes during their development and transmission to the
mosquito. To achieve our goal, we used the chemical loss-of-
function approach using the HDAC inhibitor TSA (inhibitor of
HDACs I and II) on the P. falciparum gametocyte-producing
NF54 strain. Treatment with TSA results in a mean IC50 value
of 29 nM. The killing of the P. falciparum asexual blood stages by
TSA with IC50 values in nM ranges have already been reported
before for the chloroquine-sensitive 3D7 (8 nM) and chloroquine
resistant strain DD2 (11 nM) (Andrews et al., 2008).

In order to determine the effect of TSA on gametocyte
development and transmission to the mosquito, we
treated stage II gametocytes with the HDAC inhibitor and
followed gametocyte development. We show that gametocyte
development was strongly affected, and here stage II and III
gametocytes appeared to be more vulnerable to TSA treatment
then stage IV and V gametocytes. On the other hand, TSA only
moderately effected macrogamete and zygote development.
In a previous study, it was also reported that microgametes
were only moderately affected following treatment with a
variety of HDAC inhibitors (Trenholme et al., 2014). The
fact that TSA has strong gametocytocidal activities, but only
exerts minor effects on gametes and zygotes indicates that
histone acetylation-mediated gene regulation is important
during gametocytogenesis, but not during the early phase of
midgut-stage development. This is in accord with findings in
P. falciparum and P. berghei that transcript required for the
midgut stage formation is synthesized and stored in female
gametocytes, where it is translationally repressed by binding to
regulatory ribonucleoprotein complexes, like the RNA helicase
DOZI (development of zygote inhibited) and the Sm-like
factor CITH (homolog of worm CAR-I and fly Trailer Hitch),
as identified in P. berghei, or the Pumilio/FBF (Puf) family
RNA-binding protein Puf2, as was shown for P. falciparum
(Mair et al., 2006, 2010; Miao et al., 2013; Guerreiro et al.,
2014). A recent analysis integrating transcriptome and proteome
data revealed 512 highly expressed transcripts in P. falciparum
female gametocytes without corresponding protein expression,
indicating large scale translational repression (Lasonder et al.,
2016). Repression of the stored transcript is released and
translation is initiated, once the gametocytes become activated
in the mosquito midgut.

To confirm histone acetylation in gametocytes, we used
two commercially available histone acetylation antibodies (anti-
H3K9ac and anti-H4Kac4) to detect the acetylated histones in
the nuclei of different gametocyte stages. By means of these

FIGURE 6 | Characterization of PfRNF1. (A) Localization of PfRNF1 in the P.

falciparum asexual blood and gametocyte stages. Mouse anti-PfRNF1 antisera

was used to immunolabel fixed samples of trophozoites, schizonts and mature

gametocytes (GC) of stages II to V as well as of activated gametocytes (aGC)

at 30 min post-activation (green). Schizonts were visualized by labeling with

rabbit anti-MSP-1 antibody and gametocytes were visualized by rabbit

anti-Pfs230 antisera (red); nuclei were highlighted by Hoechst nuclear stain

33342 (blue). Bar, 5 µm. Results shown are representative for four

independent experiments. (B) Expression of PfRNF1 in gametocyte lysates of

immature (imGC) and mature (mGC) gametocytes were immunoblotted with

anti-PfRNF1 antibody and detected two protein bands of approximate

molecular weights of 200 kDa (arrow) and 140 kDa. Lysates of non-infected

red blood cells (niRBCs) were used for negative control. Immunoblotting with

mouse anti-Pf39 antisera served as loading control. (C) Sub-cellular

localization of PfRNF1. Cytosolic and nuclear fractions of enriched immature

gametocytes were subjected to WB using anti-PfRNF1 antisera and detected

a 200-kDa band (arrow) in both fractions. Mouse antibodies against PfActinI

(41 kDa) and rabbit antibodies against H4Kac4 detecting acetylated histone

H4 (∼11 kDa) were used as fraction controls. (D) Detection of

PfRNF1-HA-Strep in gametocytes of parasite line PfRNF1-HA-Strep. Lysates

of PfRNF1-HA-Strep immature gametocytes were immunoblotted with rabbit

anti-HA antibody and detected a protein band of 200 kDa (arrow). Lysates of

non-infected red blood cells (niRBCs) as well as wild-type (Wt) gametocytes

were used as negative control. Results shown (for A–D) are representative for

three to four independent experiments.
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FIGURE 7 | Up-regulation of PfRNF1 levels in mature gametocytes following

TSA-treatment. (A) Lysates from mature gametocytes (mGC) following

treatment with TSA at IC90 concentrations or 0.5% vol. ethanol (untreated

control) for 24 h were subjected to WB using mouse anti-PfRNF1 antisera and

detected a 200 kDa band (arrow). Immunoblotting of lysates of non-infected

red blood cells (niRBC) was used for negative control; immunoblotting with

mouse anti-Pf39 antisera served as loading control. (B) Quantification of

PfRNF1 protein expression following TSA-treatment of mature gametocytes.

Lysates of mature gametocytes were subjected to immunoblotting as

described above and PfRNF1 levels were quantified between TSA-treated and

untreated samples by measuring the band intensities via Image J for six

different experiments; the values were normalized with the band intensities of

Pf39 used as loading control (set to 1). Results shown (for A,B) are

representative for six independent experiments. ***P < 0.001, Student’s t-test.

antibodies, we demonstrated that gametocyte treatment with
TSA results in histone hyper-acetylation thereby leading to
transcriptional activation. Histone hyper-acetylation following
treatment of the malaria parasite with HDAC inhibitors have
been earlier reported for P. falciparum blood stages (Andrews
et al., 2008; Trenholme et al., 2014) and the asexual blood stages
of P. knowlesi (Chua et al., 2017).

As a next step we aimed to investigate any deregulation of
gene expression in immature, mature and activated gametocytes
caused by TSA-treatment via microarray- and real-time RT-PCR-
based analyses. Comparative transcriptomics between untreated
and inhibitor-treated gametocytes identified 453 genes, which
were more than 2-fold deregulated after 1 or 6 h following TSA-
treatment. Among these 303 were more than 2-fold up-regulated,
while 150 genes were down-regulated. Up-regulation of gene
expression can be explained by increased euchromatin formation
due to the loose contact between the negatively charged DNA and
the acetylated histones, which hence counteracts gene silencing.
Down-regulation of gene expression following TSA-treatment,
on the other hand, which occurs in less than half of the identified
genes, might be due to indirect effects. As mentioned earlier,
PfHP1 was reported to bind to H3K9me3 to maintain the
heterochromatin state, resulting in ap2-g repression (Brancucci
et al., 2014), a process also involving PfHda2. It is postulated
that the removal of acetyl groups by PfHda2 promotes histone
methylation leading to PfHP1 binding (Coleman et al., 2014).
Other studies have also reported the down-regulation of gene
expression following treatment with HDAC inhibitors (Glaser

et al., 2003; Chaal et al., 2010; Andrews et al., 2012b). Subsequent
ChIP-qPCR analyses confirmed the general association of genes
up-regulated in gametocytes following TSA-treatment with
acetylated histones, particularly acetylated H3 and H4. The
observed higher recovery rates achieved, when anti-H4Kac4 was
used in the ChIP assays may be due to the facts that the antibody
recognizes several lysine acetylation sites in H4 and that it
additionally exhibits a minor binding to acetylated H2B.

An interesting finding in this study is the fact that the
impairment of gene silencing during gametocytogenesis
re-activates genes known to be crucial for blood stage
replication. This was particularly observed for genes assigned
to antigenic variation and cytoadherence and to RBC invasion
by merozoites, or genes encoding exported proteins, which are
particularly characteristic for the intraerythrocytic trophozoites.
Interestingly, genes involved in antigenic variation and
cytoadherence included ones coding for RIFINs and SURFINs,
while only one out of 60 known var genes was identified. This
might be explained by the fact that var gene activation and
silencing is mostly accredited to the NAD-dependent histone
deacetylases PfSir2A and PfSir2B (Duraisingh et al., 2005;
Freitas-Junior et al., 2005; Tonkin et al., 2009) which are not
affected following TSA-treatment. Var gene regulation is also
linked to histone methylation, like H3K4me3-mediated var
gene activation and H3K9me3-mediated var gene silencing
(Chookajorn et al., 2007; Lopez-Rubio et al., 2007, 2009; Salcedo-
Amaya et al., 2009), which further substantiate the reason why
var genes were hardly identified. RIFINs are encoded by about
135 rif genes and comprise the largest family of antigenically
variable molecules in P. falciparum (reviewed in Kirkman and
Deitsch, 2014). H3K9 acetylation has been shown to control
the expression of rif genes, which probably accounts for the
reason why RIFINs were affected (Cabral et al., 2012). SURFINs
are encoded by 10 surface-associated interspersed (surf ) genes,
which are located close or within the subtelomeric region of
chromosomes. Little is known whether they are epigenetically
regulated, but it is likely that they are regulated by histone
PTMs (Mphande et al., 2008). Not identified by the microarray
analyses were any of the genes coding for the 15 variant
antigen-encoding mc-2tm genes. Furthermore, only one out of
35 STEVOR-encoding genes was up-regulated in gametocytes
following TSA-treatment, suggesting that these gene families
are not primarily affected in their expression levels by histone
acetylation.

The majority of exported proteins regulated in their
synthesis by histone acetylation include members of the PHIST
(Plasmodium helical interspersed subtelomeric) family. The
PHIST family comprises 89 proteins, the most of which have yet
unknown functions. The PHIST protein family is characterized
by a conserved domain of ∼150 amino acids predicted to
form four consecutive alpha helices and have been shown to
be differentially expressed during the Plasmodium life-cycle
(Warncke et al., 2016). The differential expression of these
proteins may suggest an epigenetic mechanism. Invasion-related
genes regulated in their expression by histone acetylation
include previously identified surface proteins of merozoites, e.g.,
members of the MSP (merozoite surface protein) and the RON
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(Rhoptry neck) families (Proellocks et al., 2010; Beeson et al.,
2016; Lin et al., 2016). Noteworthy, all of these identified gene
families, i.e., rif and stevor and the ones encoding the PHIST
family as well as the merozoite invasion-related families were
reported to associate with heterochromatin markers (Flueck
et al., 2009; Lopez-Rubio et al., 2009; Salcedo-Amaya et al.,
2009) thereby maintaining default silencing of the majority of
redundant members of multi-gene families (reviewed in Duffy
et al., 2012).

While the above mentioned genes appear to be silenced by
deacetylations of the associated histones after the parasites have
entered the sexual pathways, other genes were apparently waiting
to be activated by histone acetylation, once the parasite has
been transmitted to the mosquito vector. Among others, these
genes encode proteins important for midgut extravasation by the
ookinete, like the secreted ookinete protein 25 (PSOP25), the
secreted ookinete adhesive protein (SOAP), the von Willebrand
factor A-domain related protein (WARP), the circumsporozoite
and thrombospondin-related adhesion protein-related protein
(CTRP), the cell traversal protein for ookinetes and sporozoites
(CelTOS), or chitinase (CHT1) (reviewed in Pradel, 2007;
Bennink et al., 2016).

To further justify our data, we selected one gene, pfrnf1
(PF3D7_0314700), whose transcript was up-regulated
following TSA-treatment of mature gametocytes, for further
characterization. PfRNF1 possesses a C-terminal RING finger
domain, which shows a high homology with the human E3
ubiquitin-protein ligase Praja-1. PfRNF1 has been annotated
as a potential E3 ligase in P. falciparum as a component of the
ubiquitin-mediated pathway (Ponts et al., 2008). TSA-treatment
caused increased transcript and protein levels of PfRNF1 in
mature gametocytes. Based on our data we postulate that
under normal conditions deacetylation of histones H3 and H4
down-regulates PfRNF1 expression in mature gametocytes. The
regulation of expression by histone deacetylases was recently also
reported for the human RING finger domain protein RNF148

(Liu et al., 2013). We therefore suspect that PfRNF1 is a potential
HDAC-regulated E3 ligase involved in ubiquitin-mediated
pathways during gametocyte development, which might be
important for regulatory processes during human-to-mosquito
transmission of Plasmodium.

Our combined data highlight the role of histone acetylation in
the control of gene expression during gametocyte development
and transmission from the human to the mosquito, which may
be exploited in malaria transmission-blocking strategies.
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