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Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous upper airway

disease with multiple etiologies. Clinically, CRSwNP can be classified into either

eosinophilic or non-eosinophilic subtypes. The eosinophilic phenotype of CRSwNP is

widely thought to be highly associated with recurrence of nasal polyps or surgical failure.

Epithelial cells have a crucial role in the development of Th2-biased airway diseases.

Recent studies have shown that a wide range of external stimuli such as allergens

and microorganisms can elicit the release of epithelial-derived Th2-driving cytokines

and chemokines. Protease activity is a feature common to these multiple environmental

insults and there is growing evidence for the concept that an imbalance of proteases and

protease inhibitors in the epithelial barrier leads to both the initiation and maintenance of

chronic eosinophilic airway inflammation. In this review, we analyze recent work on the

role of proteases in the development of the sinonasal mucosal type 2 immune response

with an emphasis on the molecular pathways promoting adaptive Th2 cell immunity.
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INTRODUCTION

Chronic rhinosinusitis is a chronic inflammatory upper airway disease characterized by 12
weeks of typical symptoms including nasal discharge, congestion, facial pressure or pain, and
olfactory disorder (Fokkens et al., 2012). Chronic rhinosinusitis with nasal polyps (CRSwNP), a
multifactorial and highly heterogeneous upper airway disease, is a severe phenotype of chronic
rhinosinusitis and presents with distinct immunological and histopathological features compared
with chronic rhinosinusitis without nasal polyps (CRSsNP).

Despite aggressive medical therapy or radical endoscopic sinus surgical treatment, many
patients with CRSwNP tend to be poorly controlled and have a high recurrence rate (Wynn and
Har-El, 2004; Mendelsohn et al., 2011; Baguley et al., 2014; DeConde et al., 2017). Several factors
which associate with a worse outcome or recurrence risk have been identified, such as high tissue
eosinophil infiltration, more severe preoperative disease (i.e., a higher CT score), and a series of
comorbid disease (i.e., aspirin-exacerbated respiratory disease (AERD), allergic asthma and cystic
fibrosis) (Desrosiers, 2004; Tosun et al., 2010; Mortuaire et al., 2015; Ta andWhite, 2015; Tipirneni
and Woodworth, 2017; Wu et al., 2017).

Clinically, CRSwNP is classified into two phenotypes based on the dominant inflammatory cell
type in tissues: eosinophilic CRSwNP (ECRSwNP) and non-eosinophilic CRSwNP (NECRSwNP)
(Cao et al., 2009; Shah et al., 2016; Wu et al., 2016; Cho S.-W. et al., 2017). In western countries, the
majority of patients with CRSwNP (80–88%) have prominent tissue eosinophilia, edema formation,
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and a type 2 helper T-cell (Th2) dominant immune response
(Bateman et al., 2005; Fokkens et al., 2005; Van Zele et al., 2006).
CRSwNP may be associated with asthma and aspirin intolerance
(Fokkens et al., 2012; Stevens et al., 2017). However, at least half of
patients with CRSwNP in East Asian countries including China,
Korea and Japan have a non-eosinophilic phenotyps of nasal
polyps characterized by Th1/Th17-dominant inflammation (Kim
et al., 2007; Zhang et al., 2008; Cao et al., 2009; Ikeda et al., 2013).

The past decade has witnessed a change in the understanding
of mechanisms underlying eosinophilic airway diseases from
a paradigm in which allergen-independent, e.g., Th2 cells are
the primary drivers, to one in which production of epithelial-
derived chemokines and cytokines by dysfunctional respiratory
epithelium are the primary orchestrators of the eosinophilic
immune response (Hammad and Lambrecht, 2015; Pfeffer
and Corrigan, 2017). A large range of both endogenous and
extrinsic stimuli can activate the epithelial cell and elicit the
release of epithelial-derived chemokines and cytokines which,
in turn, induce the type 2 immune response (Hammad and
Lambrecht, 2015; Schleimer and Berdnikovs, 2017). External
stimuli, including allergen, fungus, Staphylococcus aureus and
microbiome disturbance have been posited as significant
contributing factors in CRSwNP pathophysiology and have been
implicated in driving Th2-biased airway disease (Sachse et al.,
2010; Clark et al., 2013; Madeo and Frieri, 2013; Ou et al., 2014;
Lan et al., 2016; Orlandi et al., 2016; Tomassen et al., 2016;
Schleimer, 2017).

Protease activity is a common unifying feature of many of
these environmental insults suggesting an underlying common
etiopathogenesis (Sokol et al., 2008; Gregory and Lloyd, 2011;
Stentzel et al., 2017; Teufelberger et al., 2017). Airborn allergens,
such mites, pollen, as well as microorganisms, such as bacteria,
rhinovirus, and influenza virus, and fungi are major sources of
exogenous proteases (Reed and Kita, 2004; Sokol et al., 2008;
Costenaro et al., 2011; Takai and Ikeda, 2011; Kesic et al.,
2012). The innate immune response to these exogenous proteases
seems to play a crucial role during the development of Th2-
biased immune response (Kamijo et al., 2013; Hara et al., 2014;
Snelgrove et al., 2014; Teufelberger et al., 2017). It therefore
follows that an imbalance of proteases and protease inhibitors in
the epithelial barrier may lead to the initiation and maintainancc
of eosinophilic inflammation in CRSwNP and therefore be a
central driver of eosinophilic airway disease (Kouzaki et al., 2017;
Pfeffer and Corrigan, 2017).

This review will summarize the current knowledge on the
role of proteases during the development of the sinonasal
mucosal type 2 immune response, with an emphasis on the
molecular pathways initiating the innate type 2 cell response
and then promoting adaptive Th2 cell immunity. This is
followed by a discussion of the dysfunctional regulation

Abbreviations: CRSwNP, Chronic rhinosinusitis with nasal polyps; CRSsNP,

chronic rhinosinusitis without nasal polyps; ECRSwNP, eosinophilic chronic

rhinosinusitis with nasal polyps; NECRSwNP, non-eosinophilic chronic

rhinosinusitis with nasal polyps; Th2, type 2 helper T-cell; PARs, protease-

activated receptors; TLR4, toll-like receptor 4; ZO-1, Zonula occludens-1; HDM,

house dust mite; SpID, serine protease like protein D; FCPs, fibrinogen cleavage

products; P-gp, P-glycoprotein.

of proteases and proteases inhibitors in the epithelial
barrier.

Mechanisms of the Activation of the
Airway Epithelial Cells upon External
Protease Exposure
Cysteine and or serine proteases occur in some groups of
airborne mite, pollen, cockroach, fungi, and Staphylococcus
aureus (Asokananthan et al., 2002; Reed and Kita, 2004;
Jacquet, 2011; Takai and Ikeda, 2011; Balenga et al., 2015; Kale
et al., 2017; Stentzel et al., 2017; Teufelberger et al., 2017).
Allergen derived proteases interact with epithelial cells through
three principle pathways: direct effects on junctional proteins,
reacting with cell surface protease-activated receptors (PARs),
and toll-like receptor 4 (TLR4)-dependent epithelial activation.
An integrated mechanism is summarized and illustrated in
Figure 1.

Allergen source-derived proteases (both cysteine and serine
protease) can directly degrade tight junctions in the epithelium
(Wan et al., 1999, 2001; Tai et al., 2006; Runswick et al.,
2007; Hirasawa, 2010; Kale et al., 2017) and increase the
accessibility of microorganisms and antigens to the underlying
lamina propria and connective tissue thereby triggering strong
innate immune responses to allergens (Gregory and Lloyd,
2011). It has been reported that the levels of occludin,
E-cadherin, and zonula occludens-1 (ZO-1) were all reduced in
mature polyps derived from patients with CRSwNP. Moreover,
aquaporin 5, a marker of epithelial differentiation, was obviously
reduced in sinonasal samples of patients with CRSwNP
when compared with levels in CRSsNP or control subjects
(Shikani et al., 2014).

Apart from direct effects on junctional epithelial proteins,
environmental proteases can interact with PARs in the airway
to stimulate the proliferation and migration of innate and
adaptive leukocytes (Reed and Kita, 2004). PARs are a novel
family of seven-transmembrane G protein-coupled receptors
that are widely expressed in human airway epithelium. There
are four types of PARs (PAR1, PAR2, PAR3, and PAR4)
which play an integral role in defending against environmental
proteases (Coughlin and Camerer, 2003; Reed and Kita,
2004). Several reports have linked PAR activation to the
allergic immune response (Kheradmand et al., 2002; Jacquet,
2011). Exogenous proteases from house dust mite (HDM),
cockroach or Alternaria alternate were shown to play an
important role in allergy development, partly by activating PAR-
2 signaling in the epithelial cells (de Boer et al., 2014). In
CRSwNP, airborne fungal proteases can activate both PAR-
2 and PAR-3 leading to the proliferation and migration
of inflammatory cells (Shin et al., 2006). Furthermore, the
level of the PAR-2 in cultured primary nasal epithelial
cells and nasal polyps from patients with ECRSwNP was
significantly increased as compared with NECRSwNP and
controls (Kouzaki et al., 2016). However, in patients with allergic
fungal rhinosinusitis, only PAR-3 showed statistically significant
differential expression compared to non-diseased controls
(Ebert et al., 2014).
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FIGURE 1 | Upon allergen proteases exposure, junctional proteins among epithelial cells are disrupted. Allergen proteases can directly react with protease-activated

receptor 2 (PAR2). Allergen proteases cleave the serum factor fibrinogen, thus releasing fibrinogen cleavage products (FCPs) which can activate toll-like receptor 4

(TLR4). Epithelial cells get activated to produce and release pro-Th2 cell chemokines and cytokines which instruct immature dendritic cells (iDC) and activate ILC2s.

Additionally, the activation of these receptors will also induce NF-kB activation, ROS production. Th2 cells and ILC2s are activated and promote the eosinophilia,

production of IgE and goblet-cell metaplasia. Allergen exposure is generally accompanied by fluid extravasation and thrombin also generates FCPs from fibrinogen,

thus triggering TLR4. P-glycoproteins (P-gp) in the epithelial cells promote the efflux of protease inhibitors to suppress the allergen proteases. cDC classical DC,

Macro macrophage, Baso basophils, MC mast cell.

Staphylococcus aureus is a versatile bacteria frequently found
colonizing patients with Th2-biased diseases such CRSwNP
and asthma (Bachert et al., 2010; Sachse et al., 2010).
Several endotypes of chronic rhinosinusitis have been identified
based on the presence of S. aureus enterotoxin(SE)- specific
IgE (Bachert and Akdis, 2016; Tomassen et al., 2016). The
presence of SE-specific IgE associates with intense eosinophilic
inflammation in CRSwNP, high IgE concentration and comorbid
asthma (Bachert et al., 2010; Tomassen et al., 2016). Recently,
serine protease like protein D (SplD) and other closely
related proteases secreted by S. aureus have been identified
as inducers of allergic asthma in both humans and mice
(Stentzel et al., 2017). Furthermore, SplD-induced Th2-biased
inflammatory response and IgE production in the airway
inflammation were largely dependent on the IL-33/ST2 axis and
independent of TLR4 and PAR-2 signaling (Teufelberger et al.,
2017).

TLR activation has been the subject of intense study with
respect to its role in protease mediated airway inflammation.
The coagulation system has been implicated in eosinophilic
airway diseases, such as asthma and CRSwNP as a result of
collagen deposition and airway remodeling, (Shimizu et al., 2011;
Lambrecht and Hammad, 2013; Kim et al., 2015). Millien et al.

found that activation of the coagulation cascade by allergen-
derived proteases is an important factor promoting asthma-
like changes in mice. Allergen proteases can cleave the serum
factor fibrinogen, thus releasing FCPs which directly activate
TLR4 signaling (Millien et al., 2013). The development of an
asthma-like condition caused by house-dust mites challenge
relies on the expression of TLR4 on lower airway epithelial
cells (Hammad et al., 2009). Furthermore, thrombin, the
classic activator of coagulation, can also cleave fibrinogen
into FCPs resulting in further upregulation of the TLR4
pathway. A recent study identifies a programmed cell death
1 ligand 2+ (PD-L2+) DC phenotype which accounts for
the induction of Th2 cell response upon protease allergens
exposure and fibrinogen-cleavage products can promote the
generation of PD-L2+ DC through TLR4 (Cho M. et al.,
2017). These studies suggest that TLR4 plays a critical
role in the allergic response upon exposure to exogenous
proteases.

A study by Seung-Heon Shin et al. showed that airborne fungi
induced the activation of nasal polyp epithelial cell and TLR
expression (TLR2, TLR3 and TLR4). Cytokine production was, in
turn, suppressed by protease inhibitors and anti-TLR4 antibodies
(Shin and Lee, 2010).
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Imbalance and Dysfunctional Regulation of
Proteases and Proteases Inhibitors in the
Epithelial Barrier of CRSwNP
Recently, a study showed that an imbalance of proteases and
protease inhibitors within the epithelial barrier contributes to
the pathogenesis of eosinophilic chronic rhinosinusitis (Kouzaki
et al., 2017). Barrier defects might be induced by damage to key
proteins that comprise tight or adherent junctions secondary
to increased or unopposed protease activity. These findings
suggest that individual susceptibility to protease mediated
inflammation may arise from the inability to adequately
mitigate exogenous protease mediated epithelial damage. A
recent review (Schleimer and Berdnikovs, 2017) suggested that
cystatin A and SPINK5 (a cysteine and serine protease inhibitor,
respectively) possess important roles in protecting the airway
epithelium against environmental proteases. Furthermore,
SPINK5 can protect PARs which are expressed on multiple cell
types in the nasal epithelium from environmental proteases
(Hershenson, 2007). Furthermore, SPINK5 is thought to regulate
the function of numerous proteases that might compromise
the barrier (Tieu et al., 2009). What’s more, both human
and animal studies have showed that SPINK5 mutations
are associated with chronic inflammation in epithelium
(Cookson, 2004; Moffatt, 2004).

P-glycoprotein (P-gp) has been reported as a key
immunoregulator of eosinophilic inflammation in both CRSwNP
and CRSsNP (Bleier et al., 2013; Feldman et al., 2013; Cheng
and Bleier, 2016). Protease inhibitors have been reported to
induce the expression of P-gp suggesting that an imbalance in the
protease system may further exacerbate inflammation through

the induction of P-gp expression(Perloff et al., 2000; Huang et al.,
2001; Chandler et al., 2003; Zastre et al., 2009). Additionally,
some protease inhibitors have been shown to function as P-gp
substrates further strengthening the link between protease
inhibitors and P-gp (Chaillou et al., 2002; Meaden et al., 2002)
(Zhang and Benet, 1998). While disequilibrium of both P-gp
expression and proteases inhibitors within the nasal mucosa may
play an interrelated role in CRSwNP, further studies are needed
to explore this possible function.

Summary and Perspectives
In patients with CRSwNP, exogenous allergen and
microorganism derived proteases play a crucial role in the
development of type 2 immune response at the mucosal surface.
Through direct effects on junctional proteins, binding to cell
surface PARs, TLR4-dependent epithelial activation, disruption
of barrier function, and P-gp activation, proteases both initiate
and maintain the inflammation characteristic of Th2 mucosal
disease. It has been proposed that drugs targeting protease
function (Verma et al., 2016) in nasal mucus to restore the
balance between proteases and protease inhibitors (Pfeffer
and Corrigan, 2017) may represent an important potential
therapeutic strategy in patients with CRSwNP and other
eosinophilic airway diseases. However, more studies are required
to explore the exact role of the protease and protease inhibitor
axis in CRSwNP.
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