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Ticks transmit a greater variety of pathogenic agents that cause disease in humans

and animals than any other haematophagous arthropod, including Lyme disease,

Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne

encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al.,

2016). Although diverse explanations have been proposed to explain their remarkable

vectorial capacity, among the most important are their blood feeding habit, their

long term off-host survival, the diverse array of bioactive molecules that disrupt

the host’s natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and

minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover,

the tick’s unique intracellular digestive processes allow the midgut to provide a

relatively permissive microenvironment for survival of invading microbes. Although

tick-host-pathogen interactions have evolved over more than 300 million years (Barker

and Murrell, 2008), few microbes have been able to overcome the tick’s innate immune

system, comprising both humoral and cellular processes that reject them. Similar to

most eukaryotes, the signaling pathways that regulate the innate immune response, i.e.,

the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and

Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of

pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one

or the other of these pathways. Consequently, ticks are able to mount an impressive

array of humoral and cellular responses to microbial challenge, including anti-microbial

peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap

or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis,

that capture, ingest, or encapsulate invading microbes, regulated by a primordial

system of thioester-containing proteins, fibrinogen-related lectins and convertase factors

(Hajdušek et al., 2013). Ticks also express reactive oxygen species (ROS) as well as

glutathione-S-transferase, superoxide dismutase, heat shock proteins and even protease

inhibitors that kill or inhibit microbes. Nevertheless, many tick-borne microorganisms are

able to evade the tick’s innate immune system and survive within the tick’s body. The

examples that follow describe some of the many different strategies that have evolved to

enable ticks to transmit the agents of human and/or animal disease.
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BORRELIA BURGDORFERI

Borrelia burgdorferi (sensu latu), the causative agent of Lyme
disease, is a spirochete, a Gram-negative helically coiled
bacterium approximately 0.5 µm wide by 20 µm long, with a
flagellum below the outer membrane that controls its whiplash-
like movements.

These bacteria are transmitted by ticks of the genus Ixodes,
especially I. scapularis in North America and I. ricinus and
I. persulcatus in Europe and Asia. In its tick host, B. burgdorferi is
an intercellular pathogen, i.e., it survives in the midgut lumen,
then migrates between the midgut’s epithelial cells into the
hemolymph and then into the salivary gland ducts. Bacteria
are acquired by the tick host during blood feeding. Larval ticks
ingest spirochetes while feeding on small mammals, especially
white-footed mice. During and after feeding, the spirochetes
remain within the midgut lumen. Those spirochetes trapped
outside of the rapidly developing peritrophic membrane are
unlikely to survive. Others between the membrane and midgut
epithelial cells use an external surface lipoprotein, OspA, to
bind to a species-specific receptor, TROSPA, located on the
luminal surfaces of the midgut epithelial cells (Pal et al.,
2004). Although surviving spirochetes may undergo an initial
phase of multiplication, these populations decline during the
tick’s post-feeding molt cycle, perhaps due to antimicrobial
effects of by-products of hemoglobin digestion, competition
for nutrients and other unknown factors. Following molting
to the nymphal stage, feeding by the recently molted nymph
stimulates surviving spirochetes to begin prolific multiplication
and attempt migration out of the midgut lumen (reviewed by
Ogden et al., 2014) During this initial phase, the spirochetes
form a complex network that moves between the epithelial cells
toward their basolateral surfaces. OspA expression is reduced,
allowing spirochetes to detach. Subsequently, they transition to
the second phase of midgut migration, in which the spirochetes
become motile, separate and escape through the basement
membranes into the hemocoel (Dunham-Ems et al., 2009).
Some host derived factors also play a role in the process, e.g.,
host-derived plasminogen, which protects the bacteria against
phagocytosis and possibly even enhances their ability to penetrate
the basement membrane (Coleman et al., 1997). Bacterial enolase
was reported as the surface receptor that binds to the midgut
receptor, Tre31, which facilitates migration out of the midgut
(Zhang et al., 2011). It also binds host-derived plasminogen in
the midgut and degrades it to plasmin (Noguiera et al., 2012).
Borreliae upregulate OspC, which also binds and immobilizes
plasmin, the enzymatically active form, which further enhances
degrading intercellular matrices and other barriers, such as
basement membranes (Önder et al., 2012). Nevertheless, the
vast majority of spirochetes migrating into the hemolymph are
destroyed, mostly by phagocytic hemocytes (Coleman et al.,
1997). Upon contact with the salivary glands, borreliae bind
to SALP15 (Ramamurthy et al., 2011), an immunosuppressive
factor that protects these spirochetes from antibody-mediated
killing, as well as other salivary gland proteins e.g., tick salivary
lectin pathway (Schuijt et al., 2011) and tick histamine release
factors (Dai et al., 2010) that also protect these spirochetes
from host immune reactions (de Silva et al., 2009; Hajdušek

et al., 2013). Exploitation of host-derived factors that enable
B. burgdorferi to multiply and evade innate immune attack
suggests that ticks tolerate these pathogens in the midgut but
not in the hemolymph and other body tissues. Nevertheless,
many questions remain, especially how the spirochetes are able
to penetrate between the tightly bound midgut epithelial cells,
avoid triggering expression or upregulation of antimicrobial
peptides, and how they the penetrate salivary gland acini for
dissemination into vertebrate hosts. Overarching factors directed
by the tick microbiome (Narasimhan and Fikrig, 2015) will also
be important when examining the infection of and transmission
by ticks.

RICKETTSIA RICKETTSII

Little is known about the specific infection mechanisms of
spotted fever group (SFG) Rickettsia and their tick hosts
(Munderloh and Kurtti, 1995), compared with the mammalian
host cell. These bacteria, as well as other species of the
Rickettsiales, invade host cells by binding to cellular receptors
by means of their outer surface cell antigens (sca0 or rOmpAa
and sca5 or rOmpB) and are internalized by receptor-mediated
endocytosis via clathrin-coated vesicles, whereupon the microbes
are incorporated into phagosomes (Chan et al., 2010). A similar
sca5-mediated invasion mechanism used for vertebrate cells is
employed by rickettsiae for invasion of tick cells (Thepparit et al.,
2010). Upon invasion, rickettsiae quickly lyse these inclusions
to escape into the cytosol. Once in the cytosol, rickettsiae
replicate and then hijack the host cell’s actin cytoskeleton and
attach to it via actin tails (Gouin et al., 2005). The actin
protein complex Arp2/3 is essential for the internalization of R.
rickettsii, as well as other known SFG rickettsiae (Petchampai
et al., 2014). In the vertebrate host cell, the bacteria express
rickA, which promotes the activation of the host cell actin
complex. This enables these bacteria to be propelled throughout
the host cells as well as into protrusions that mediate cell
to cell infection, thereby spreading the infection throughout
the surrounding tissues (Gouin et al., 2004; Jeng et al., 2004).
These actions are also effected by other cell proteins—profilin,
fimbrin/T-plastin, capping protein, and cofilin, essential to actin
assembly (Serio et al., 2010). In contrast to R. rickettsii which
spread by means of actin bridges, R. parkeri and perhaps
other rickettsial species, manipulate the intercellular tensions
and mechano-transduction between host cells to facilitate their
spread (Lampson et al., 2016). The roles of specific Sca molecules
in facilitating rickettsial dissemination within the vector are
under investigation. However, the host cell is not without a
defense, as it is appreciated that ticks respond to rickettsiae
(Macaluso et al., 2003; Mulenga et al., 2003). Using a tick cell
culture (ISE6), investigators observed that pathogen infection
led to decreased glucose metabolism but increased subolesin
and heat shock protein expression, limiting rickettsial infection
(Gillespie et al., 2012).

ANAPLASMA PHAGOCYTOPHILUM

These bacteria employ a novel strategy for invading their host
cells, evading cellular killing actions, manipulating the host cell’s
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molecular machinery, and creating protected enclosures for their
development and multiplication. In the tick, as well as in their
vertebrate hosts, these bacteria avoid recognition by the host’s
innate immune system because they lack either peptidoglycans
or lipopolysaccharides in their cell walls (Rikihisa, 2010).
A. phagocytophilum bacteria also avoid the clathrin-receptor
mediated endocytosis and phagolysosome typically used by
host cells to capture and destroy invasive microbes. Instead,
these bacteria are internalized via caveolae-mediated endocytosis:
bacteria interact with caveolae and glycosylphosphatidylinositol-
anchored proteins which enables them to bypass conventional
phagolysosomes and form specialized endosomes. Bacterial
outer surface protein MSP2 induces host intracellular signaling
via an extracellular stimulation membrane receptor which
induces recruitment of endocytic machinery at the binding site.
This response leads to “zippering” around the pathogen and
internalizing the microbe inside the host cell (Ireton, 2013).
In tick cell cultures, A. phagocytophilum adhere to the cell
membranes within 40 min post-infection. After binding, bacteria
invade the host cells and form the specialized membrane-
bound enclosures known as morulae. A mutant form of O-
methyltransferase, identified as Msp4, also facilitates infection of
the tick cells by A. phagocytophilum (Oliva Chávez et al., 2015).
Within morulae, bacteria downregulate NADPH expression in
enclosures, thereby minimizing reactive oxygen species (ROS) by
suppressing expression of glutathione-s-transferase, superoxide
dismutase and heat shock proteins (IJdo andMueller, 2004). Like
other rickettsiae, A. phagocytophilum alters cell gene expression
(spectrin, fodrin) to control actin synthesis and remodel the host
cell’s cytoskeleton (de la Fuente et al., 2016). In mammalian cells,
A. phagocytophilum hijacks host cholesterol to use in building
the membrane surrounding the morulae (Xiong et al., 2009);
however, whether this also occurs in tick cells is not known. In
addition to these common strategies for infecting their hosts,
A. phagocytophilum also exhibit more selective responses to
different tissues. To infect the tick’s midgut epithelial cells, these
bacteria express genes that upregulate the JAK/STAT pathway,
thereby inhibiting cell apoptosis (Ayllón et al., 2015). In addition,
Cabezas-Cruz et al. (2016) suggest that A. phagocytophilum
manipulates the host cell’s epigenetics, increasing expression
of histone deacetylase, Sirtuin and other molecules, which
inhibits apoptosis and facilitates the microbe’s multiplication. In
addition, A. phagocytophilum infection can increase the levels
of the tick’s histone-modifying enzymes which makes it possible
to regulate transcription and apoptosis selectively in different
tissues, thereby not only facilitating both the pathogen’s and the
tick’s survival. After escaping from the midgut, a salivary protein,
P11, enables the microbes to infect circulating hemocytes,
thereby enabling their migration to the salivary glands (Liu
et al., 2011). Upon contact of infected hemocytes with the
salivary gland cells, they induce expression of the salivary gland
gene salp16 (Sukumaran et al., 2006), facilitating binding to the
target cells. Following invasion of these host cells, the bacteria
suppress the apoptotic mechanism by downregulating host cell
porin expression, resulting in inhibition of cytochrome C release
and thereby enabling their survival in the salivary glands. By
upregulating this gene, the bacteria are able to selectively regulate
transcription of this gene in association with RNAPII and the

TATA-binding protein. However, the tick host is not without
defenses. Recent work by Shaw et al. (2017), demonstrates a
role for the tick IMD pathway in restricting A. phagocytophilum
colonization of I. scapularis. Likewise, to control infection, tick
salivary gland cells may limit A. phagocytophilum infection by
inducing apoptosis via the extrinsic apoptosis pathway. Thus, in
contrast to the midgut, these bacteria had considerably lower
impact on salivary gland cells, presumably because they do
not develop or multiply in that organ (Ayllón et al., 2015).
Understanding the immune-related factors coordinating the
balance between restriction and colonization of the vector is
central to understanding vector competence. An illustration of
how these pathogenic bacteria invade the tick host cells, multiply
and prepare for transmission to their vertebrate hosts is shown in
Figure 1.

BABESIA MICROTI

This eukaryotic microbe is the causative agent of human
babesiosis, and is closely related to similar protozoans that
cause deadly febrile disease in cattle and other livestock
throughout the world. B. microti parasites are transmitted to
humans during blood feeding of its vector, I. scapularis. After
inoculation into the human host, the parasites (in the form
of sporozoites) invade and undergo their development in the
erythrocytes. These apicomplexan parasites express a membrane
protein, apical membrane antigen 1 (AMA1), located near its
apical end of its cell body that binds to the surfaces of the
red cells, facilitating invasion (Moitra et al., 2015). Within
the erythrocytes, the parasites transform into trophozoites
(vegetative stage), divide into 2–4 merozoites. The merozoites
lyse the host cells, escape into the blood plasma and invade
other red blood cells. In their new host red blood cells, some
mature into gametocytes. During tick blood feeding, the ingested
erythrocytes are lysed in the tick’s midgut lumen, liberating
the B. microti gametocytes. The latter give rise to gametes,
some of which develop a spike-like arrowhead organelle. These
arrowhead-bearing gametes are known as strahlenkorpers. These
gametes fuse to become zygotes. Zygotes metamorphose into
elongated, motile 8–10 µm parasites, which proceed to invade
the tick’s midgut epithelial cells. To penetrate the peritrophic
membrane, B. microti use their spike-like arrowhead organelles
to rupture the membrane and allow these microbes to cross the
membrane and access the lining epithelial cells. Upon contact
with the midgut cells, contact by the arrowheads induces the
membranes to invaginate around the babesias and allows them
to invade the host cells (Rudzinska et al., 1979). Once inside the
midgut cells, the arrowhead organelle is lysed and disappears
(Rudzinska et al., 1983). Little is known about the life cycle
of the parasite within the tick tissues, especially how they
suppress or evade recognition by the tick’s immune system
in order to develop within the midgut cells. Ultimately, the
parasites emerge from the midgut epithelium, transform into
motile kinetes that escape into the hemolymph and invade
the tick’s salivary glands. Following invasion of the salivary
glands, the microbes transform into sporoblasts. Development is
arrested until the tick, usually a nymph, feeds again, whereupon
thousands of sporozoites are produced from each sporoblast.
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FIGURE 1 | Diagrammatic representation of the process of invasion and development of the pathogenic microbe, Anaplasma phagocytophilum in the midgut and

salivary glands of its tick host.

The sporozoites are the infectious stage for the vertebrate
host. Sporozoites are transmitted to the new host during tick
feeding, whereupon they invade and develop within the host’s
erythrocytes.
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