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Human Campylobacter jejuni-infections are progressively increasing worldwide. Despite

their high prevalence and socioeconomic impact the underlying mechanisms of

pathogen-host-interactions are only incompletely understood. Given that the innate

immune receptor nucleotide-oligomerization-domain-2 (Nod2) is involved in clearance

of enteropathogens, we here evaluated its role in murine campylobacteriosis. To address

this, we applied Nod2-deficient IL-10−/− (Nod2−/− IL-10−/−) mice and IL-10−/−

counterparts both with a depleted intestinal microbiota to warrant pathogen-induced

enterocolitis. At day 7 following peroral C. jejuni strain 81–176 infection, Nod2 mRNA

was down-regulated in the colon of secondary abiotic IL-10−/− and wildtype mice.

Nod2-deficiency did neither affect gastrointestinal colonization nor extra-intestinal and

systemic translocation properties of C. jejuni. Colonic mucin-2 mRNA was, however,

down-regulated upon C. jejuni-infection of both Nod2−/− IL-10−/− and IL-10−/− mice,

whereas expression levels were lower in infected, but also naive Nod2−/− IL-10−/− mice

as compared to respective IL-10−/− controls. Remarkably, C. jejuni-infected Nod2−/−

IL-10−/− mice were less compromised than IL-10−/− counterparts and displayed less

distinct apoptotic, but higher regenerative cell responses in colonic epithelia. Conversely,

innate as well as adaptive immune cells such as macrophages and monocytes as well

as T lymphocytes and regulatory T-cells, respectively, were even more abundant in large

intestines of Nod2−/− IL-10−/− as compared to IL-10−/− mice at day 7 post-infection.

Furthermore, IFN-γ concentrations were higher in ex vivo biopsies derived from intestinal

compartments including colon and mesenteric lymph nodes as well as in systemic tissue

sites such as the spleen of C. jejuni infected Nod2−/− IL-10−/− as compared to IL10−/−

counterparts. Whereas, at day 7 postinfection anti-inflammatory IL-22 mRNA levels

were up-regulated, IL-18 mRNA was down-regulated in large intestines of Nod2−/−

IL-10−/− vs. IL-10−/− mice. In summary, C. jejuni-infection induced less clinical signs

and apoptosis, but more distinct colonic pro- and (of note) anti-inflammatory immune as

well as regenerative cell responses in Nod2 deficient IL-10−/− as compared to IL-10−/−
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control mice. We conclude that, even though colonic Nod2 mRNA was down-regulated

upon pathogenic challenge, Nod2-signaling is essentially involved in the well-balanced

innate and adaptive immune responses upon C. jejuni-infection of secondary abiotic

IL-10−/− mice, but does neither impact pathogenic colonization nor translocation.

Keywords: Campylobacter jejuni, nucleotide-oligomerization-domain-2 (Nod2), IL-10−/− mice, secondary

abiotic (gnotobiotic) mice, IL-23/IL-22/IL-18 axis, pro-inflammatory immune responses, bacterial translocation,

colonization resistance

INTRODUCTION

Host immune responses are essential for controlling and
combating enteropathogenic infections. The nucleotide-
oligomerization-domain (Nod)-like receptors belong to a family
of intracellular pattern recognition receptors that sense microbial
products and damage-associated factors thereby regulating host
innate immune responses (Shaw et al., 2008). The Nod2 receptor
is expressed by innate (including dendritic cells, macrophages,
and monocytes) and adaptive (such as T lymphocytes) immune
cell populations as well as by Paneth cells (Ogura et al., 2001,
2003; Hisamatsu et al., 2003; Tada et al., 2005). Upon activation
by muramyl dipeptide (MDP) comprizing a major constituent of
bacterial peptidoglycans and known for its immunomodulatory
properties (Inohara and Nunez, 2003), Nod2 signaling confers
resistance against a multitude of bacterial species including
enteropathogens (Girardin et al., 2003a,b; Shaw et al., 2008;
Grimes et al., 2012). Among these, Campylobacter jejuni can
be found as commensal bacteria colonizing the gastrointestinal
tract of wild and domestic animals. Humans become mainly
infected by ingestion of C. jejuni via contaminated products
derived from livestock animals or by pathogen-containing
surface water (Guerry and Szymanski, 2008; Lane and Martin,
2012). Infected individuals may be asymptomatic or display
symptoms of varying degree depending on their immune
status and on the virulence of the respective bacterial strain.
Whereas, some patients might complain about mild malaise with
watery diarrhea, others present with severe symptoms including
fever, abdominal cramps, and ulcerative enterocolitis with
inflammatory bloody diarrhea requiring antibiotic treatment
and hospitalization in immunocompromised patients (Kist and
Bereswill, 2001; Backert et al., 2017). Histopathological changes
of affected intestinal tissues are characterized by ulcerations,
crypt abscesses, and elevated immune cell numbers in the
colon (van Spreeuwel et al., 1985; Walker et al., 1986; Kist
and Bereswill, 2001). In the vast majority of cases disease is
self-limiting, but post-infectious sequelae affecting the nervous
system (i.e., Guillain-Barré syndrome, Miller Fisher syndrome,
and Bickerstaff encephalitis), the joints (i.e., reactive arthritis),
and the gastrointestinal tract (i.e., irritable bowel syndrome)

Abbreviations: CBA, Cytometric Beat Assay; CFU, colony-forming units;
H&E, hematoxylin and eosin; HPRT, hypoxanthine-phosphoribosyltransferase;
MDP, muramyl dipeptide; MLN, mesenetric lymph nodes; MUC2, mucin-
2; NO, nitric oxide; Nod, nucleotide-oligomerization-domain; PBS, phosphate
buffered saline; p.i, postinfection; SPF, special pathogen free; TNBS, 2,4,6-
trinitrobenzenesulphonic acid; TLR, Toll-like receptor; Treg, regulatory T cells;
WT, wildtype.

might develop with a latency of weeks to months postinfection
(p.i.) as reviewed by Backert et al. (2017). Whereas, human C.
jejuni infections are progressively increasing worldwide in both
developed and developing countries (Backert et al., 2017), the
molecular mechanisms underlying host-pathogen interactions
are only incompletely understood. One of the reasons is that for
a long time appropriate in vivomodels were simply not available
(Masanta et al., 2013). Conventionally colonized mice, for
instance, display a strong physiological colonization resistance
preventing from stable enteropathogenic colonization (Bereswill
et al., 2011; Fiebiger et al., 2016). Following depletion of the
intestinal microbiota by broad-spectrum antibiotic treatment,
however, secondary abiotic (i.e., gnotobiotic) IL-10−/− mice
can be stably infected by the pathogen with high loads and
develop non-selflimiting ulcerative enterocolitis with bloody
diarrhea, thus displaying key features of campylobacteriosis in
immunocompromised patients (Haag et al., 2012; Heimesaat
et al., 2014a,c; Fiebiger et al., 2016). In the present study we
therefore applied the secondary abiotic murine IL-10−/−

infection model to further elucidate the impact of Nod2 in C.
jejuni-host interactions.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted according to the
European Guidelines for animal welfare (2010/63/EU) with
approval of the commission for animal experiments headed by
the “Landesamt für Gesundheit und Soziales” (LaGeSo, Berlin,
registration number G0135/10). Animal welfare was monitored
twice daily by assessment of clinical conditions.

Generation of Secondary Abiotic Mice and
C. jejuni Infection
Female IL-10−/− mice and IL-10−/− mice lacking Nod2
(Nod2−/− IL-10−/−) mice (all in C57BL/6j background) were
bred, raised, and kept within the same specific pathogen free
(SPF) unit of the Forschungseinrichtungen für Experimentelle
Medizin (FEM, Charité—University Medicine Berlin). To
counteract physiological colonization resistance and assure
stable intestinal colonization of the pathogen (Bereswill et al.,
2011), secondary abiotic mice (i.e., gnotobiotic) virtually lacking
an intestinal microbiota were generated by broad-spectrum
antibiotic treatment for 8 weeks as described previously
(Heimesaat et al., 2006; Bereswill et al., 2011; Haag et al., 2012). In
brief, immediately post weaning 3 weeks old mice were subjected
to an 8 weeks course of broad-spectrum antibiotic treatment by
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adding ampicillin plus sulbactam (1 g/L; Ratiopharm, Germany),
vancomycin (500mg/L; Cell Pharm, Germany), ciprofloxacin
(200 mg/L; Bayer Vital, Germany), imipenem (250mg/L; MSD,
Germany), and metronidazole (1 g/L; Fresenius, Germany) to
the autoclaved drinking water (ad libitum). Three days prior
infection, the antibiotic cocktail was withdrawn and replaced
by autoclaved tap water. Mice (3 months of age) were then
perorally infected with 109 colony forming units (CFU) of
viable C. jejuni strain 81−176 (kindly provided by Prof. Dr.
Steffen Backert, University of Erlangen-Nuremberg, Germany) in
a volume of 0.3 mL phosphate buffered saline (PBS; Gibco, life
technologies, UK) on 2 consecutive days (days 0 and 1) by gavage
as described earlier (Bereswill et al., 2011). To prevent mice
from contaminations, animals were continuously maintained
in a sterile environment (autoclaved food and drinking water
or sterile antibiotic cocktail) and handled under strict aseptic
conditions.

Clinical Conditions
To assess clinical signs of C. jejuni induced infection on a daily
basis, a standardized cumulative clinical score (maximum 12
points), addressing the occurrence of blood in feces (0: no blood;
2: microscopic detection of blood by the Guajac method using
Haemoccult, Beckman Coulter/PCD, Germany; 4: macroscopic
blood visible), diarrhea (0: formed feces; 2: pasty feces; 4: liquid
feces), and the clinical aspect (0: normal; 2: ruffled fur, less
locomotion; 4: isolation, severely compromised locomotion, pre-
final aspect) was used as described earlier (Haag et al., 2012;
Alutis et al., 2015a,b).

Sampling Procedures and Histopathology
Mice were sacrificed at day 7 postinfection (p.i.) by isofluran
treatment (Abbott, Germany). Colonic ex vivo biopsies were
asserved under sterile conditions and collected from each
mouse in parallel for microbiological, histopathological,
immunohistopathological, and immunological analyses.
Histopathological changes were determined in samples derived
from the colon that were immediately fixed in 5% formalin
and embedded in paraffin. Sections (5 µm) were stained with
hematoxylin and eosin (H&E), examined by light microscopy
(magnification 100× and 400×) and histopathological changes
quantitatively assessed applying respective histopathological
scoring systems (maximum 4 points) as described previously
(Heimesaat et al., 2014a).

Immunohistochemistry
In situ immunohistochemical analysis of colonic paraffin sections
was performed as stated elsewhere (Heimesaat et al., 2010,
2014c; Alutis et al., 2015a,b). For each animal, the average
number of positively stained cells within at least six high power
fields (HPF, 0.287 mm2, 400 × magnification) were determined
microscopically by a blinded independent investigator.

Quantitative Analysis of Bacterial
Colonization
Viable C. jejuni were quantitatively assessed in feces over time
p.i. and in homogenates of ex vivo biosies taken from mesenteric
lymph nodes (MLN), spleen, liver, and kidney at time of necropsy

(i.e., day 7 p.i.) by culture as described earlier (Bereswill et al.,
2011; Heimesaat et al., 2013). The detection limit of viable
pathogens was≈100 CFU per g.

Cytokine Detection in Supernatants of
Intestinal and Extra-Intestinal Ex vivo
Biopsies
Colonic ex vivo biopsies were cut longitudinally and washed
in PBS. MLN, spleen, or strips of ∼1 cm2 colonic tissue were
placed in 24-flat-bottom well-culture plates (Nunc, Germany)
containing 500 µL serum-free RPMI 1,640 medium (Gibco, life
technologies, UK) supplemented with penicillin (100 U/mL) and
streptomycin (100 µg/mL; PAA Laboratories, Germany). After
18 h at 37◦C, culture supernatants were tested for IFN-γ, TNF,
MCP-1, and IL-6 by the Mouse Inflammation Cytometric Bead
Assay (CBA; BD Biosciences, Germany) on a BD FACSCanto
II flow cytometer (BD Biosciences). Nitric oxide (NO) was
measured by Griess reaction as described earlier (Heimesaat
et al., 2006), whereas protein concentrations were determined

with the Quant-iT
TM

Protein Assay Kit (Thermo Fisher Scientific,
Germany) according to the manufacturer’s instructions.

Real-Time PCR
RNA was isolated from snap frozen colonic ex vivo biopsies,
reverse transcribed, and analyzed as described previously
(Munoz et al., 2009). Murine Nod2, mucin-2 (MUC2), IFN-
γ, TNF, IL-17A, IL-1β, IL-23p19, IL-22, and IL-18 mRNA
expression levels were analyzed using Light Cycler Data
Analysis Software (Roche, Switzerland). The mRNA of the
housekeeping gene for hypoxanthine-phosphoribosyltransferase
(HPRT) was used as reference, and the mRNA expression
levels of the individual genes were normalized to the lowest
measured value and expressed as fold expression (Arbitrary
Units).

Statistical Analysis
Medians and levels of significance were determined usingMann–
Whitney test (GraphPad Prism v5, USA) as indicated. Two-sided
probability (p ≤ 0.05 were considered significant.

RESULTS

Colonic Nod2 Expression in C. jejuni Strain
81–176 Infected Secondary Abiotic
IL-10−/− Mice
Secondary abiotic mice (namely wildtype (WT) mice, IL-
10−/− mice and IL-10−/− mice lacking Nod2 (Nod2−/− IL-
10−/−) were generated by an 8 weeks course of broad-
spectrum antibiotic treatment and colonic Nod2 expression
determined following C. jejuni infection of WT and IL-10−/−

mice. In the basal state, large intestinal Nod2 mRNA levels
were comparable in the large intestines of mice irrespective
of their genotype (Figure 1). Seven days following peroral
infection with 109 CFU C. jejuni strain 81–176 on two
consecutive days (i.e., days 0 and 1), however, Nod2 was
down-regulated in the large intestines of both WT and
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FIGURE 1 | Colonic Nod2 expression in C. jejuni strain 81–176 infected

secondary abiotic IL-10−/− mice. Secondary abiotic wildtype (WT; white

circles) and IL-10−/− mice (black circles) were generated by broad-spectrum

antibiotic treatment and perorally infected with C. jejuni strain 81–176 by

gavage at day (d) 0 and d1. Nod2 mRNA levels were determined in colonic ex

vivo biopsies at day 7 post-infection by Real Time PCR and expressed as

Arbitrary Units (fold expression). Naive (N) mice served as uninfected controls.

Medians (black bars), levels of significance (p-values) determined by

Mann–Whitney U-test and numbers of analyzed animals (in parentheses) are

indicated. Data were pooled from two independent experiments.

IL-10−/− mice (p < 0.001 and p < 0.05, respectively;
Figure 1).

Colonization and Translocation Properties
of C. jejuni in Secondary Abiotic Mice
Lacking Nod2
We next included secondary abiotic Nod2−/− IL-10−/− mice
into our infection experiments. C. jejuni was able to stably
colonize the intestines of both IL-10−/− and Nod2−/− IL-10−/−

mice until day 7 p.i. with high median densities of ∼109 CFU
per gram feces (Figure 2A). Whereas, viable pathogens could be
detected in ≥90% of MLN derived from infected mice, C. jejuni
did virtually not translocate to extra-intestinal compartments
such as spleen, liver and kidney at day 7 p.i. (Figure 2B). Hence,
Nod2 did neither affect intestinal colonization nor translocation
properties of C. jejuni in secondary abiotic IL-10−/− mice.

Colonic Mucin-2 Expression in Secondary
Abiotic IL-10−/− Mice Lacking Nod2
Mucin-2 is known to constitute a key component of the mucus
layer covering the intestinal epithelium and thereby combats
bacterial infections and maintains epithelial barrier integrity
(Velcich et al., 2002; McGuckin et al., 2011). We therefore
addressed whether mucin-2 mRNA expression was affected in

FIGURE 2 | Intestinal colonization and translocation of C. jejuni strain 81–176

following peroral infection of secondary abiotic IL-10−/− mice lacking Nod2.

Secondary abiotic IL-10−/− (WT IL-10−/−; white circles) and IL-10−/− mice

lacking Nod2 (Nod2−/− IL-10−/−; black circles) were generated by

broad-spectrum antibiotic treatment and perorally infected with C. jejuni strain

81–176 by gavage at day (d) 0 and d1. Pathogenic loads (CFU, colony forming

units per gram) were assessed (A) in fecal samples over time post-infection as

indicated by culture. (B) Pathogenic translocation to mesenteric lymph nodes

(MLN) and extra-intestinal compartments including spleen, liver, and kidney

were determined in organ homogenates of respective ex vivo biopsies (by

culture). Medians (black bars) and numbers of mice harboring C. jejuni strain

81–176 out of the total number of analyzed animals are given in parentheses.

Data were pooled from four (A) and two (B) independent experiments.

IL-10−/− mice lacking Nod2. Already in the basal state, mucin-2
levels were lower in the colon of secondary abiotic Nod2−/− IL-
10−/− mice as compared to IL-10−/− counterparts (p < 0.005;
Figure 3). At day 7 following C. jejuni strain 81–176 infection,
colonic mucin-2 expression was down-regulated in mice of either
genotype (p < 0.001), but even more distinctly in Nod2−/− IL-
10−/− vs. IL-10−/− mice (p < 0.05; Figure 3). Hence, Nod2
deficiency is associated with down-regulated colonic mucin-2
expression levels in secondary abiotic IL-10−/− mice.

Macroscopic Sequelae of C. jejuni
Infection of Secondary Abiotic IL-10−/−

Mice Lacking Nod2
We next assessed whether Nod2 deficiency had an impact on the
clinical outcome upon C. jejuni infection of secondary abiotic IL-
10−/− mice. To address this, we applied a cumulative clinical
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FIGURE 3 | Colonic mucin-2 expression in C. jejuni strain 81–176 infected

secondary abiotic IL-10−/− mice lacking Nod2. Secondary abiotic IL-10−/−

(white circles) and IL-10−/− mice lacking Nod2 (Nod2−/− IL-10−/−; black

circles) were generated by broad-spectrum antibiotic treatment and perorally

infected with C. jejuni strain 81–176 by gavage at day (d) 0 and d1. Mucin-2

(MUC2) mRNA levels were determined in colonic ex vivo biopsies at day 7

post-infection by Real Time PCR and expressed as Arbitrary Units (fold

expression). Naive (N) mice served as uninfected controls. Medians (black

bars), levels of significance (p-values) determined by Mann–Whitney U-test

and numbers of analyzed animals (in parentheses) are indicated. Data were

pooled from four independent experiments.

scoring system assessing severities of clinical conditions and of
diarrhea in particular, and the microscopic or even macroscopic
abundance of blood in fecal samples. Within 48 h following the
latestC. jejuni challenge (i.e., day 3 p.i.), clinical scores of infected
mice had substantially increased irrespective of the genotype (p
< 0.001; Figure S1) and were progressively rising thereafter (p
< 0.05–0.001; Figure S1). Interestingly, IL-10−/− mice lacking
Nod2 were less compromised following C. jejuni infection than
IL-10−/− controls as indicated by lower cumulative clinical
scores in the former at days 4, 5, and 7 p.i. (p < 0.05–0.001;
Figure 4A). Furthermore, infectedNod2−/− IL-10−/− mice were
suffering less distinctly from bloody diarrhea when compared
to IL-10−/− mice as indicated by lower haemoccult scores and
less frequent abundance of blood in fecal samples in the former
at day 5 p.i. (Figure 4B). Thus, Nod2 signaling worsens the
clinical outcome in C. jejuni infected secondary abiotic IL-
10−/− mice.

Microscopic Sequelae of C. jejuni Infection
of Secondary Abiotic IL-10−/− Mice
Lacking Nod2
We next assessed whether the better macroscopic outcome of C.
jejuni infected secondary abiotic IL-10−/− mice lacking Nod2

FIGURE 4 | Clinical conditions in C. jejuni strain 81–176 infected secondary

abiotic IL-10−/− mice lacking Nod2. Secondary abiotic IL-10−/− (WT

IL-10−/−; white circles) and IL-10−/− mice lacking Nod2 (Nod2−/−

IL-10−/−; black circles) were generated by broad-spectrum antibiotic

treatment and perorally infected with C. jejuni strain 81–176 by gavage at day

(d) 0 and d1. (A) Clinical symptoms and (B) occurrence of fecal blood were

assessed before and after infection applying respective standardized clinical

scoring systems (see Section Materials and Methods). Means (black bars),

level of significance (p-values) determined by Mann–Whitney U-test and

numbers of analyzed animals (in parentheses) are indicated. Data were pooled

from four independent experiments.

could also be observed on the microscopic level. At day 7 p.i.
C. jejuni infected mice of either genotype exhibited comparable
histopathological changes within the large intestinal mucosa
and lamina propria that were indicative for acute ulcerative
enterocolitis (n.s.; Figure 5A). Given that apoptosis is a well-
established marker for the microscopic evaluation of intestinal
inflammation including murine campylobacteriosis (Bereswill
et al., 2011), we stained colonic paraffin section with caspase-
3 antibodies by in situ immunohistochemistry. Upon C. jejuni
infection, secondary abiotic mice of either genotype exhibited
a multifold increase of apoptotic colonic epithelial cells (p <

0.001; Figure 5B). This increase, however, was less pronounced
in Nod2−/− IL-10−/− as compared to IL-10−/− mice at day
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FIGURE 5 | Microscopic sequelae in large intestines of C. jejuni strain 81–176 infected secondary abiotic IL-10−/− mice lacking Nod2. Secondary abiotic IL-10−/−

(white circles) and IL-10−/− mice lacking Nod2 (Nod2−/− IL-10−/−; black circles) were generated by broad-spectrum antibiotic treatment and perorally infected with

C. jejuni strain 81–176 by gavage at day (d) 0 and d1. (A) Histopathological mucosal changes were assessed in hematoxylin and eosin stained colonic paraffin

sections. Furthermore, the average numbers of colonic epithelial (B) apoptotic cells (positive for caspase-3, Casp3) and (C) proliferating/regenerating cells (positive for

Ki67) from six high power fields (HPF, 400x magnification) per animal were determined microscopically in immunohistochemically stained colonic paraffin sections at

day 7 following C. jejuni infection. Naive (N) mice served as uninfected controls. Medians (black bars), levels of significance (p-values) determined by Mann–Whitney

U-test and numbers of analyzed animals (in parentheses) are indicated. Data were pooled from four independent experiments.

7 p.i. (p < 0.001; Figure 5B). We additionally stained colonic
paraffin sections with Ki67 antibodies to quantitatively assess
proliferating cells that were potentially counteracting apoptotic
responses upon C. jejuni infection. Until day 7 p.i. Ki67 positive
cell numbers increased multifold in the colonic epithelia of
Nod2−/− IL-10−/− as well as of IL-10−/− mice (p < 0.001;
Figure 5C), but more distinctly in the former (p < 0.001;
Figure 5C). Taken together, the better clinical outcome observed
in C. jejuni infected IL-10−/− mice lacking Nod2 was supported
by less distinct apoptotic and higher proliferating / regenerative
responses in colonic epithelia.

Colonic Immune Cell Responses in C.

jejuni Infected Secondary Abiotic IL-10−/−

Mice Lacking Nod2
Recruitment of pro-inflammatory immune cells to the site of
infection is a known key feature of intestinal inflammation
including campylobacteriosis (Bereswill et al., 2011; Alutis
et al., 2015a). We therefore quantitatively assessed distinct
innate and adaptive immune cell populations in the large
intestinal mucosa and lamina propria of infected mice by
in situ immunohistochemistry. Seven days following C. jejuni
infection numbers of adaptive immune cells including T and
B lymphocytes as well as regulatory T cells (Treg) increased
multifold in the large intestines of secondary abiotic mice of
either genotype (p < 0.001; Figures 6A–C). These increases
were also true for innate immune cell populations such as
macrophages and monocytes (p < 0.001; Figure 6D). The
observed increases in T lymphocytes and Treg as well as in
macrophages and monocytes were more pronounced in IL-
10−/− mice lacking Nod2 as compared to IL-10−/− controls at
day 7 p.i. (p < 0.05–0.005; Figures 6A,B,D). Hence, whereas
macroscopic andmicroscopic outcomes ofC. jejuni infection was
more favorable in secondary abiotic IL-10−/− mice with Nod2

deficiency, innate as well as adaptive immune cells were even
more abundant in large intestines of infected Nod2−/− IL-10−/−

mice.

Colonic Cytokine Responses in C. jejuni

Infected Secondary Abiotic IL-10−/− Mice
Lacking Nod2
We next measured secretion of pro-inflammatory mediators
in supernatants of colonic ex vivo biopsies. Irrespective of the
genotype, IFN-γ, TNF, nitric oxide, and IL-6 concentrations
increased in large intestines of secondary abiotic mice until day 7
p.i. (p< 0.001; Figures 7A,B,D,E). Colonic IFN-γ concentrations
were, however, higher in Nod2−/− IL-10−/− as compared to
IL-10−/− mice at day 7 p.i. (p < 0.05; Figure 7A). Moreover,
MCP-1 levels were elevated in the colon of infected IL-10−/−

mice (p < 0.05; Figure 7C) and showed a trend toward increased
concentrations also in Nod2−/− IL-10−/− mice (not significant
due to high standard deviations). Notably, basal nitric oxide
levels were higher in naive IL-10−/− mice lacking Nod2 than
in IL-10−/− controls (p < 0.001; Figure 7D). Hence, higher
abundances of innate and adaptive immune cell populations
in secondary abiotic IL-10−/− mice with Nod2 deficiency were
accompanied by higher colonic IFN-γ secretion.

We next assessed mRNA expression levels of pro-
inflammatory cyokines in colonic ex vivo biopsies. As on
protein level, large intestinal IFN-γ and TNF mRNA were up-
regulated upon C. jejuni infection (p < 0.001; Figures S2A,B).
IFN-γ mRNA levels were, however, higher in the colon of
Nod2−/− IL-10−/− as compared to IL-10−/− mice at day 7 p.i.
(p < 0.05; Figure S2A). In addition, IL-17A and IL-1β mRNA
were up-regulated in colonic ex vivo biopsies irrespective of the
genotypes of mice (p < 0.001; Figures S2C,D).

We have recently shown that the IL-23/IL-22/IL-18 axis
mediates C. jejuni infection in vivo (Alutis et al., 2015a; Bereswill
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FIGURE 6 | Colonic immune cell responses in C. jejuni strain 81–176 infected secondary abiotic IL-10−/− mice lacking Nod2. Secondary abiotic IL-10−/− (white

circles) and IL-10−/− mice lacking Nod2 (Nod2−/− IL-10−/−; black circles) were generated by broad-spectrum antibiotic treatment and perorally infected with C.

jejuni strain 81–176 by gavage at day (d) 0 and d1. The average numbers of colonic epithelial (A) T lymphocytes (positive for CD3), (B) regulatory T cells (Treg; positive

for FOXP3), (C) B lymphocytes (positive for B220), and (D) macrophages and monocytes (positive for F4/80) from six high power fields (HPF, 400x magnification) per

animal were determined microscopically in immunohistochemically stained colonic paraffin sections at day 7 following C. jejuni infection. Naive (N) mice served as

uninfected controls. Medians (black bars), levels of significance (p-values) determined by Mann–Whitney U-test and numbers of analyzed animals (in parentheses) are

indicated. Data were pooled from four independent experiments.

et al., 2016; Heimesaat et al., 2016a,b) and therefore determined
respective cytokine expression levels in colonic ex vivo biopsies.
At day 7 p.i. IL-23p19 and IL-22 mRNA were up-regulated
in the large intestines of both Nod2−/− IL-10−/− and IL-
10−/− control mice (p < 0.05–0.001; Figures 8A,B), whereas C.
jejuni induced increased IL-18 mRNA levels could be measured
in the latter only (p < 0.001; Figure 8C). C. jejuni infected
Nod2−/− IL-10−/− mice exhibited higher anti-inflammatory IL-
22 (p < 0.005; Figure 8B), but lower IL-18 mRNA levels in their
large intestines as compared to IL-10−/− controls (p < 0.05;
Figure 8C).

Pro-Inflammatory Cytokine Responses in
Mesenteric Lymph Nodes and Spleens of
C. jejuni Infected Secondary Abiotic
IL-10−/− Mice Lacking Nod2

We next assessed pro-inflammatory cytokine secretion in
intestinal draining and systemic lymphatic compartments,
namely MLN and spleen, respectively, of C. jejuni infected
secondary abiotic IL-10−/− mice lacking Nod2. At day 7 p.i.
increased IFN-γ, TNF, and IL-6 concentrations were measured in
supernatants ofMLN taken from secondary abiotic mice of either
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FIGURE 7 | Colonic secretion of pro-inflammatory mediators in C. jejuni strain 81–176 infected secondary abiotic IL-10−/− mice lacking Nod2. Secondary abiotic

IL-10−/− (white circles) and IL-10−/− mice lacking Nod2 (Nod2−/− IL-10−/−; black circles) were generated by broad-spectrum antibiotic treatment and perorally

infected with C. jejuni strain 81–176 by gavage at day (d) 0 and d1. (A) IFN-γ, (B) TNF, (C) MCP-1, (D) nitric oxide, and (E) IL-6 concentrations were determined in

supernatants of colonic ex vivo biopsies at day 7 post-infection. Naive (N) mice served as uninfected controls. Medians (black bars), level of significance (p-value)

determined by Mann–Whitney U-test and numbers of analyzed animals (in parentheses) are indicated. Data were pooled from four independent experiments.

FIGURE 8 | Colonic mRNA expression of IL-23p19, IL-22, and IL-18 in C. jejuni strain 81–176 infected secondary abiotic IL-10−/− mice lacking Nod2. Secondary

abiotic IL-10−/− (white circles) and IL-10−/− mice lacking Nod2 (Nod2−/− IL-10−/−; black circles) were generated by broad-spectrum antibiotic treatment and

perorally infected with C. jejuni strain 81–176 by gavage at day (d) 0 and d1. Expression of (A) IL-23p19, (B) IL-22, and (C) IL-18 mRNA were determined in colonic ex

vivo biopsies at day 7 post-infection by Real Time PCR and expressed as Arbitrary Units (fold expression). Naive (N) mice served as uninfected controls. Medians

(black bars), level of significance (p-value) determined by Mann–Whitney U-test and numbers of analyzed animals (in parentheses) are indicated. Data were pooled

from four independent experiments.

genotype (p < 0.05–0.001; Figures 9A,B,D). Increased MCP-1
levels were determined in MLN of C. jejuni infected IL-10−/−

mice, whereas Nod2−/− IL-10−/− animals displayed a trend
toward higher MCP-1 concentrations as compared to naive mice
(n.s.; Figure 9C).

In spleens, IFN-γ concentrations increased upon C. jejuni
infection of Nod2−/− IL-10−/− mice only (p < 0.001;

Figure 10A) and were higher as compared to IL-10−/−

counterparts at day 7 p.i. (p < 0.05; Figure 10A). In addition,
splenic nitric oxide concentrations were higher in infected IL-
10−/− mice lacking Nod2 as compared to IL-10−/− controls (p<

0.05; Figure 10D). Upon C. jejuni infection, splenic MCP-1 levels
decreased in secondary abiotic mice irrespective of the genotype
(p < 0.05–0.01; Figure 10C), whereas IL-6 secretion was less
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FIGURE 9 | Secretion of pro-inflammatory cytokines in mesenteric lymph nodes of C. jejuni strain 81–176 infected secondary abiotic IL-10−/− mice lacking Nod2.

Secondary abiotic IL-10−/− (white circles) and IL-10−/− mice lacking Nod2 (Nod2−/− IL-10−/−; black circles) were generated by broad-spectrum antibiotic

treatment and perorally infected with C. jejuni strain 81–176 by gavage at day (d) 0 and d1. (A) IFN-γ, (B) TNF, (C) MCP-1, and (D) IL-6 concentrations were

determined in supernatants of ex vivo biopsies derived from mesenteric lymph nodes (MLN) at day 7 post-infection. Naive (N) mice served as uninfected controls.

Medians (black bars), level of significance (p-value) determined by Mann–Whitney U-test and numbers of analyzed animals (in parentheses) are indicated. Data were

pooled from three independent experiments.

distinct in Nod2−/− IL-10−/− only at day 7 p.i. as compared to
naive controls (p < 0.05; Figure 10E). In line with splenic IL-6
results, at least a trend toward lowerMCP-1 concentrations could
be observed in spleens of infected Nod2−/− IL-10−/− mice as
compared to naive counterparts (n.s.; Figure 10B). Notably, basal
IL-6 levels were higher in spleens of Nod2−/− IL-10−/− than
IL-10−/− control mice (p < 0.05; Figure 10E).

Hence, the increases in pro-inflammatory cytokine secretion
observed in large intestines of C. jejuni infected secondary
abiotic mice were supported by results derived from MLN. If
compared to IL-10−/− controls, secondary abiotic IL-10−/−

mice lacking Nod2 exhibited higher IFN-γ concentrations in
intestinal compartments such as colon and MLN as well as in
extra-intestinal/systemic sites (i.e., spleen) at day 7 p.i.

DISCUSSION

Given that host innate immune responses are pivotal
for combating enteropathogenic infections including
campylobacteriosis, we here investigated the impact of Nod2
during C. jejuni infection of secondary abiotic mice lacking
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FIGURE 10 | Splenic secretion of pro-inflammatory mediators in C. jejuni strain 81–176 infected secondary abiotic IL-10−/− mice lacking Nod2. Secondary abiotic

IL-10−/− (white circles) and IL-10−/− mice lacking Nod2 (Nod2−/− IL-10−/−; black circles) were generated by broad-spectrum antibiotic treatment and perorally

infected with C. jejuni strain 81–176 by gavage at day (d) 0 and d1. (A) IFN-γ, (B) TNF, (C) MCP-1, (D) nitric oxide, and (E) IL-6 concentrations were determined in

supernatants of ex vivo biopsies derived from spleens at day 7 postinfection. Naive (N) mice served as uninfected controls. Medians (black bars), level of significance

(p-value) determined by Mann–Whitney U-test and numbers of analyzed animals (in parentheses) are indicated. Data were pooled from three independent experiments.

IL-10−/−. Notably, 1 week following C. jejuni infection colonic
Nod2 mRNA expression was down-regulated in large intestines
of both secondary abiotic WT and IL-10−/− mice, whereas Nod2
did not affect gastrointestinal colonization of C. jejuni. This is
well in line with our very recent investigations in conventionally
colonized Nod2−/− mice displaying comparable pathogenic
loads in their gastrointestinal tract (Bereswill et al., 2017). One
might have expected higher intestinal C. jejuni loads in Nod2
deficient IL-10−/− mice, given that Nod2 deficiency was shown
to be associated with compromised expression of antimicrobioal
peptides including defensins leading to insufficient clearance of
the pathogen by the host (Huttner and Bevins, 1999; Kobayashi
et al., 2005). In fact, Nod2−/− mice have been shown to be
more susceptible to infection with other enteropathogens such
as Salmonella Typhimurium, Yersinia pseudotuberculosis, or
Listeria monocytogenes (Kobayashi et al., 2005; Meinzer et al.,
2008). Notably, in our study C. jejuni infection induced a down-
regulation of colonic mucin-2 mRNA that constitutes an integral
part of the mucus layer covering the intestinal epithelium,
thereby providing epithelial barrier integrity and preventing
the host from bacterial species invading from the intestinal
lumen (Velcich et al., 2002; McGuckin et al., 2011). Remarkably,
mucin-2 mRNA expression was Nod2 dependent and even more
distinctly down-regulated in the large intestines of C. jejuni

infected Nod2−/− IL-10−/− mice as compared to control mice
in our study which was also the case under basal (i.e., naive,
uninfected) conditions. Like pathogenic colonization, however,
translocation of viable C. jejuni from the intestinal lumen to
extra-intestinal and systemic compartments occurred Nod2
independently. In fact, viable bacteria could be isolated from
liver, kidney and spleen of mice irrespective of their genotype
in single cases only. Despite lack of bacterial translocation
to systemic sites, however, increased IFN-γ levels could not
only be detected in the colon and MLN, but also in the spleen
of C. jejuni infected Nod2−/− IL-10−/− and IL-10−/− mice
that were higher in the former. It is tempting to speculate
that elevated systemic levels were rather due to circulating
C. jejuni cell wall constituents such as lipooligosaccharide or
other Toll-like-receptor (TLR) ligands. Conversely, C. jejuni
infection resulted in decreased splenic secretion of MCP-1 and
IL-6 upon C. jejuni infection, whereas respective cytokine levels
were elevated in intestinal compartments including colon and
MLN. This might be explained by recruitment of innate and
adaptive immune cells from the spleen to the site of infection as
supported by increased numbers of T lymphocytes as well as of
macrophages and monocytes in the mucosa and lamina propria
of C. jejuni infected mice of either genotype. In support, we
could demonstrate previously that colonic T cells numbers were
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higher in C. jejuni infected conventional Nod2−/− as compared
to WT mice (Bereswill et al., 2017).

Very recently, our group elucidated the role of the IL-23/IL-
22/IL-18 axis in murine host -C. jejuni interaction (Alutis et al.,
2015b; Bereswill et al., 2016; Heimesaat et al., 2016a,b). In line
with our studies in secondary abiotic WT mice (Alutis et al.,
2015b), C. jejuni infection induced an up-regulation of IL-
23p19, IL-22, and IL-18 mRNA in large intestines of secondary
abiotic IL-10−/− mice as shown here. In support, Malik et al.
reported increased colonic IL-22 mRNA levels in C. jejuni
infected conventionally colonized IL-10−/− mice (Malik et al.,
2014). IL-22, as member of the IL-10 cytokine family, can
have both pro- and anti-inflammatory properties, depending
on the respective intestinal tissue, immunological prerequisites,
and the surrounding cytokine milieu (Eidenschenk et al., 2014;
Heimesaat et al., 2016b). Whereas, in the small intestines IL-
22 exerts pro-inflammatory properties (Munoz et al., 2009,
2011, 2015), IL-22 has anti-inflammatory functions in the colon
(Eidenschenk et al., 2014) and proven effective in anti-microbial
host defense against C. jejuni (Bereswill et al., 2016; Heimesaat
et al., 2016b). In the present study, C. jejuni induced up-
regulation of anti-inflammatory IL-22 mRNA in the colon was
even more pronounced in Nod2 deficient IL-10−/− as compared
to IL-10−/− counterparts. Conversely, large intestinal mRNA
levels of IL-18 that is known to amplify IL-22 expression during
intestinal inflammation (Munoz et al., 2015) were lower in
Nod2−/− IL-10−/− vs. IL-10−/− controls, which might have
been due to a potential negative feedback loop between IL-22 and
IL-18.

Despite elevated large intestinal innate and adaptive immune
cell influx (of macrophages/monocytes and T lymphocytes,
respectively) and increased IFN-γ concentrations in the colon,
MLN and spleen following C. jejuni infection, Nod2−/− IL-
10−/− were not only less compromised from their clinical
aspect, but also displayed less distinct apoptotic colonic epithelial
cell responses than IL-10−/− controls. These observed and
presumably unexpected effects might result from effective
counter-regulatory responses such as higher Treg numbers and
anti-inflammatory IL-22 expression levels in the large intestines
of C. jejuni infected Nod2 deficient IL-10−/− mice as compared
to IL-10−/− controls that were accompanied by higher numbers
of Ki67+ colonic epithelial cells in the former indicative for
accelerated regenerative measures of the colonic epithelium
counter-actingC. jejuni induced cell damage. Hence, Nod2might
exert both pro-and anti-inflammatory functions in the complex
interplay of innate and adaptive immunity with enteropathogens
such as C. jejuni.

To date, experimental data regarding the distinct role of
Nod2 in intestinal inflammation are inconclusive. Depending
on the applied in vivo model, Nod2 deficiency might either
enhance or even prevent from colitis development. Less
severe chronic colitis could be observed following adoptive
transfer of Nod2−/− T cells into immunocompromised mice,
for instance, indicating that Nod2 signaling exacerbates large
intestinal immunopathology (Shaw et al., 2008). Whereas, MDP
application could prevent from 2,4,6-trinitrobenzenesulphonic
acid (TNBS) colitis, preventive properties of MDP were

abrogated in Nod2 deficient mice indicative for a protective
role of Nod2 signaling (Watanabe et al., 2008). In another
study, however, Nod2 was shown to rather promote colitis,
given that Nod2 deficient IL-10−/− mice were protected from
large intestinal inflammation (Jamontt et al., 2013). Conflicting
data were derived from with antibiotics pretreated Nod2−/−

IL-10−/− mice that displayed accelerated colitis following C.
jejuni infection indicating that Nod2 was essential for controlling
murine campylobacteriosis (Sun and Jobin, 2014). In this elegant
study, mice were pretreated with an antibiotic cocktail for 7
days and followed up for 21 days upon C. jejuni infection.
Hence, our discrepant results reported here might be most likely
due to substantial differences in experimental set-ups. Given
that conventional IL-10−/− mice develop chronic colitis due
to antigenic stimuli derived from their commensal intestinal
microbiota (Haag et al., 2012), we subjected mice immediately
after weaning by the age of 3 weeks to broad-spectrum antibiotic
treatment in order to eradicate potential colitogenic stimuli from
their microbiota. Following a much longer course of broad-
spectrum antibiotic treatment (i.e., 8 weeks) with a different,
quintuple antibiotic regimen, secondary abiotic IL-10−/− mice
develop severe ulcerative enterocolitis with bloody diarrhea that
is not self-limiting and requires necrospsy until day 7 p.i. (Haag
et al., 2012; Heimesaat et al., 2014a,c; Fiebiger et al., 2016).
Hence, in our study we surveyed C. jejuni-host interactions to
a much earlier time point (i.e., 1 week p.i.) than Sun and Jobin
did (i.e. 3 weeks p.i.). Our group could further show that Nod2
protected mice from Toxoplasma gondii induced acute ileitis
(Heimesaat et al., 2014b). Overall, inconclusive results might be
due to differences in the applied in vivomodels and fundamental
discrepancies in experimental setups as well as due to potential
dichotomous functions of Nod2.

We conclude that Nod2 signaling is required for the fine-
tuned innate and adaptive local (i.e., intestinal) and systemic
immune responses upon C. jejuni infection of secondary abiotic
IL-10−/− mice, but does not limit pathogenic infection. Further
studies are needed to unravel the distinct regulatory mechanisms
combating campylobacteriosis.
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Figure S1 | Kinetic survey of clinical conditions of secondary abiotic IL-10−/−

mice lacking Nod2 following C. jejuni strain 81–176 infection. Secondary abiotic

(A) IL-10−/− (white circles) and (B) IL-10−/− mice lacking Nod2 (Nod2−/−

IL-10−/−; black circles) were generated by broad-spectrum antibiotic treatment

and perorally infected with C. jejuni strain 81–176 by gavage at day (d) 0 and d1.

Severities of clinical symptoms before and after infection were quantitatively

assessed applying a standardized clinical score (see Section Materials and

Methods). Means (black bars) and levels of significance (p-values) determined by

Mann–Whitney U-test are indicated. Numbers of analyzed mice are given in

parentheses. Data were pooled from four independent experiments.

Figure S2 | Colonic mRNA expression of pro-inflammatory cytokines in C. jejuni

strain 81–176 infected secondary abiotic IL-10−/− mice lacking Nod2. Secondary

abiotic IL-10−/− (white circles) and IL-10−/− mice lacking Nod2 (Nod2−/−

IL-10−/−; black circles) were generated by broad-spectrum antibiotic treatment

and perorally infected with C. jejuni strain 81–176 by gavage at day (d) 0 and d1.

Expression of (A) IFN-γ, (B) TNF, (C) IL-17A, and (D) IL-1β mRNA were

determined in colonic ex vivo biopsies at day 7 post-infection by Real Time PCR

and expressed as Arbitrary Units (fold expression). Naive (N) mice served as

uninfected controls. Medians (black bars), level of significance (p-value)

determined by Mann–Whitney U-test and numbers of analyzed animals (in

parentheses) are indicated. Data were pooled from four independent experiments
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