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During the last decade, the vast omics field has revolutionized biological research,

especially the genomics, transcriptomics and proteomics branches, as technological

tools become available to the field researcher and allow difficult question-driven studies to

be addressed. Parasitology has greatly benefited from next generation sequencing (NGS)

projects, which have resulted in a broadened comprehension of basic parasite molecular

biology, ecology and epidemiology. Malariology is one example where application of

this technology has greatly contributed to a better understanding of Plasmodium spp.

biology and host-parasite interactions. Among the several parasite species that cause

human malaria, the neglected Plasmodium vivax presents great research challenges, as

in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore,

there are gaps in our P. vivax biology knowledge that affect decisions for control

policies aiming to eradicate vivax malaria in the near future. In this review, we provide

a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing

on developments, hurdles, and limitations currently faced by the research community, as

well as perspectives on future vivax malaria research.
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INTRODUCTION

The last 10 years brought breakthroughs in biological research with the emergence of and improved
accessibility to sequencing technology (Margulies et al., 2005). Nowadays, the increasingly available,
user-friendly and less costly next generation sequencing (NGS) (Metzker, 2010) platforms are
major technological contributions. Genomic exploration of organisms in greater detail through
whole genome sequencing (WGS) is a reality. Additional valuable insights are coming from whole
transcriptome (WTS) and proteome sequencing projects within the wider “omics” field, which
start to shed light on multiple aspects of biology. Data integration within the “omics,” quantitative,
functional and regulatory analysis - systems biology - is revolutionizing our understanding of the
mechanisms of life. All these interconnected genomic, transcriptomic and proteomic platforms
bring a new world of possibilities for hypothesis-driven research.
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Genome sequencing projects revealed Plasmodium spp.
genetic diversity and contributed to a better knowledge of
parasite biology and host-parasite interaction (Hemingway et al.,
2016). A significant number of fully sequenced and high quality
Plasmodium spp. reference genomes are available (Carlton
et al., 2008a; Dharia et al., 2010; Menard et al., 2010, 2013;
Westenberger et al., 2010; Bright et al., 2012; Chan et al., 2012;
Neafsey et al., 2012; Flannery et al., 2015; Winter et al., 2015;
Hupalo et al., 2016; Pearson et al., 2016), and sequence curation
efforts should continue. Today, the malaria research community
ventures more and more into transcriptomics (Bozdech et al.,
2008; Hoo et al., 2016; Zhu et al., 2016) and proteomics (Ray
et al., 2016, 2017), areas to capitalize on for understanding
Plasmodium spp. biology, especially the dynamics of RNA and
protein expression and regulation through its complex multi-
staged life cycle, in host and vector interaction contexts, and
under different environmental selective pressures. Hence, the
expertise provided by in-depth sequencing projects with clear
data integration for understanding metabolic pathways in a
systematic way is welcome by the parasite research community.
Not only does it provide important pieces of information
to understand different immune evasion and host invasion
strategies, it is also a way to monitor and find new means to
combat the rapidly increasing transmission of drug resistant
parasites, and to identify molecular targets as starting points for
effective vaccine development.

Plasmodium vivax malaria research has historically faced
numerous technical adversities and has been largely neglected.
This situation has led to a general lack of knowledge of P. vivax
biology, and consequently impaired our capacity for making the
best decisions on transmission control measures, and in the long
run, for vivax malaria eradication. Currently vivax malaria is
acknowledged as a disease that should no longer be neglected as it
has been shown to result in considerable morbidity and mortality
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(Alexandre et al., 2010; Andrade et al., 2010; Lacerda et al., 2012a;
Quispe et al., 2014; Rodriguez-Morales et al., 2015; Siqueira et al.,
2015).

In this review, we show the main achievements on P.
vivax biology accomplished based on the published genome,
transcriptome and proteome sequencing projects. In particular,
(1) the genome-wide comparative studies showing evolutionary
relationships between parasites of the same genus, (2) the broad
genetic diversity landscape within the P. vivax populations
reported as to understand specific selection pressures
(environmental and host/vector related) acting presently
on parasite populations, (3) the more recent expression profile
datasets and regulation mechanisms emerging from sensitive
high-throughput WTS (RNA-seq) of P. vivax in different stages,
and (4) the attempts to identify parasite metabolic pathways
and antigens as possible diagnosis biomarkers through mass
spectrometry (MS) based proteomics analysis of parasites and
human host profiling from vivax malaria patient samples. Also,
we present the main challenges encountered, remaining gaps and
possible research avenues being explored and developed by the
vivax malaria community.

VIVAX MALARIA: AN OVERVIEW

Human malaria infections can be caused by five different
Plasmodium species. P. falciparum is considered the deadliest
parasite, causing the most severe clinical outcomes, whereas P.
vivax is the most geographically spread within densely populated
regions, thus accentuating the socio-economic burden caused
by the disease (Gething et al., 2012; WHO, 2015). Recently,
vivax malaria has re-emerged in regions formerly considered
malaria free (Severini et al., 2004; Kim et al., 2009; Bitoh
et al., 2011). Worldwide, about 2.85 billion people have been
estimated to be at risk of infection by P. vivax (Price et al.,
2007; Guerra et al., 2010; Battle et al., 2012; Gething et al.,
2012). Following the decline of P. falciparum infections, P.
vivax is now the dominant malaria species in several endemic
regions (Coura et al., 2006; Gething et al., 2012; Hussain et al.,
2013; WHO, 2015), where reports show a higher incidence,
especially in young children (Marsh et al., 1995; Williams
et al., 1997; Price et al., 2007; Genton et al., 2008; Tjitra
et al., 2008). Several clinical complications that were normally
associated with P. falciparum infections have been reported
for vivax malaria (Kochar et al., 2005, 2009a; Hutchinson and
Lindsay, 2006; Baird, 2007; Barcus et al., 2007; Alexandre et al.,
2010; Rahimi et al., 2014). The most observed include anemia
(Haldar and Mohandas, 2009; Quintero et al., 2011), haemolytic,
coagulation disorders, jaundice (Sharma et al., 1993; Erhart
et al., 2004; Lacerda et al., 2004; Saharan et al., 2009) and
acute respiratory distress syndrome (Anstey et al., 2002, 2007;
Suratt and Parsons, 2006; Tan et al., 2008; Lacerda et al., 2012b;
Lanca et al., 2012), followed by nephropathology (Chung et al.,
2008), porphyria (Kochar et al., 2009b), rhabdomyolysis (Siqueira
et al., 2010), splenic rupture (de Lacerda et al., 2007; Gupta,
2010), and cerebral malaria (Lampah et al., 2011; Tanwar et al.,
2011). Vivax malaria during pregnancy causing spontaneous
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abortions, premature and low weight new-borns (McGready
et al., 2004; Poespoprodjo et al., 2008) is another major health
concern, challenging the pre-established view of P. vivax as a
“benign” parasite (Mendis et al., 2001; Baird, 2007; Anstey et al.,
2009; Mueller et al., 2009; Gething et al., 2012; Naing et al.,
2014).

According to the World Health Organization (WHO)
guidelines (WHO, 2015), the first line P. vivax chemotherapy
is chloroquine (CQ) plus primaquine (PQ), the only approved
drug targeting the latent parasite form (Beutler et al., 2007). In
high transmission areas presenting cases of drug resistance, an
artemisinin based combination therapy (ACT) is recommended
(WHO, 2010). The constant increase and spread of anti-malarial
drug resistance remains of great concern (Baird, 2004; de Santana
Filho et al., 2007; Suwanarusk et al., 2007; Poespoprodjo et al.,
2008; Russell et al., 2008; Tjitra et al., 2008; Price et al., 2009,
2014).

P. vivax had an evolutionary path distinct from P. falciparum,
being more closely related to P. cynomolgi, a sister taxon that
infects Asian macaque monkeys (Duval et al., 2010; Liu et al.,
2014; Luo et al., 2015). Probably as a consequence of such
a unique evolutionary path, P. vivax shows unique biological
features (Baird, 2007; Mueller et al., 2009; Gething et al., 2012)
that distinguish it from P. falciparum (Figure 1):

(1) Preference for invading reticulocytes (RTs) (Field and
Shute, 1956), increasing their deformability, size, fragility
and permeability (Kitchen, 1938; Suwanarusk et al., 2004;
Handayani et al., 2009; Desai, 2014), which would allow P.
vivax to evade the host immune system (del Portillo et al.,
2004; Suwanarusk et al., 2004; Handayani et al., 2009) and
maintain its characteristic low biomass parasitemia (Mueller
et al., 2009).

(2) Earlier production of sexual stages during the infection
(Boyd and Kitchen, 1937), with a characteristic spherical
shape seen in peripheral blood circulation even before
the beginning of clinical symptoms, which might function
as a reservoir to promote successful transmission to
the mosquitoes (Boyd and Kitchen, 1937; Bousema and
Drakeley, 2011).

(3) Formation of hypnozoites, which remain in the liver in a
latent state (Krotoski et al., 1982; Baird et al., 2007), and
for which the reactivation mechanisms are still unknown
(Mueller et al., 2009).

P. vivax research has been greatly restricted by lack of a
reliable and reproducible in vitro system for long term culture
(culturing efforts reviewed by Udomsangpetch et al., 2008;
Noulin et al., 2013). This limitations are reflected both in the
quantity and quality of functional assays performed in ex vivo
short term cultures (Noulin et al., 2013). Furthermore, the
alternative use of monkey-based studies with adapted strains
of P. vivax (Beeson and Crabb, 2007; Panichakul et al., 2007)
is of no easy access. Nevertheless, the available molecular tools
(reviewed in Escalante et al., 2015) emerge as a valuable option
to better estimate the prevalence and incidence of vivax malaria,
its dynamics and differential contributions between host and
vectors.

PLASMODIUM VIVAX GENOMICS

Genome Sequencing Breakthroughs and
Projects
In 2008, Carlton and colleagues achieved the complete
generation, assembly and analysis of the first P. vivax WGS
(Carlton, 2003; Feng et al., 2003; Carlton et al., 2008a), 6 years
after the publication of P. falciparum reference genome (Gardner
et al., 2002; Figure 2). The sequenced P. vivax Salvador-1 (Sal-
1) strain came from a patient isolate from La Paz, close to
El Salvador, and was passed to human volunteers, Aotus owl
monkeys, and subsequently adapted to growth in Saimiri squirrel
monkeys by mosquito and blood infection during the 1970s
(Collins et al., 1972). Only later, it was possible to extract enough
genomic DNA (gDNA) for whole genome shotgun sequencing
(WGSS) and de novo assembly (Carlton et al., 2008a). Some
technical hurdles were overcome, notably that the genome GC
content of the parasite and laboratory host were similar and
little information was available for the squirrel monkey gDNA
sequence to exclude possible contamination (Carlton, 2003).

The constraints initially faced by these studies to acquire
sufficient gDNA of acceptable quality for WGS were alleviated by
the use of NGS platforms. These allowed direct sequencing of the
first patient ex vivo isolate in 2010 (Dharia et al., 2010) without
the need for in vitro propagation (Figure 2) or use the of more
traditional and laborious cloning and expression approaches
(del Portillo et al., 1988). Since then, sequencing technology
sensitivity has increased while required genetic material amounts
have decreased, leading to lower costs. As a result, NGS is now
a portable benchtop technology much closer to endemic areas.
Parasite DNA can be enriched in low parasitemia blood samples
and human contamination eliminated (Auburn et al., 2013). To
achieve an effective preparation of P. vivax field isolates for
WGS, a technique combining a CF11-based human lymphocyte
filtration and the short-term ex vivo culture for schizont
maturation was optimized and is currently applied with success
in several labs set in endemic areas. An alternative approach
to preventing host contamination and enriching samples in P.
vivax DNA is the direct sequencing of parasite gDNA by hybrid
selection (Melnikov et al., 2011). This sequencing methodology
has allowed the first worldwide characterization of P. vivax
isolates (Dharia et al., 2010; Menard et al., 2013).

Recently, several patient isolates from Peru, Madagascar,
Malagasy, Cambodia, and a Belem monkey adapted strain were
sequenced coupled with the resequencing of the Sal-1 strain
(Carlton et al., 2008a) using whole genome capture (WGC),
WGS and NGS techniques (Dharia et al., 2010; Bright et al.,
2012; Chan et al., 2012; Neafsey et al., 2012; Winter et al., 2015;
Figure 2). In 2016, major WGS analysis studies were published,
including one sequencing 195 P. vivax genomes including 182
new high depth and quality sequences from clinical isolates
from 11 different countries worldwide (Hupalo et al., 2016) and
13 already published sequences from both clinical isolates and
monkey-adapted laboratory lines. In addition, 70 Cambodian
P. vivax isolates, further compared to 80 P. falciparum isolates
from the same region (Parobek et al., 2016) were sequenced,
considerably augmenting the genomic data available to the
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FIGURE 1 | Plasmodium vivax and Plasmodium falciparum life cycle comparison. (A) Anopheles blood meal infection: Malaria infection occurs once a female

Anopheles spp. mosquito inoculates Plasmodium sporozoites into the skin of the human host during its feeding (Kiszewski et al., 2004). The sporozoites eventually

reach the bloodstream. (B) Pre-erythrocytic stage infection: The sporozoites are transported through the vascular system to the liver, where they migrate across

Kupffer or endothelial cells and enter hepatocytes. When a hepatocyte is found and within a period of 10–12 days, sporozoites from both Plasmodium species form a

parasitophorous vacuole membrane and differentiate into schizonts. The schizogony process involves thousands of mitotic replications giving rise to a high number of

merozoites packed into merosomes, which are then released into the bloodstream. P. vivax sporozoites can also differentiate into dormant long lasting liver forms

(Continued)
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FIGURE 1 | called hypnozoites that upon activation start schizogony with consequent release of merozoites into the vasculature, and consequently causing clinical

relapses (Krotoski, 1985). (C) Asexual erythrocytic stage: During this 48 h stage, P. vivax merozoites have a preference for reticulocyte invasion, whereas P. falciparum

invade normocytes. Upon invasion, the parasite promotes several alterations in these blood cells, enlarging and deforming them (Suwanarusk et al., 2004) and

promoting the formation of caveola-vesicle like complexes (CVC) and cytoplasmic cleft structures (Barnwell et al., 1990), resulting in an appropriate environment for

asexual schizogony in the bloodstream. The species-specific set of surface proteins produced by the parasites influences the proportion of different parasite stages

observed in the patient’s peripheral blood and are suggested to be linked to the different pyrogenic capacity, biomass and parasitemia levels presented by vivax or

falciparum malaria patients. RBC, Red Blood Cell. (D) Intra-erythrocytic gametocyte development: A proportion of asexual parasites are known to undergo

gametocytogenesis into round-shaped sexual micro- and macrogametocytes, quite early (4 days) after P. vivax infection compared to P. falciparum (15 days

post-infection) (Pelle et al., 2015), before detection of any clinical symptoms. (E) Mosquito Stage: Gametocytes circulating in the bloodstream can be taken up by the

next Anopheles blood meal and engage in the sexual cycle with release of male and female mature gametes, fertilization (zygote) and formation of motile ookinetes

that cross the mosquito midgut epithelium and further mature into oocysts. The oocyst, a new asexual sporogonic replicative entity, generates and releases thousands

of sporozoites. These sporozoites migrate and invade the salivary glands of the mosquito vector and can then be transmitted to a new human host, completing the

complex life cycle of the parasite (Mueller et al., 2009).

malaria community (Luo et al., 2015; Hupalo et al., 2016; Parobek
et al., 2016; Figure 2). Expectations are that these data will bring
great advances in population genetics at a genome scale and that
comparative genomic analysis (CGA) will function as a powerful
method for parasite evolution hypothesis generation and testing
(Feng et al., 2003).

Recently, a newly assembled and annotated reference genome
named P. vivax P01 was published (Auburn et al., 2016a;
Figure 2). The data was generated by using high-depth
Illumina R© sequencing from a Papua Indonesia patient isolate
(Auburn et al., 2016a). For assembly, manual curation and
comparison between data sets, the draft assemblies for the
P. vivax isolates C01 (China) and T01 (Thailand) were used
(Auburn et al., 2016a). The higher degree of assembly of these
three genomes (∼11 times) largely exceeds the Sal-1 reference
genome (Carlton et al., 2008b; Auburn et al., 2016a). Not only
was there an enhancement on scaffolds assembly with reduction
from 2,500 unassembled scaffolds in Sal-1 to 226 in P01 reference
genomes, as an improvement of the subtelomeric regions scaffold
assembly. Therefore, annotation was also improved with the
attribution of functions to 58% against the 38% in Sal-1 in a total
of 4,465 core genes, defined as genes 1:1 orthologous between
P. vivax P01 and P. falciparum 3D7 strains (Auburn et al.,
2016a; Figure 3 andTable 1). The improvements in assembly and
annotation quality in this sequencing project contributed to the
generation of this very important new resource to study vivax
malaria.

Genome Architecture and Evolution
The biggest landmark achieved with the WGS of Plasmodium
spp. was data acquisition to perform alignments and construct
synteny maps with improved annotation, i.e., identifying
conserved order of genetic loci along chromosomes (Ureta-
Vidal et al., 2003). Through CGA one can now understand
how the key forces that shape the evolutionary processes of
organisms (mutation, selection, and genetic drift) came into
play, by assuming that the genomes analyzed share a common
ancestor (Frazer et al., 2003). For instance, CGA has allowed us
to understand the integration of the apicoplast into apicomplexan
species (Kohler et al., 1997) and to identify genes and their
target signals transferred from the second endosymbiotic event
into Plasmodium (Foth et al., 2003). Furthermore, CGA based
on the P. falciparum and P. yoelii yoelii WGSs was the first

such comparison between tropical pathogens of the same
genus (Carlton et al., 2002; Feng et al., 2003), suggesting that
chromosomal reshuffling might have been involved in speciation
inside the Plasmodium genus.

Three different genomes, one nuclear, one mitochondrial
and one apicoplast, characterize P. vivax (Figure 3). The ∼26.8
megabases (Mb) nuclear genome is distributed among 14
chromosomes and has 42.3% GC average content, although
presenting an isochore structure with high GC content in
most internal chromosome regions, interspersed by high AT
stretches mainly in subtelomeric regions (Carlton, 2003; Carlton
et al., 2008a; Taylor et al., 2013; Table 1). The significance of
Plasmodium spp. isochore structure remains unknown (Eyre-
Walker and Hurst, 2001), however GC-rich genes evolve faster
than AT-rich subtelomeric genes (Carlton, 2003; Carlton et al.,
2008a). The codon usage in P. vivax is balanced (Nc∼54.2),
with less biased use of the 61 codons (Carlton et al., 2008b;
Yadav and Swati, 2012; Cornejo et al., 2015). In particular, gene
location in telomeric, centromeric or chromosome interstitial
regions was recently shown to present different codon biased
compositions (Cornejo et al., 2015). Genes showing the highest
codon usage bias encode housekeeping proteins, the most highly
expressed. Interestingly, genes in this category also include the
Pf/Pv-fam family putatively responsible for antigenic variation
and associated with early gametocyte formation (Cornejo et al.,
2015). These patterns have led to speculation regarding the
strong influence of the mutation rate on local nucleotide (nt)
composition. This may indicate dramatic variance in gene
expression potential and profiles, and that genes encoded in
such regions could intervene in the specific pathophysiology
of P. vivax malaria (McCutchan et al., 1984; Carlton et al.,
2008b; Cornejo et al., 2015). As previously observed for other
organisms, P. vivax DNA enriched in CpG motifs stimulates the
Toll-like Receptor 9 (TLR9) increasing the host inflammatory
response (Parroche et al., 2007), previously thought to be mainly
caused by hemozoin toxicity alone. Given that P. vivax has a
higher GC content, a greater TLR9 activation upon parasite DNA
uptake by the host has been hypothesized (Anstey et al., 2009),
potentially contributing to the increased pyrogenicity of this
parasite (Karunaweera et al., 1992; Hemmer et al., 2006).

With reservations for sequence misassembly, it was estimated
that the P. vivax parasite has around 5,400 genes (Carlton
et al., 2008a; Table 1), of which a large majority was found
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FIGURE 2 | Time line of the major Plasmodium spp. sequencing projects. Genome, transcriptome, and proteome sequencing projects in the last four decades have

contributed to our current parasite biology knowledge. P. falciparum (light red) and P. vivax (light blue) sequencing projects are shown, emphasizing the delay in time of

around 5–6 years for the latter species. The first P. falciparum reference genome became available much earlier in 2002 (circled in light gray), then the corresponding P.

vivax Sal-1 reference genome in 2008 (circled in light gray). WGS, whole genome sequencing; IDC, intraerythrocytic developmental cycle; MudPIT, multidimensional

protein identification technology; MS, mass spectrometry; 1D LC-MS/MS, one-dimension liquid chromatography–mass spectrometry; RNA-seq, RNA sequencing;

ChIP-seq, chromatin immunoprecipitation (ChIP) DNA sequencing.
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FIGURE 3 | Plasmodium spp. morphology and genome architecture.

Illustration showing the principal characteristics of Apicomplexan Plasmodium

spp. parasite morphology, with its 3 parasite genomes, nuclear (ncDNA),

mitochondrial (mtDNA) and apicoplast (apDNA).

to be orthologous between several Plasmodium spp. (CGA
on human parasites P. vivax and P. falciparum, primate
parasites P. cynomolgi and P. knowlesi and the rodent parasites
P. yoelii. yoelii, P. chabaudi, and P. berghei; Carlton et al.,
2008a). Orthologous genes identified had conserved genome
positions with no genome breakage hot spots (Carlton et al.,
2008a). Specifically, the more closely related primate species P.
cynomolgi and P. knowlesi (Glazko and Nei, 2003) showed a
higher degree of conservation throughout the 14 chromosomes
(Cornejo et al., 2015) with exception for multigenic regions,
where frequent microsyntenic breaks were identified (Carlton
et al., 2008b). Calculation of substitution rates at synonymous
(dS) vs. non-synonymous (dN) sites has allowed estimation of
the relative importance of selection and genetic drift (dN/dS)
throughout P. vivax evolution. Although a great difference
between average dS and dN values was observed in ∼3,300
high-confidence P. vivax/P. knowlesi orthologous gene pairs,
these values correlate within and between syntenic regions
of chromosomes of the two species. Carlton and colleagues
have suggested heterogeneous mutation rates across the genome
(Carlton, 2003). In Plasmodium, genes encoding membrane-
anchored, transmembrane, cell adhesion, exported proteins or
extracellular proteins with signal peptide motifs, most of them
in direct contact with the host defense system, evolve relatively
faster than the ones encoding housekeeping proteins (Carlton
et al., 2008a). Selective constraint analysis between the highly
conserved P. vivax/P. cynomolgi genomes reported a minority
of genes (<2%) as positively selected and consequently evolving
quicker than others with heavily constrained functions (Carlton
et al., 2008a). Therefore, it appears that evolutionary rates have
been greatly influenced by host-parasite interactions leading to
a high degree of variation between different gene classes in
Plasmodium (Carlton et al., 2008a; Joy et al., 2008).

It has been suggested that P. vivax had an African origin
(Koepfli et al., 2015; Winter et al., 2015) and subsequently spread
through the world (Culleton et al., 2011; Liu et al., 2014). The
recently analyzed P. vivax samples were gathered in two main
groups, Old and New World (Hupalo et al., 2016). Today the

TABLE 1 | Plasmodium vivax nuclear, mitochondrial and apicoplast genome

features.

Genomes P. vivax reference genomes

Sal-1 strain P01 strain

NUCLEAR

Assembled size (Mb) 26.8 29.0

GC content (%) 42.3 39.8

Total n◦ of genes* 5,433 6,642

VIR protein 346 1,212

PvHIST protein, unknown function 64 84

PvTRAg protein 34 40

PST-A protein 11 10

PvSTP-1 protein 9 10

ETRAMP 10 9

RBP 9 9

Other unknown function exported 23 447

proteins

MITOCHONDRIAL

Assembled size (bp) 5,990 5,989

GC content (%) 30.5 30.5

APICOPLAST

Assembled size (Kb) 5.1** 29.6

GC content (%) 17.1 13.3

N◦ of genes 0 30

Table summarizing the P. vivax nuclear, mitochondrial and apicoplast genome features,

both for Sal-1 stain (Carlton et al., 2008a) and the newly published P01 strain (Auburn

et al., 2016a), including assembly size, GC content, total number of predicted genes (not

including non-coding RNA genes) and subtelomeric most abundant multigene families

(adapted from Auburn et al., 2016a).

*Total number of genes include identified partial genes and pseudogenes; **Published

assembly of Sal-1 apicoplast reference partially sequenced; Mb, megabases; Kb,

kilobases; bp, base pairs; VIR, variable interspersed repeat multigene family proteins;

PvHIST, P. vivax Plasmodia Helical Interspersed SubTelomeric multigene family proteins

(also named as Pf-fam-b) and RAD protein (Pv-fam-e); PvTRAg, P. vivax tryptophan-

rich antigen family proteins, also named as Pv-fam-a and tryptophan-rich antigens;

PST-A, lysophospholipase; PvSTP-1, P. vivax STP1 protein; ETRAMP, early transcribed

membrane protein; RBP, reticulocyte binding protein.

diversity between Old World P. vivax and P. falciparum samples
is significantly higher. This is indicative of a large effective
population size in P. vivax that shows signs of population specific
natural selection, where P. vivax is constantly adapting to human
host andmosquito vector regional differences, andmore recently,
to antimalarial drug pressures (Neafsey et al., 2012; Winter et al.,
2015; Hupalo et al., 2016; Parobek et al., 2016). These results
were also seen at the local level for a high number of P. vivax
samples from the Asian-Pacific region (Brazeau et al., 2016;
Parobek et al., 2016; Pearson et al., 2016) and, in a smaller
scale, in South American samples (Winter et al., 2015). The non-
uniform distribution of the single nucleotide polymorphisms
(SNPs) in P. vivax, clearly enriched at subtelomeric regions, is
being interpreted as a result of local high recombination rates.
This leads to the hypothesis that selection not only acts on genes,
but also has been shaping the P. vivax genomic architecture.
Natural selection can thus act faster on these regions where the
generation of antigenic variation occurs and also have a direct
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influence on genome architecture and consequently, impact
P. vivax adaptation (Cornejo et al., 2015). Further, genome-
wide analysis of P. vivax genetic diversity points at interesting
evolutionary implications. For instance, the P. vivax genome is
generally under very strong constraint with negative selection,
and only very few genes are being positively selected (Cornejo
et al., 2015; Parobek et al., 2016). Such results suggest a longer
evolutionary history of primate infection (Liu et al., 2014; Luo
et al., 2015), clearly closer to othermonkey-infecting Plasmodium
spp. (Carlton et al., 2013) than to P. falciparum, making it more
adapted to survive and replicate in primate hosts.

These results have supported the use of monkey malaria
Plasmodium spp. as models for the adaptation of P. vivax
parasite populations (Chan et al., 2015), Moreover, amplification
in monkey hosts of patient isolates from several endemic
areas (Brazil, North Korea, India, and Mauritania) (Galinski
and Barnwell, 2012) was crucial to collect enough high-quality
gDNA for WGS (Neafsey et al., 2012; Carlton et al., 2013).
However, analysis of these sequences should take into account
that the parasites isolated from vivax malaria patients were
passed through multiple infection cycles and were adapted to
grow in Saimiri boliviensis monkeys (Carlton et al., 2008b).
Host switching and adaptation to a new in vivo immune
environment could affect mutation rates, and consequently the
degree of P. vivax sequence variation, expression profiles and
multiclonal complexity of parasite populations (Hester et al.,
2013). Nevertheless, the study of Chan and colleagues proved that
research using P. vivaxmonkey-adapted strains resulted in useful
data, however data interpretation should be done with caution,
given that these strains are not always genetically homogeneous
(Chan et al., 2015). Overall, WGS reveals specific differences
within human malaria Plasmodium spp. which should be taken
into account in future interventions (Carlton et al., 2008a; Pain
et al., 2008; Frech and Chen, 2011; Tachibana et al., 2012; Hester
et al., 2013; Cornejo et al., 2015; Winter et al., 2015; Hupalo et al.,
2016; Parobek et al., 2016; Pearson et al., 2016).

PLASMODIUM VIVAX TRANSCRIPTOMICS

Whole Transcriptome Sequencing Projects
The first great effort into this parasite’s transcriptome profile
immediately followed the publication of P. vivax Sal-1 reference
genome (Figure 2). By using a customized microarray platform
of their own design, Bozdech et al. directly accessed P. vivax
mRNA levels throughout 48 h intraerythrocytic developmental
cycle (IDC) of three distinct isolates (Bozdech et al., 2008).
Expression data analysis identified stage-specific differential
expression of certain groups of genes. These genes were predicted
to encode proteins with a role in parasitic development, virulence
capacity and/or host-parasite interaction. In the following years,
several microarray platform studies were published (Bozdech
et al., 2008; Westenberger et al., 2010; Boopathi et al., 2013, 2014;
Figure 2). Supporting the previous findings of Bozdech et al.
on transcript levels at different lifecycle stages, Westenberger
and colleagues described dramatic changes in messenger RNA
(mRNA) co-expression of various genes predicted to be involved
in developmental processes, suggesting that they could modulate

parasitic progress through its different stages (Westenberger
et al., 2010). In the 5′ region of co-expressed genes conserved
motifs across Plasmodium spp. were identified as possible sites
for regulatory protein binding with important roles in stage
specific transcriptional regulation. Several multigene families
and genes predicted to encode exported proteins displayed
synchronized transcription in P. vivax sporozoites, but no
difference (different gene set or mRNA levels) was observed
between parasites showing capacity for hepatocyte invasion or
hypnozoite development (Westenberger et al., 2010). Boopathi
et al. reported a positive correlation of Natural Antisense
Transcripts (NATs) with sense transcripts level, indicating
that differing sense/antisense transcript ratios are involved in
differential regulation of gene expression in diverse clinical
conditions (Bozdech et al., 2008; Westenberger et al., 2010;
Boopathi et al., 2013, 2014).

Very recently, RNA-seq was successfully applied to re-
sequence two P. vivax isolates (Bozdech et al., 2008) throughout
their IDC (Zhu et al., 2016; Figure 2). RNA-seq is more
sensitive than gene expression microarrays as it detects
expression nuances. In addition, RNA-seq includes all transcripts
and not only the ones previously characterized present on
microarray slides. The IDC transcriptome map produced by
the high-resolution Illumina R© HiSeq platform allows a better
comprehension of the regulation behind the parasite gene
expression profiles for specific biological functions. Strand-
specific RNA-seq was just published for three isolates from
Cambodian vivax malaria patient before anti-malarial treatment,
and transcripts were assembled de novo revealing homogenous
parasite gene expression profile regardless of the proportion of
different stages (Kim et al., 2017). These results contrast with the
gene expression pattern reported before (Bozdech et al., 2008;
Zhu et al., 2016) and with data for sporozoites isolated from
salivary glands of infected Colombian mosquitos (Kim et al.,
2017). The authors recognize the fact that the patient isolates
have multi-staged parasites, where one asexual stage might be
transcriptionally more active than the others and, irrespective of
its proportion, will deliver most transcripts, homogenizing the
final expression patterns observed (Kim et al., 2017).

Differential Expression and Regulation
Plasmodium parasites do not have the typical eukaryotic
transcriptional apparatus, presenting a poor repertoire of
transcription associated proteins (TAP) somewhat similar among
P. falciparum, P. vivax, and P. knowlesi, but with a significant
range of putative regulatory sequences in the genome. This
raises the idea of a dynamic, complex and non-standard gene
expression regulation system (Carlton et al., 2008a; Boopathi
et al., 2013, 2014; Adjalley et al., 2016). From the microarray
and RNA-seq studies, some of the P. vivax transcriptome
architecture characteristics have emerged. Throughout IDC of P.
vivax (and other Plasmodium spp.), the overall timing of gene
expression profiles does not differ significantly between strains
and isolates. Hence, transcriptional differences or variations
observed between species might reflect distinct evolution
paths (Bozdech et al., 2008). Species-specific gene expression
patterns in members of multigene families may mirror separate
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environmental challenges and multiple and varied host-parasite
interactions faced by the parasites (Bozdech et al., 2008;
Westenberger et al., 2010; Boopathi et al., 2013; Zhu et al., 2016).
Considerable changes were found on orthologous genes (30%
divergence) between P. falciparum (Bozdech et al., 2003; Le Roch
et al., 2003) and P. vivax (Bozdech et al., 2008; Westenberger
et al., 2010; Zhu et al., 2016). Expression of these genes peaks
at different moments and possibly contributes to a specific
timing reflecting species-specific biological functions. Among
these genes are those related to host-parasite interactions, red
blood cells (RBC) invasion, early intraerythrocytic development
and antigenic variation. P. vivax antigen-presenting gene families
(e.g., vir and trag genes) are activated mainly at the schizont-ring
stage transition, indicative of different transcriptional control
between the two species and, once more, underscoring the
marked biological distinctions between the two most important
humanmalaria parasites (Bozdech et al., 2003, 2008). In addition,
contrary to what was seen for P. falciparum (Bozdech et al., 2003),
P. vivax seems to have an enhanced capacity to adapt to its host
and modify its virulence factors, as shown by its extensive intra-
isolate gene expression diversity (Bozdech et al., 2008). RNA-
seq data analysis revealed a transcriptional hotspot of vir genes
on chromosome 2, suggesting them as important for immune
evasion mechanisms. Structurally, P. vivax genes present
unusually long 5′ untranslated regions (UTRs) and multiple
transcription start sites (TSSs) (Zhu et al., 2016; Kim et al.,
2017). Supporting previous observations, Hoo et al. published the
first integrated transcriptome analysis for six Plasmodium spp.
showing that conserved syntenic orthologs present early parasitic
stage transcriptional divergence, where expression patterns
follow the corresponding mammalian hosts (Hoo et al., 2016)
and changes in important putative transcriptional regulators
might explain the observed transcriptional diversity. Conversely,
orthologs presenting similar transcriptional profiles across all
Plasmodium spp. might be responsible for conserved and crucial
functions (Hoo et al., 2016).

The importance of clusters of TSSs, the significance of
long 5′ vs. shorter 3′ UTRs, alternative splicing events and
the profusion of non-coding RNAs (ncRNAs), in a context of
genome-wide different GC content, is starting to be characterized
(Zhu et al., 2016; Kim et al., 2017). Different sequence motifs
have already been associated with stage specific expression
regulation (Westenberger et al., 2010), and recently Zhu and
colleagues observed a substantial variation of the 5′ UTR owing
to differential selection of TSS, although these phenomena do not
seem to be involved in regulation of the asexual parasite cycle.
P. falciparum transcriptome analyses reveal uniform usage of
several clusters of TTSs, but in a differentiated way (Figure 4A;
Watanabe et al., 2002; Lenhard et al., 2012; Adjalley et al.,
2016). Such sites are spaced along the genome, indicative
of dispersed patterns of transcription both in coding and
intergenic regions (Watanabe et al., 2002; Lenhard et al., 2012;
Adjalley et al., 2016). With a broad bidirectional promoter
sequence possibly controlled by multiple regulatory elements,
also characteristic of other eukaryotic species, the architecture
and sequence properties of Plasmodium spp. chromosomes can
play an important role in transcription initiation and regulation
by means of chromatin remodeling (Watanabe et al., 2002;

Lenhard et al., 2012; Adjalley et al., 2016). Moreover, as for
P. falciparum, P. vivax shows a cycling transcription pattern
throughout the IDC (Bozdech et al., 2003; Le Roch et al., 2003),
with stage-specific regulation of transcription initiation events,
well correlated with gene expression levels (Figure 4B; Siegel
et al., 2014; Adjalley et al., 2016).

Alternative splicing as a mechanism of producing
transcriptome variability was reported for P. falciparum
with a role in parasite sexual development (Iriko et al., 2009;
Otto et al., 2010; Sorber et al., 2011), contrasting with the scarcity
reported until now for P. vivax (Zhu et al., 2016). However, the
few splicing events identified are linked to a late schizont stage,
suggesting its significance at the gene function level (Zhu et al.,
2016). Recently, Kim and colleagues described a high percentage
of P. vivax genes encoding multiple, often uncharacterized,
protein-coding sequences (Kim et al., 2017). In addition to long
5′ UTRs, many of the isoforms significantly differ in their 5′-
or 3′-UTRs, possibly as a result of differential exon splicing. P.
vivax may use such protein isoforms in transcription and/or
translation regulation mechanisms. Importantly, examples of
such cases support the idea that even for well-described genes
conferring drug resistance, novel isoforms can be revealed
through transcriptomic data analysis, which could aid in
decoding molecular mechanisms responsible for antimalarial
drug resistance (Hoo et al., 2016; Kim et al., 2017).

All P. vivax transcriptomic data allowing for ncRNAs
identification reveal the presence of these RNAs at high levels,
notably in the antisense direction (Zhu et al., 2016; Kim et al.,
2017). In 2013, the NATs identified in P. vivax directly isolated
from infected patients with different malaria complications
by genome-wide transcriptome analysis using customized high
density tiling microarray sequencing technology (Boopathi et al.,
2014), suggested a possible role in differential regulation of P.
vivax gene expression. The involvement of distinct types of
transcriptional machinery and different mechanisms, such as
transcriptional run-through, bidirectional and antisense-specific
promoters, produces a varied landscape of differential regulation
observed for P. vivax from malaria patients in diverse clinical
conditions (Boopathi et al., 2013). Surprisingly, the extensively
investigated micro RNAs (miRNAs) class of ncRNAs appears to
be absent in some Apicomplexan species including Plasmodium.
However, an increasing number of studies have described a role
of host miRNAs in host-parasite interactions (reviewed by Judice
et al., 2016), as host miRNA expression can change after parasite
infection and, within this context, suggesting a crucial role for the
host immune system signaling.

The incorporation of RNA sequencing data will be extremely
important to further work on annotated genes and continue
the curation and further characterization of putative genes sets
that are being identified in new P. vivax isolates under WGS
projects. On the other hand, transcript data will indicate the
significance of SNPs and increase of copy number variation
(CNV) during the hypothesized recent population expansion
in P. vivax (Mu et al., 2005; Taylor et al., 2013; Cornejo
et al., 2015; Parobek et al., 2016). Furthermore, genome-
wide transcriptome analysis already contributes to a better
understanding of the dynamics of P. vivax gene expression by
annotating new coding and non-coding transcripts, determining
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FIGURE 4 | Plasmodium spp. gene expression and regulation dynamics. (A) Scheme illustrating the average observed nucleotide content and nucleosome

occupancy surrounding the transcriptional start site blocks (black round tip arrow) controlling gene expression, with a preferential pyrimidine-purine (T/A) di-nucleotide

usage (gray line) and a drop-in guanine-cytosine (GC) content (red line) around the starting site. (B) Generic representation showing an amplification of the suggested

subtelomeric (blue strip on the chromosome drawing) transcriptional start site clusters (round tip arrows) dynamics for differential gene expression during parasitic

intraerythrocytic developmental cycle (∼48 h). The graph displays arbitrary subtelomeric gene expression profiles under different TSS clusters control, during ring

(green, peak at 6 h), trophozoite (red, peak at 24 h) and schizont (blue, peak at 36 h) stages. IDC, intraerythrocytic developmental cycle; TSS, transcriptional start site.
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absolute levels of some transcripts, and characterizing the
biological importance of UTRs, TSSs and alternative splicing sites
(Zhu et al., 2016). Most importantly, it gives an understanding
of the role of the transcriptional regulatory machinery and fine-
tunedmechanisms that promote the large and diverse population
upkeep of P. vivax, ability to stand up to selective sweeps,
including those pressures caused by malaria control measures
(Parobek et al., 2016). Even though only few studies into P.
vivax transcriptional regulation have been published (Bozdech
et al., 2008; Hoo et al., 2016; Zhu et al., 2016), some results
suggest that specific biological processes that have enabled
the parasite to avoid the traditional malaria control measures
might be under tight transcriptional control. For example, early
gametogenesis (Bousema and Drakeley, 2011) along with the
asexual cycle seems to be achieved by transcriptional repression
of an AP2 transcription factor (Yuda et al., 2015; Hoo et al.,
2016). Another example is the biological process underlying
hypnozoite latent stage formation and activation, suggested to
be under epigenetic regulation. Studies using simian hepatocyte
cultures report an acceleration of hypnozoite activation when
histone methylation is inhibited. Thus, methylation of histones
promotes suppression of transcription, and ultimately, maintain
hypnozoite dormancy (Barnwell and Galinski, 2014; Dembele
et al., 2014). Other example of P. vivax transcriptional regulation
are related to mechanisms of drug resistance emergence, has
shown for differential expression of CRT protein, rather than
pvcrt gene coding sequence alteration, mediating CQ resistance
(Fernandez-Becerra et al., 2009; Melo et al., 2014; Pava et al.,
2015).

PLASMODIUM VIVAX PROTEOMICS AND
METABOLOMICS

Parasite and Patient Serum Proteome
Analysis
In spite of all advances mentioned above, the functions of
half of the predicted proteins in P. vivax remain unknown.
Unsurprisingly, P. vivax and P. falciparum share a similar
metabolic potential with key housekeeping pathways and
functions and a range of putative membrane transporters,
including the important apicoplast metabolism, essential for
the parasite (Carlton et al., 2008a). The apicoplast proteome
plays an important role in several major parasite metabolic
processes, including some described for P. falciparum (Ralph
et al., 2004) including isopentenyl diphosphate and iron sulfur
cluster assembly, type II fatty acid synthesis and haem synthesis
pathways, the latter subdivided between the apicoplast and
mitochondria. The localization of several other central pathways
is being clarified. For example, it was confirmed that the
glyoxalase pathway occurs in the apicoplast, although in P. vivax,
thiamine pyrophosphate biosynthesis takes place in the cytosol
(Baird, 2010).

Although P. falciparum studies gave us some indications
on the principal features of the P. vivax proteome, parasite-
specific biology probably involves expression of different gene
families. Thus, alternative invasion and host escape pathways

still remain largely unknown. Stage-specific analysis of P.
vivax IDC from natural isolates is extremely challenging due
to low parasitemias, characteristically asynchronous parasite
populations, and frequent polyclonal infections. In order to
overcome the low parasitemia data challenge, some studies
have pooled samples from different patients. However, such
procedures can potentially increase the assortment of proteins
detected, render their identification and association with disease
pathogenesis more difficult, and affect the reproducibility of
vivax proteomic data and follow up validation studies. Proteome
studies are expected to contribute greatly by disclosing proteins
expressed in clinical isolates and reveal new unique parasite
pathways involved in malaria pathophysiology, leading to
identification of new targets for drug and vaccine development.

Efforts are being made to identify potential vivax malaria
biomarkers to understand host responses. The earliest proteome
study, published in 2009 (Acharya et al., 2009), identified 16
proteins from a single patient infected with P. vivax blood-stage
parasites (Figure 2). In 2011, the same authors were the first to
examine the P. vivax proteome directly from a pool of clinical
isolates, identifying a total of 153 P. vivax proteins, most of
themwith unknown homology to expressed genes (Acharya et al.,
2011). That same year Roobsoong et al. (2011) published the
P. vivax schizont proteome from multi-patient schizont cultures
and enriched samples, where they reported 316 proteins of which
36 were unique to this parasite, and half of these were unique
hypothetical proteins. Such proteins could be P. vivax-specific
targets for diagnosis and treatment, as the four novel P. vivax
antigens described (Roobsoong et al., 2011). More recently, 238
trophozoite proteins were identified in P. vivax strain VCG-1
together with 485 from the Aotus host (Moreno-Perez et al.,
2014). The in-depth analysis of two P. vivax Sal-1 proteomes (S.
boliviensis monkey iRBCs at the trophozoite stage) allowed the
identification of 1375 parasite and 3209 host proteins and their
post-translational modifications, mostly N-terminal acetylation
(Anderson et al., 2015).

High-throughput screening has been used to study P. vivax
immune proteomes, leading to identification of 44 antigens from
a total of 152 protein putative candidates, and characterization
and confirmation of rhoptry-associated membrane antigens
(PvRAMA) as relevant serological markers of recent exposure to
infections (Lu et al., 2014). Furthermore, differences between P.
vivax and P. falciparum antigenic genes were revealed. Most of
these highly immunoreactive proteins are hypothetical, but there
have been suggestions of their importance for P. vivax invasion
and evasion mechanisms (Figure 5). For instance, reticulocyte
binding protein 2 and RAMA maybe involved in selectivity for
invasion of RTs and/or exported protein 1 and 2, histidine-
rich knob protein homolog and aspartic protease PM5 for host
immune evasion (Lu et al., 2014).

Humoral immunity of vivax malaria patients has also been
interrogated. Chen and co-authors cloned and expressed 89
proteins that were screened against sera from vivax malaria
patients using protein arrays to show 18 highly immunogenic of
which 7 had been already characterized as vaccine candidates and
the remaining were uncharacterized (Chen et al., 2010). Later,
Ray and colleagues (Ray et al., 2012a,b) identified proteins such
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FIGURE 5 | P. vivax variant proteins. Slices of the P. vivax infected erythrocyte (Pv-iE) are shown with known variant proteins (VIR, PvTRAg, DBP, RBP, PvHIST, MSP)

involved in P. vivax merozoite invasion (A), transport structures mediating the export of parasite ligands on the surface that promote changes in the host erythrocyte

(B) and proteins associated with host evasion mechanisms, e.g., the rosetting phenotype (C). RBC, red blood cell; iE, infected erythrocyte; VIR, variable interspersed

repeat multigene family proteins; PvTRAg, P. vivax tryptophan-rich antigen family proteins; PvHIST, P. vivax Plasmodia Helical Interspersed SubTelomeric multigene

family proteins; DBP, Duffy binding protein; RBP, reticulocyte binding proteins; MSP, Merozoite surface proteins; Pexel, Plasmodium export element protein motif.

as apolipoprotein A1 and E, serum amyloid A and P, haptoglobin,
ceruloplasmin, and hemopexin as differentially expressed in
uncomplicated malaria patients by serum proteome analysis.
Collectively, these results indicate that several physiologically
important host pathways have been modulated during parasitic
infection including vitamin D metabolism, hemostasis and
the coagulation cascade, acute phase response and interleukin
signaling, and the complement pathway (Ray et al., 2012a).

Host-Parasite Metabolic Pathways
To uncover pathway modulation occurring during
uncomplicated (Ray et al., 2012a,b) vs. severe vivax malaria (Ray
et al., 2016), researchers are going further into clinicopathological
analysis and proteomic profiling. Recently, human serum
proteome comparative studies were published (Ray et al., 2016)
showing different levels of parasitemia for severe and non-severe
infections, as well as during the acute and convalescent phases
of the infection (Ray et al., 2017). The involvement of the acute
phase response was confirmed, including acute phase reactants or
proteins, cytokine signaling, oxidative stress and anti-oxidative
pathways, muscle contraction and cytoskeletal regulation,
lipid metabolism and transport, complement cascades, and
several coagulation and hemostasis associated proteins in
malaria pathophysiology (Ray et al., 2016, 2017). However,
alterations in the blood coagulation cascade, as reported for
severe falciparum malaria, were not identified for severe vivax
malaria (Ray et al., 2016). Moreover, these proteomic studies
allowed the identification of prospective new host markers, such
as the differentially expressed proteins superoxide dismutase,
ceruloplasmin, vitronectin, titin, and nebulin. Furthermore,
they confirmed the already investigated apolipoprotein A1
and E, serum amyloid A and haptoglobin markers. Those are
important for future improved diagnosis, discrimination of
other infections, as well as disease progression and shift toward

severe clinical manifestations, response to new therapies and
outcome prediction (Ray et al., 2016). Analysis of a recent
longitudinal cohort of vivax malaria patients revealed that some
serum levels of proteins such as haptoglobin, apolipoprotein
E, apolipoprotein A1, carbonic anhydrase 1, and hemoglobin
subunit alpha, revert to baseline levels under treatment, but
others did not show the same behavior in the convalescent
phase of the infection (Ray et al., 2017), which might reflect
the effect on the host of different parasitemias present. Serum
proteome results also prompt the malaria community for a
clearer definition of severity parameters for P. vivax malaria and
show a marked difference between the pathogenesis of infection
caused by different Plasmodium parasites (Ray et al., 2016).

The panorama emerging from all malaria proteome studies
is that a great fraction of proteins identified until now are
uncharacterized and of unknown functions, alongside with
several housekeeping proteins. However, other proteins of major
metabolic pathways for parasite survival show us that we are
in a good position to better understand immune evasion and
host cell invasion mechanisms within the pathophysiology of
vivax malaria. These pathways comprise metabolism (glycolysis,
hemoglobin digestion, nucleic acid synthesis) and cellular
invasion (binding proteins, protein synthesis, modification, and
degradation) (Figure 5A). Intracellular transport, translocation
and presentation of variable antigen proteins (Figure 5B),
which promote erythrocyte modification (Figure 5C), have been
carefully analyzed, in particular proteins directly related to drug
resistance. All chaperonin complexes, some involved in heat
shock, oxidative stress and other counteractive responses, have
been identified (Acharya et al., 2009, 2011; Chen et al., 2010;
Roobsoong et al., 2011; Ray et al., 2012a,b, 2016; Lu et al., 2014;
Moreno-Perez et al., 2014; Anderson et al., 2015).

Although there was evidence of transcription for genes
encoding almost all P. vivax proteins identified, no correlation
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was seen between levels of mRNA transcripts and the
corresponding protein expression (Bozdech et al., 2008;
Westenberger et al., 2010; Bautista et al., 2014; Moreno-Perez
et al., 2014; Anderson et al., 2015; Parobek et al., 2016).
Integrating genomic and transcriptomic information is paving
the way for systems biology approaches. For instance, chokepoint
analysis has the potential to uncover enzymes predicted to have
only one substrate or product, thus pushing the way to new drug
target discoveries. Lists of compounds that could target each
chokepoint are being generated using bioinformatics tools from
“omics” data analysis.

Analysis of the hypnozoites proteome faces great experimental
hurdles. A list of candidate genes includes all homologs of
other dormancy genes previously discovered in other organisms
(Carlton et al., 2008a). An in vitro system for culturing liver
stages of this parasite (Mazier et al., 1984; Hollingdale et al.,
1985; Sattabongkot et al., 2006; Cui et al., 2009) and in vivo
experimental models are currently under development and will
be of importance to approach hypnozoite proteomics. Taken
together, blood proteome studies shed light on vivax malaria
pathogenesis and pave the way for future integrated multi-
omics investigations. However, such an approach has to be
interpreted in light of host-parasite interaction, where some
reported alterations might be host or parasite related and/or the
result of cumulative effects between both parties. Ex vivo specific
functional assays may provide further insights.

PLASMODIUM VIVAX GENETIC AND
TRANSCRIPTOMIC DIVERSITY,
HOST-PARASITE DYNAMICS, AND
DISEASE CONTROL

The first P. vivax genetic diversity reports were based on a few
loci. Researchers relied on the amplification of a small set of
polymorphic antigens to assess the genetic diversity of P. vivax.
In general, the circumsporozoite protein (CSP), the merozoite
surface proteins (MSP), the apical membrane antigen (AMA-
1) (Mueller et al., 2002; Cui et al., 2003; Kim et al., 2006;
Aresha et al., 2008; Moon et al., 2009; Zakeri et al., 2010),
Duffy binding protein (DBP) (Cole-Tobian and King, 2003) and
mitochondrial DNA were analyzed (Jongwutiwes et al., 2005;
Cornejo and Escalante, 2006) and brought forward the polyclonal
nature of P. vivax natural infections. Feng et al. published
the first comparative population genomics study between P.
falciparum and P. vivax, revealing shared macroscale conserved
genetic patterns, but with P. vivax populations showing a highly
polymorphic genome for which the degree of diversity depends
on the gene context. Thus, coding regions are more conserved
than intergenic ones, and central chromosomal regions more
than (sub)telomeric, indicative of a purifying selection. This
implies an ancient evolutionary history shaped by distinct
selection pressures (Feng et al., 2003; Chang et al., 2012).
Genes encoding transcription factors (type AP2) and ABC
transporters associated with multidrug resistance showed higher
dN/dS rate (Dharia et al., 2010; Parobek et al., 2016). The genetic
variability seen for P. vivax transcription factors (Hoo et al., 2016)

could indicate that malaria parasites evolve by changing and/or
expanding their transcription factor DNA binding domains in
response to drug administration and host immune challenges
(Dharia et al., 2010; Parobek et al., 2016).

Several studies have highlighted the great degree of diversity,
which is shared between P. vivax samples of different geographic
locations at the population level, strongly suggesting that recent
evolutionary selective pressures are currently acting upon some
genes at a few loci, mainly those related with drug resistance
(Mu et al., 2005; Imwong et al., 2007a; Gunawardena et al., 2010;
Neafsey et al., 2012; Lin et al., 2013). Compared to P. falciparum
natural isolates from similar geographical regions (Cheeseman
et al., 2016), results exposed a greater genetic diversity in P. vivax
natural isolates, both for SNP and microsatellites (Karunaweera
et al., 2008; Neafsey et al., 2012; Orjuela-Sanchez et al., 2013;
Taylor et al., 2013; Barry et al., 2015; Winter et al., 2015; Brazeau
et al., 2016; Friedrich et al., 2016; Hupalo et al., 2016; Pearson
et al., 2016).While microsatellite marker analysis has revealed the
genetic diversity of P. vivax infections, they may provide over- or
underestimates. This can be attributed to their unstable nature in
comparison to SNPs, especially because of the smaller number
and/or less informative use of these markers. Therefore, P.
vivax high density tiling microarrays (Dharia et al., 2010), WGC
sequencing (Bright et al., 2012) and WGS (Bright et al., 2012;
Chan et al., 2012; Neafsey et al., 2012; Hester et al., 2013; Winter
et al., 2015; Hupalo et al., 2016; Pearson et al., 2016) are being
used to find informative SNPs. Whole genome analysis of genetic
diversity between five P. vivax natural isolates (Neafsey et al.,
2012) and the Sal-1 strain (Carlton et al., 2008b) has revealed
shared gene diversity, but also significant numbers of unique
SNPs for each isolate (Hester et al., 2013; Cornejo et al., 2015;
Hupalo et al., 2016). Genomic and transcriptomic sequencing
of several patient P. vivax isolates resulted in drug resistance
phenotype identification (Bright et al., 2012; Mideo et al., 2013;
Lin et al., 2015), emergence detection, transmission rates follow-
up, as well as the identification (also through proteomics) of
rapidly evolving antigens (Boyd and Kitchen, 1937; Cornejo
et al., 2015; Winter et al., 2015; Hupalo et al., 2016; Parobek
et al., 2016; Pearson et al., 2016). Genomics data suggest that
evolutionary pressures acted upon and currently shape several
P. vivax loci associated with invasion of RBC (Figures 5A,B),
host and vector immune evasion mechanisms (Figures 5B,C)
and antifolate drug resistance, among others (Imwong et al.,
2003; Korsinczky et al., 2004; Dharia et al., 2010; Flannery et al.,
2015; Winter et al., 2015; Hupalo et al., 2016; Pearson et al.,
2016), which could support target discovery (Carlton et al., 2013;
Cornejo et al., 2015; Hupalo et al., 2016; Pearson et al., 2016).
For instance, WGS of two patient isolates from Madagascar
allowed the identification of recently arisen SNPs present in the
DBP region II (Chan et al., 2012). The detection of pvdbp gene
duplication (Menard et al., 2013; Hupalo et al., 2016; Pearson
et al., 2016) suggests that this gene is under strong positive
selection through influence of the human host, and is rapidly
evolving in response to the Duffy- allele present in most of sub-
Sharan African population, where P. vivax is believed to have
originated (Miller et al., 1976; Culleton et al., 2011; Liu et al.,
2014). Surprisingly, similar duplications at high frequency have
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been recently seen in other geographic locations where almost all
individuals are Duffy+ (Howes et al., 2011; Pearson et al., 2016).
More recently, Auburn and colleagues reported amplification
breakpoints for the multidrug resistance 1 gene (pvmdr1)
(Auburn et al., 2016b). Thus, P. vivax is considered within an
evolutionary neutral model, possibly the outcome of repeated
gene duplications (population size expansion) of the ancestral
lineage during the course of evolution, or that several sub-
populations are present (Parobek et al., 2016). Multi-species
WTS data suggests that variability in non-coding sequences
of genes but other features such as transcription factors,
upstream bidirectional promoter regions, post-transcriptional
control including epigenetic regulation, chromatin remodeling
events or ncRNAs may have a greater impact on transcription
modulation across the Plasmodium spp. (Hoo et al., 2016).

With few exceptions verified in small-scale studies (Winter
et al., 2015), P. vivax natural infections are almost always
polyclonal (Parobek et al., 2016). However, some haplotype
reconstruction studies have reported that 2–4 strains account for
the majority of P. vivax gDNA, set against a situation of several
different strains equally abundant in one patient (Chan et al.,
2012; Neafsey et al., 2012; Winter et al., 2015; Friedrich et al.,
2016; Pearson et al., 2016). For instance, deep genome sequencing

of more than 200 clinical Asian-Pacific samples confirmed the
complex genetic structure of P. vivax populations showing
variations both in the number of dominant clones in individual
infection, but also in their degree of relatedness and inbreeding
(Pearson et al., 2016). Still, this remarkable polyclonality can
have several origins: parasite infection could originate from a
single meiosis event, from multiple infections with unrelated
parasites as a consequence of several mosquito bites, or from
a combination of a relapse and a new infection event, all of
them having implications on parasite population diversity (Lin
et al., 2015). Microsatellite marker identification and WGS have
allowed the characterization of relapse infections as the result
of heterologous hypnozoite activation (Imwong et al., 2007b;
Carlton et al., 2008a; Restrepo et al., 2011; de Araujo et al., 2012;
Bright et al., 2014; Lin et al., 2015). Furthermore, hypnozoites
present hidden in the hosts function as a reservoir and a dynamic
and continuous source and flow of genetic diversity in the present
P. vivax population (White, 2011; Neafsey et al., 2012; Menard
et al., 2013; White et al., 2016).

Even though WGS allows determination of informative
SNPs, it lacks sensitivity to detect low frequency CNVs present
within a polyclonal infection context. The tailored and more
affordable P. vivax SNPs barcode project (Baniecki et al., 2015),

TABLE 2 | Plasmodium vivax omics achievements and ongoing research efforts.

Achievements Ongoing research

P. VIVAX GENOMICS

• Monkey-adapted P. vivax strains WGS

• P. vivax Sal-1 reference genome and recent publication of the new de novo

assembled P. vivax P01 reference genome

• Direct WGS of P. vivax isolates distributed worldwide for genetic diversity

characterization and sequence variation identification to understand the

current selective pressures, especially those resulting from malarial control

measures

• Comparative genome-wide studies between different Plasmodium spp.

• Monkey P. vivax strain adaptation systems to study diversity, population

dynamics, parasite multi-stage biology and host interaction

• Enhanced curation of P. vivax P01 reference genome: coding and non-coding

sequences, regulatory motifs and variants characterization

• WGS and CGA within P. vivax isolates from different high and/or low

transmission endemic areas, and from resistance emergence hot spot areas

• WGS of Plasmodium spp. closely related to P. vivax for parasite biology studies

P. VIVAX TRANSCRIPTOMICS

• Transcriptome portrayal of P. vivax IDC and sporozoites by microarray, and

recent more complete and sensitive reports by RNA-seq P. vivax IDC and WTS

of patient isolates

• The structural analysis of P. vivax transcripts, where multiple TSSs, long

5’UTRs and alternative splicing events are observed suggest multiple protein

isoforms expressed by the parasite;

• Transcript structure abundance and characterization, together with

identification of ncRNAs hint at a strong and tight mechanism of transcription

regulation control

• Expression profile analysis aids identification of groups of genes whichmay have

important roles in parasite development, invasion, host immune system evasion

and drug resistance emergence mechanisms, and their diversity across several

Plasmodium spp.

• Impact of transcript structural features on expression observed: NATs, multiple

TSSs clusters, long 5′UTRs and alternative splicing events leading to multiple

protein isoforms produced

• Studies on mechanisms of transcription regulation: chromatin remodeling,

transcriptional run-through, bidirectional and antisense specific promoters

P. VIVAX PROTEOMICS AND METABOLOMICS

• Proteomic MS datasets representing P. vivax trophozoites and schizonts to

identify stage-specific expression of parasite proteins and protein isoform

• Several serum proteome studies from clinical blood samples from infected

patients

• Identification of highly immunogenic proteins as new molecular targets aiming

for drug and vaccine design;

• Some important parasite pathways with roles in host-parasite interaction have

been identified, e.g., those related with parasite metabolism, host cell invasion,

intracellular transport, translocation and presentation of variable antigen

proteins and stress response and drug resistance

• Protein structure and function characterization, identification of post-

translational modifications and new isoforms

• Comparative proteome analysis between severe and uncomplicated vivax

malaria cases, uncomplicated vivax malaria patients before and after treatment,

and high vs. low parasitemia isolates

• Drug and vaccine design and test against molecular targets already identified

as highly immunogenic proteins

• Description and study of protein participation in parasite metabolic pathways

involved in host-parasite interactions

WGS, whole genome sequencing; WTS, whole transcriptome sequencing, RNA-seq, RNA sequencing; CGA, comparative genome analysis; IDC, intraerythrocytic developmental cycle;

UTR, untranslated region; ncRNAs, non-coding RNAs; NATs, natural antisense transcripts; MS, mass spectrometry.
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transcriptome profiling microarrays (Boopathi et al., 2016) and
other breakpoint-specific PCR approaches (Auburn and Barry,
2017) can be used as important tools to not only discriminate P.
vivax infections and their origin, but also to deliver information
of its population dynamics of transmission (Friedrich et al.,
2016). Additionally, they are helping to characterize and
discern between recrudescence, relapses (Lin et al., 2015), de
novo infections (Friedrich et al., 2016) and monitoring drug
resistance emergence (Auburn et al., 2016b; Brazeau et al., 2016).
As for P. falciparum (Cheeseman et al., 2016), this greater
genetic/expression diversity may provide P. vivax with a wide
range of alternative paths for successful host erythrocyte invasion
(Figures 5A,B) and immune system evasion (Figure 5C), thus
enhancing its capacity of adaptation and survival (Cornejo et al.,
2015). In addition, the production of an effective vivax malaria
vaccine is hampered by the existence of such huge diversity of
antigens concentrated in invasion and immune evasion related

genes (Neafsey et al., 2012; Winter et al., 2015; Hupalo et al.,
2016; Pearson et al., 2016) in combination with the absence of
allelic exclusion and clonal interferencemechanisms (Fernandez-
Becerra et al., 2005).

PLASMODIUM VIVAX OMICS OUTLOOK:
ACHIEVEMENTS, GAPS, AND FUTURE
PROSPECTS

During the last 10 years, several P. vivax sequencing projects
within the three big omics branches, genomics, transcriptomics
and proteomics, have greatly contributed with insights into
the parasite’s biology (Table 2). The lack of a P. vivax in
vitro long-term culturing system is the root of all limitations
for its study. Nevertheless, we are living in times of rapid
development, expansion and application of high-throughput and

TABLE 3 | Plasmodium vivax omics challenges and future progress in a systems biology setting.

Research challenges Future perspectives

BIOLOGY: EXPERIMENTAL ASSAYS AND MODELS FOR NEW BIOLOGICAL INSIGHTS

• P. vivax IDC in vitro long-term culturing system

• Primate, murine and other P. vivax animal models to support stage-specific

and stage-transition studies

• Studies with closely related Plasmodium spp. other than P. falciparum, in

general primate and murine, for which in vitro or in vivo culture are available:

investigation into similarities and differences on the nature of molecular

mechanisms taking place in the parasites

• Search for new alternative in vitro cell line cultures to support culture of P. vivax

IDC

• Use of new and reliable P. vivax animal models, of easy handling and availability,

for host-parasite biology studies,

• Explore Plasmodium spp. closer to P. vivax as a way to understand better its

biology, principally about liver (hypnozoites) and sexual (gametocytes) stages,

and also to test for drug efficacy and drug resistance emergence and

mechanisms

NGS: METHODOLOGY DEVELOPMENT AND VALIDATION OF NEW DATA REPORTS

• Sequencing technology that can deal better with the current field isolate

characteristics

• Monitor with precision the current P. vivax genetic diversity through a WGS

easy-to-use platform

• WTS projects to characterize transcriptomic diversity on different parasite

stages in different field isolates

• Progress on MS proteome screens on highly stage-synchronized parasite

samples

• Experimental approaches that capture the interactions between DNA, RNA

and protein through their combinations as to grasp the regulatory mechanisms

suggested to underlie the distinct P. vivax biology

• Investigate the Plasmodium-like species genome, transcriptome and

proteome sequence composition, expression profiles and functional properties

• Develop improved sequencing technology of higher sensitivity and accuracy for

low-input and heavily contaminated biological samples to sequence the parasite

genome, transcriptome or proteome

• WGS projects on P. vivax isolates as to real-time screen the genetic variation

within and between different endemic regions linked to drug resistance

emergence

• WTS projects to extend the study of transcript expression patterns, levels and

structure throughout different P. vivax stages

• Proteome studies with the aim to identify highly immunogenic proteins, their

functions, detect new protein isoforms and characterize post-translational

modifications

• Epigenomic exploration

• Extensive orthology projects on close related Plasmodium-like species and

parasite samples derived from in vitro and in vivo experimental studies

COMPUTATION: PREDICTIVE SOFTWARE DATA ANALYSIS FOR NEW HYPOTHESIS-DRIVEN QUESTIONS

• Develop better way to assembly and annotate highly repetitive and variable

regions (e.g., (sub)telomeric and centromeric) for coding and non-coding

sequences and variants, regulatory motifs and protein isoforms

• Increase comparative genome-wide studies between different Plasmodium

spp. and other experimental datasets as the way to associate and infer P.

vivax biological processes

• Real-time characterization of P. vivax populations and drug resistance hot

spots identification

• Transcript sequence and structural information: chromatin remodeling

(epigenomics), transcriptional run-through, bidirectional and antisense specific

promoters

• Identify and link protein functions into specific parasite pathways to further

characterize host-parasite interactions

• Improve the current assembly and annotation of P. vivax P01 reference genome

and transcriptome, using third NGS platforms (e.g., nanopore and PacBio) to

aid the assembly of highly repetitive and variable regions

• Integrate data to better understand processes governing parasite development,

host invasion and immune system evasion, and drug resistance mechanisms

• Use computational modeling for analysis of the genetic diversity of the dynamic

endemic P. vivax populations and software for data analysis to explore current

selective pressures and predict drug resistance emergence and the outcomes

of malarial control measures

• Transcriptomic and epigenomic studies to understand transcriptional regulation

control

• Uncover network building-blocks involved in metabolism, host cellular

invasion, intracellular transport, translocation and presentation of variable

antigen proteins and stress response

IDC, intraerythrocytic developmental cycle.
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highly sensitive technology tools that were absurdly expensive
only a few years ago. Exciting progress is being made in
single-cell (Nair et al., 2014) and single-molecule sequencing,
bringing prospects of complex problem-solving capacity that
were previously unthinkable. The development of methodologies
such as CRISPR/Cas9 system for genome editing opens new
possibilities to understand and further explore gene expression
and regulation of malaria parasites. The application of such
tools to in vitro cell or animal experimental models may
help us explore further some aspects of P. vivax biology
and the pathophysiology of disease (Table 3). Specifically, the
development, establishment and validation of in vitro cell culture
and animal experimental models (as the published Mazier
et al., 1984; Hollingdale et al., 1985; Sattabongkot et al., 2006;
Cui et al., 2009; Mikolajczak et al., 2015; Mehlotra et al.,
2017 reports) to support P. vivax growth would overcome
the current number of parasites available for projects in all
omics branches. Clearly, this would positively impact on our
understanding of several molecular mechanisms taking place in
the parasite during cell invasion, development, stage transition,
host immune system evasion and environmental stress responses
(Table 3).

The extensive and detailed omics datasets that are
continuously made available by several research groups,
under which technical and experimental progress has and
is being achieved brings forward an old problem: how to
analyze and integrate large and complex information within
and between datasets in a standard and easy-to-share platform,
accessible by all. Several initiatives, such as the comparative
databases PlasmoDB (Bahl et al., 2003), support malaria research
communities by offering computational biology training courses.

Such platforms should be continuously developed with the most
recent powerful bioinformatics tools and information combined
with suitable mathematical modeling and epidemiologic

analysis. Mainstream bioinformatics institutes around the
world are providing expert support to the Plasmodium research
community, critically needed given the extraordinary challenges
posed by the complex nature of the P. vivax genome and
population genetics. Worldwide, major efforts must be taken
by the entire community in order to establish some criteria for
dealing with data collection, analysis and annotation, so that
it can be easily accessed and fully explored in order to design
adequate interventions to ever changing conditions, focusing on
the control, elimination and prevention of malaria.
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