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Legionella pneumophila (L. pneumophila) is an opportunistic waterborne pathogen and

the causative agent for Legionnaires’ disease, which is transmitted to humans via

inhalation of contaminated water droplets. The bacterium is able to colonize a variety

of man-made water systems such as cooling towers, spas, and dental lines and is

widely distributed in multiple niches, including several species of protozoa In addition

to survival in planktonic phase, L. pneumophila is able to survive and persist within

multi-species biofilms that cover surfaces within water systems. Biofilm formation by

L. pneumophila is advantageous for the pathogen as it leads to persistence, spread,

resistance to treatments and an increase in virulence of this bacterium. Furthermore,

Legionellosis outbreaks have been associated with the presence of L. pneumophila in

biofilms, even after the extensive chemical and physical treatments. In the microbial

consortium-containing L. pneumophila among other organisms, several factors either

positively or negatively regulate the presence and persistence of L. pneumophila in this

bacterial community. Biofilm-forming L. pneumophila is of a major importance to public

health and have impact on the medical and industrial sectors. Indeed, prevention and

removal protocols of L. pneumophila as well as diagnosis and hospitalization of patients

infected with this bacteria cost governments billions of dollars. Therefore, understanding

the biological and environmental factors that contribute to persistence and physiological

adaptation in biofilms can be detrimental to eradicate and prevent the transmission of

L. pneumophila. In this review, we focus on various factors that contribute to persistence

of L. pneumophila within the biofilm consortium, the advantages that the bacteria gain

from surviving in biofilms, genes and gene regulation during biofilm formation and finally

challenges related to biofilm resistance to biocides and anti-Legionella treatments.
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INTRODUCTION

Legionella pneumophila, the causative agent of Legionellosis, was recognized as being pathogenic
to humans for the first time after an outbreak of acute pneumonia at a convention of the American
Legion in Philadelphia, USA in July 1976 (Fraser et al., 1977). Legionella can cause two clinical
syndromes in humans, Legionnaires’ disease (LD), a severe form of pneumonia, and Pontiac fever,
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a self-limited flu-like illness. Approximately 90% of LD
cases are associated with infections by L. pneumophila. The
most effective bacterial dissemination mechanism is through
the spread of contaminated aerosols occurring primarily in
condensers, cooling towers, showers, faucets, and hot tubs
(Steinert et al., 2002; Wagner et al., 2007). Despite stringent
water quality examinations, the formation of contaminated
aerosols remains a crucial problem for disease spread
(Fields et al., 2002).

Legionella pneumophila exhibit several modes of persistence in
different environmental settings and in humans. Upon invasion
of amoeba or human macrophages, L. penumophila form the
Legionella-containing vacuole (LCV), a unique compartment
with acquired components from early and late endosomes,
mitochondria and the endoplasmic reticulum (ER), thus
evading the bactericidal endocytic pathway and establishing a
replicative niche (de Felipe et al., 2005; Isberg et al., 2009).
The phagosome becomes a secure niche that supports the
replicative phase of the bacteria. Importantly, hundreds of
effector proteins synthesized by the Dot/Icm type IV secretion
system of L. pneumophila. (Losick and Isberg, 2006; Abu-
Zant et al., 2007; Price et al., 2011; Khweek et al., 2013; Abu
Khweek et al., 2016). Like other intracellular bacteria such as
Coxiella and Chlamydia, L. pneumophila alternate between a
transmissive (virulent) and replicative (non-virulent) biphasic
cycles to ensure bacterial survival in nutrient deprived or rich
environments and transfer between different niches (Newton
et al., 2010). In nutrient-rich environment, L. pneumophila
enter the replicative phase and express few virulence factors.
However, the switch to the transmissive phase is initiated in
nutrient-limiting conditions, or when the phagosome is no
longer supporting the replication phase of the bacteria. Increased
motility, resistance to stressors, egress from the infected host
and expression of several virulence factors are the hallmark
characteristics of the transmissive phase (Newton et al., 2010).
Legionella pneumophila is able to remain in the environment
as free living planktonic bacteria or form bacterial biofilms
that adhere to surfaces (Atlas, 1999; O’Toole et al., 2000;
Mampel et al., 2006; Hindré et al., 2008; Stewart et al., 2012;
Andreozzi et al., 2014). Moreover, L. pneumophila is able to
differentiate into a mature intracellular form (MIF). Even though
the MIF of L. pneumophila is inert and resembles cysts, it
is extremely infectious (Faulkner and Garduño, 2002; Berk
et al., 2008). Extracellularly, L. pneumophila enter into the
viable non-culturable (VBNC) state which contributes to the
resilience of this bacteria under different harsh environmental
settings (Steinert et al., 1997; García et al., 2007) and hinder
the detection of many Legionella species. Colonization and
persistence in natural environment is mediated by biofilm
formation (Valster et al., 2010), and survival within freshwater
amoeba and Caenorhabditis elegans (Horwitz, 1983; Isberg et al.,
2009).

Herein, we review several biological factors that contribute to
biofilm persistence, the advantages that bacteria gain by being
a member of the biofilm consortium and strategies to eradicate
L. pneumophila biofilm.

MULTISPECIES AND MONOSPECIES
L. PNEUMOPHILA BIOFILM

In freshwater environments, L. pneumophila is found as sessile
cells associated with biofilms (Declerck et al., 2009; Declerck,
2010; Stewart et al., 2012). Biofilms allow the bacteria to attach
to surfaces, or to be part of other bacterial communities. This
can be attained by forming an extracellular matrix (ECM)
that is composed largely of water, exopolysaccharides, proteins,
lipids, DNA and RNA, and inorganic compounds (Costerton
et al., 1987; Costerton, 1995; Sutherland, 2001; Shirtliff et al.,
2002). Bacteria that are forming biofilm cycle between three
developmental different phases. Stages of biofilm formation are
initiated by attachments to a substratum, followed by maturation
of the biofilm and formation of the extracellular matrix, then
detachments and dispersion of the bacteria. During these phases,
bacterial biofilms form three-dimensional structures that are
separated by water channels, which allow entry of nutrients,
oxygen, and discharge of waste products. Due to the complexity
of biofilms that develop in natural environments, the behavior
of L. pneumophila has mainly been tested in mono- or mixed
species biofilms (Mampel et al., 2006; Piao et al., 2006; Hindré
et al., 2008; Pécastaings et al., 2010; Stewart et al., 2012).
Interestingly, L. pneumophila represent a minor species in
freshwater and environmental biofilms, (Declerck et al., 2009;
Declerck, 2010), and the occurrence of L. penumophila may be
affected by other microorganisms in complex biofilms (Taylor
et al., 2009). Some bacterial species positively promote the
persistence of L. penumophila biofilm while others exhibit
inhibitory effects (Stewart et al., 2012). Intriguingly, Klebsiella
pneumoniae (K. pneumoniae), Flavobacterium sp., Empedobacter
breve, Pseudomonas putida, and Pseudomonas fluorescens are
among the bacterial species that positively contribute to the long-
term persistence and presence of L. pneumophila in biofilms
(Mampel et al., 2006; Vervaeren et al., 2006; Stewart et al.,
2012). The authors reasoned that these species synthesize
capsular and extracellular matrix materials which support the
adherence (Kives et al., 2006; Basson et al., 2008; Wu et al.,
2011), or provide the growth factors that stimulate growth of
L. penumophila (Stewart et al., 2012). Other species antagonize
the persistence of L. pneumophila within the biofilm such
Pseudomonas aeruginosa (P. aeruginosa) (Stewart et al., 2012),
Aeromonas hydrophila, Burkholderia cepacia, Acidovorax sp.,
and Sphingomonas sp. (Guerrieri et al., 2008). The inhibition
could be due to the effect of P. aeruginosa homoserine lactone
quorums sensing (QS) molecule on L. pneumophila biofilm
(Mallegol et al., 2012), or production of bacteriocin (Guerrieri
et al., 2008). Interestingly, L. pneumophila is able to persist in
biofilm formed by P. aeruginosa and K. pneumoniae suggesting
that the inhibitory effect of P. aeruginosa can be relieved
by the permissive K. pneumoniae (Stewart et al., 2012). It is
possible that K. pneumoniae provides the growth factors for
L. pneumophila and at the same time dampens the inhibitory
effect by P. aeruginosa (Stewart et al., 2012). Therefore, growth
of L. pneumophila within biofilms is not only affected by the
number and species of microorganisms present in the biofilm but
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also by the nature of interactions (commensalism or interference)
between these organisms.

In the laboratory, L. pneumophila can form biofilm under
stringent conditions in nutrient-rich Buffered Yeast Extract
medium (BYE) under different temperatures (Mampel et al.,
2006; Piao et al., 2006). The quantity, degree of adherence
and rate of biofilm formation are correlated with different
temperatures. At 25◦C, L. pneumophila form mushroom-like
biofilm that contain water channels. In contrast, L. pneumophila
form thicker biofilm that lack the water channels at 37◦C.
However, the biofilm morphology of L. pneumophila grown at
42◦C exhibits filamentous appearance withmat-likemorphology.
Furthermore, in the laboratory, we showed the ability of WT
L. pneumophila to form biofilm when grown statically at 37◦C
for seven days as opposed to the dotA mutant that lacks the type
IV secretion system (Figure 1).

Even though able to persist in multispecies biofilm, little
is known about the factors encoded by L. pneumophila that
mediates the attachment and persistence within biofilms created
by other bacteria.

BIOFILMS: A SURVIVAL NICHE IN
OLIGOTROPHIC ENVIRONMENT

Biofilm is a rich environmental niche that harbors living and dead
organisms as well as protozoa and other microflora. However,
in a multispecies biofilm, the bacteria have to compete for
the required nutrients to become an integrated member of
the microbial community. Therefore biofilm-associated bacteria
have to seek for the bacterial neighbors and the environment that
best suits their growth and survival (Watnick and Kolter, 2000).
Legionella pneumophila is exceptionally fastidious and require the
mandatory supplementation of the laboratory media with amino
acids and iron to grow (George et al., 1980; Edelstein, 1982).

Therefore, survival and growth of L. pneumophila in oligotrophic
environments is puzzling and indicates that the bacteria are able
to utilize the essential nutrient from the bacterial community
located in biofilms. Indeed, establishment of two-species and
multispecies biofilms is one strategy by which L. penumophila
overcome nutrients limitation in the environment. Therefore,
adhering to a pre-established biofilm by other bacteria instead
of attaching directly to the surface as a primary colonizer aids
in L. pneumophila survival and incorporation in the biofilm
community (Watnick and Kolter, 2000; Stewart et al., 2012).

Even though restricted to certain microbial species,
necrotrophic feeding on the products of dead bacteria and
tissues within the biofilm is likely the primary mode for
deriving the required carbon, nitrogen, and amino acid for
multiplication by L. pneumophila (Vervaeren et al., 2006; Taylor
et al., 2009). Moreover, heterotrophic bacteria support growth of
L. pneumophila on media that does not usually support growth
because it is deficient in L-cysteine and ferric pyrophosphate
(Wadowsky and Yee, 1983). Consistent with this, L. pneumophila
show satellite colonies around some aquatic bacteria including
Flavobacterium breve, Pseudomonas spp., Alcaligenes spp., and
Acinetobacter spp. Further, L. pneumophila are able to obtain
nutrients directly from algae and to grow on the extracellular
products produced by cyanobacteria under laboratory conditions
(Tison et al., 1980). Further, several algae such as Scenedesmus
spp., Chlorella spp., and Gleocystis spp., support the growth of
L. pneumophila in basal salt media (Declerck, 2010).

The second mechanism by which L. pneumophila obtain
nutrient in biofilms is through amoeba. Protozoa serve as
habitats that provide the environmental host for survival and
replication of Legionella species in different environmental
settings (Rowbotham, 1980; Newsome et al., 1998). Various
amoeba such asAcanthamoeba castellanii can use L. pneumophila
as a sole food source (Tyndall and Domingue, 1982), but also
amoeba contribute to spread of L. pneumophila and protect the

FIGURE 1 | Scanning electron microscopy (SEM) of JR32 and dotA mutant. Larger images were captured with the 1000× objective lens while smaller images were

magnified 10,000×, scale = 10µm. The figure is adapted from Abu Khweek et al. (2013).
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bacteria from various adverse effects such as antibacterial agents
(Loret and Greub, 2010). Notably, persistence and adaptation of
L. pneumophila in various amoebal hosts has been thought to
contribute to pathogenesis of the bacteria. Intriguingly, biofilm
colonization with L. pneumophila can be influenced by several
species of protozoa (Rowbotham, 1981; Murga et al., 2001).
Indeed, L. pneumophila can parasitize more than 20 species of
amoebae, three species of ciliated protozoa and one species of
slime mold (Kikuhara et al., 1994; Hägele et al., 2000). Further, it
has been shown that multiplication inside the amoeba increased
the capacity of L. pneumophila to produce polysaccharides and
therefore enhanced its capacity to establish biofilm (Bigot et al.,
2013). Further, L. pneumophila is able to grow off the debris
from dead amoeba (Temmerman et al., 2006), and outbreaks
of L. pneumophila are directly correlated with the biomass of
protozoa.Moreover, in the absence of amoeba, biofilm-associated
L. pneumophila numbers did not increase. Instead, bacteria
were only able to persist in the biofilm community and in
some cases entered the VBNC state in order to promote their
survival (Declerck, 2010). Recently, increasing evidence suggests
that metazoan such as the C. elegans could represent a natural
host for L. pneumophila (Brassinga et al., 2010; Hellinga et al.,
2015). It has been shown that L. pneumophila survive within
biofilm containing protozoan and C. elegans (Rasch et al., 2016).
Together, the ability to obtain nutrient in mixed species biofilms
as well as to parasitize amoeba and C. elegans enhances the
survival and persistence of L. pneumophila. The diversity of
organisms in the biofilm consortium provide a diverse pool of
nutrients for this fastidious organism.

FACTORS THAT MODULATE
L. PNEUMOPHILA BIOFILM FORMATION

Role of Cyclic-di-GMP
Cyclic-dimeric diguanylate (c-di-GMP) is a bacterial second
messenger that regulates several processes including bacterial
pathogenesis and biofilm formation (Tamayo et al., 2007; Abu
Khweek et al., 2010; Römling et al., 2013; Martinez-Gil and
Ramos, 2017). Regulation of biofilm formation by c-di-GMP has
been shown for several bacteria (Bobrov et al., 2011; Valentini
and Filloux, 2016; Conner et al., 2017). Synthesis of the c-di-
GMP is mediated by a GGDEF domain-containing diguanylate
cyclases (DGCs) from two GTPs molecules (Simm et al., 2004)
and degraded by an EAL-containing phosphodiesterases (PDEs)
proteins (Simm et al., 2004).

The c-di-GMP signaling play important roles in the
L. pneumophila life style (Levi et al., 2011; Allombert et al.,
2014; Pécastaings et al., 2016). Interestingly, the L. pneumophila
genome encodes for 22–24 GGDEF/EAL proteins, which vary
between strains. Furthermore, overproduction of GGDEF/EAL
proteins affect the ability of L. pneumophila to replicate within
amoeba and macrophages and contribute to virulence of
L. pneumophila (Levi et al., 2011; Allombert et al., 2014). In
L. pneumophila Lens, three GGDEF/EAL-containing proteins
have been shown to positively regulate biofilm formation
(Pécastaings et al., 2016). Deletion of these proteins decreased

biofilm formation without significant changes in the c-di-GMP
level when compared to the wild type (WT) bacteria (Pécastaings
et al., 2016). However, two GGDEF/EAL-containing proteins
negatively regulate biofilm formation and deletion of these
proteins resulted in overproduction of biofilm but surprisingly a
decrease in the level of the c-di-GMP (Pécastaings et al., 2016).
Therefore, GGDEF/EAL-containing proteins regulate biofilm
formation by L. pneumophila in different mechanisms when
compared to other bacteria.

Regulation of biofilm formation and the c-di-GMP
activity in L. pneumophila has been attributed to the Haem
Nitric oxide/Oxygen (H-NOX) binding domains family
of haemoprotein sensors (Carlson et al., 2010). The H-NOX
proteins are widespread in bacterial genomes and L. pneumophila
is the only prokaryote found to encode two H-NOX proteins.
Deletion of hnox1 resulted in a hyper-biofilm formation
phenotype without affecting growth in pneumophila in rich
media (BYE), mouse macrophages or Acanthamoeba castellanii.
Importantly, a GGDEF-containing protein is adjacent to hnox1
and has been shown to exhibit diguanylate cyclase activity
in vitro and when overexpressed, L. pneumophila results in a
hyper-biofilm phenotype. The diguanylate cyclase activity is
inhibited by the presence of the H-NOX in the NO-bound state;
suggesting the regulation of the diguanylate cyclase activity by
NO (Carlson et al., 2010). Exposure to NO resulted in increase in
the biofilm intensity instead of dispersing the adherent bacteria.
The excessive biofilm formation seems to be associated with a
decrease in the level of c-di-GMP and the c-di-GMP degrading
ability could enhance biofilm formation (Pécastaings et al., 2016).
In the aquatic environment, L. pneumophila can be exposed to
NO when it is in close contact of denitrifying bacteria. Further,
L. pneumophila is exposed to NO produced by macrophages or
protozoa. Therefore, NO sensing could regulate L. pneumophila
biofilm formation.

Role of Iron
Iron is an essential nutrient and required for growth and
replication of L. pneumophila (Reeves et al., 1981; Schaible
and Kaufmann, 2004; Radtke and O’Riordan, 2006). The
concentration of iron must be tightly controlled, as the excess
of this metal can be toxic due to production of reactive oxygen
species (ROS) (Andrews et al., 2003; Lemire et al., 2013).
Importantly, high iron concentrations (a fivefold increase in iron
pyrophosphate concentration) results in a strong inhibition of
biofilm formation (Hindré et al., 2008). Furthermore, it has been
shown that iron salts disturb biofilm formation of P. aeruginosa
(Musk et al., 2005). Recently, the effect of iron pyrophosphate
and several iron chelators on the persistence of L. pneumophila
in mixed biofilm were tested (Portier et al., 2016). Addition
of the iron chelator for ferrous iron, dipyridyl, DIP increased
the quantity of bacteria regardless of the strain (WT or mutant
in iron uptake). These data suggest a positive role for DIP
in contributing to the persistence of L. pneumophila (Portier
et al., 2016). Interestingly, DIP does not affect the bacterial
population in biofilm or persistence of free-living amoeba in
the biofilm and seems to be independent of iron acquisition
systems as mutants in iron uptake were not affected by DIP.
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The authors hypothesized that DIP contributes to the persistence
of L. pneumophila in biofilm by protecting the bacteria from
the adverse effects of iron due to a decrease in ROS production
(Portier et al., 2016).

Genes Involved in Biofilm Formation by
L. pneumophila
Biofilm formation plays a role in the colonization, survival,
dissemination and likely the pathogenesis of L. pneumophila
(Lau and Ashbolt, 2009). However, little is known about the
genetic factors and the molecular events involved in this process.
Among the genes that have been shown to be required for
biofilm formation is the putative twin-arginine translocation
pathway which is required for transport of folded proteins
across the cytoplasmic membrane. Insertional inactivation
of the tatB and tatC genes inhibited biofilm formation by
L. pneumophila (De Buck et al., 2005). Further, a strain lacking
the flagellar sigma factor FliA (σ28) was found to be impaired
for biofilm accumulation in static microtiter plates (Mampel
et al., 2006). FliA is required for expression of genes associated
with the transmissive phase of L. pneumophila, including
flagella, macrophage infection, and lysosome evasion, as well
as intracellular replication within Dictyostelium discoideum
(Heuner et al., 2002; Molofsky et al., 2005). In mouse
macrophages infection, biofilm-derived L. pneumophila down-
regulate FliA expression compared to planktonic bacteria (Abu
Khweek et al., 2013). Production of flagella is controlled by
stationary phase regulatory network, sensing nutrient availability
as well as the L. pneumophila quorum sensing (Lqs) signaling
compound LAI-1(3-hydroxypentadecane-4-one) (Schell et al.,
2016). Even though flagella has been implicated in biofilm
formation by other bacteria, it has been shown that the flagella
is not required for attachment and persistence of L. penumophila
biofilm formed by K. pneumonia (Stewart et al., 2012). This is
consistent with our observation showing the down-regulation of
the flagella during biofilm formation in mouse macrophage (Abu
Khweek et al., 2013).

The Legionella collagen-like (LcI) is an adhesin that binds
to sulfated glucosamioglycans (CAGs) of the host extracellular
matrix. This gene is widely distributed among different
L. pneumophila environmental and clinical isolates but absent
from other Legionella species that are rarely reported in patients
and poor biofilm producers; suggesting that it was acquired
by L. pneumophila through horizontal gene transfer (Duncan
et al., 2011). Consistent with that, the GC content of lpg2644 is
different from the rest of L. pneumophila genome (Duncan et al.,
2011). Further, mutation in this gene reduced biofilm formation,
cell-cell adhesion and cell-matrix interactions (Duncan et al.,
2011). This gene is differentially regulated during growth phases
and biofilm formation (Mallegol et al., 2012). The regulation is
mediated by P. aeruginosa quorum sensing (3OC12-HSL) during
late stages of biofilm formation suggesting that the regulation
may help in the dispersion of bacteria to reinitiate biofilm
formation on another surface (Mallegol et al., 2012) which
could be critical for the proliferation and dissemination of such
waterborne pathogen (Lau and Ashbolt, 2009).

Quorum Sensing
In Gram-negative bacteria, quorum sensing (QS) regulates gene
expression of various complex bacterial processes, including
virulence, sporulation, bioluminescence, competence and biofilm
formation (Zhu et al., 2002; Ng and Bassler, 2009). Importantly,
the bacteria that exhibit QS signaling are usually identified in
man-made water systems and it is now recognized that QS
systems may play a role in the regulation of environmental
biofilm production (Shrout and Nerenberg, 2012). Legionella
pneumophila employ LAI-1 (3-hydroxypentadecane-4-one) QS
autoinducer. This is the only (Legionella quorum sensing) Lqs
system that has been described to date for L. pneumophila
(Tiaden et al., 2007, 2008, 2010; Spirig et al., 2008). LAI-1
is produced and detected by the Lqs system and comprises
the autoinducer synthase LqsA, the homologous sensor kinases
LqsS and the response regulator LqsR (Tiaden et al., 2007,
2008; Spirig et al., 2008). It is not known if the Lqs system
of L. pneumophila regulates biofilm formation. However, this
system is homologous to the cqsAS QS of Vibrio cholera, which
is involved in cell-density dependent regulation of virulence and
biofilm formation (Miller et al., 2002; Zhu et al., 2002). The
P. aeruginosa quorum sensing autoinducer (3-oxo-C12-HSL)
inhibits biofilm formation of L. pneumophila (Mallegol et al.,
2012). This effect is associated with down-regulation of the lqsR
(Kimura et al., 2009). This suggests that QS could play a role in
the dispersion of L. penumophila during later stages of biofilm
development.

Legionella pneumophila Gene Expression
in Biofilms
The first transcriptome analysis of L. pneumophila biofilm
showed a substantial proportion of genes with differential gene
expression compared to planktonic bacteria (Hindré et al., 2008).
The gene expression pattern was compared with the replicative
and transmissive phases during growth of L. pneumophila in
A. castellanii (Brüggemann et al., 2006). Importantly, gene
expression profile of sessile bacteria seems to resemble the
replicative rather than the transmissive phase of L. pneumophila.
This is supported by the well expression of genes involved in
repression of the transmissive phase in sessile cells (Hindré
et al., 2008), and suggests that biofilm is a suitable niche for
L. pneumophila (Hindré et al., 2008). Among the genes that their
expressions were highly induced in the sessile form are the pvcAB
gene cluster which their expression is regulated by iron (Hindré
et al., 2008). The pvcA and pvcB genes are homologous to the
PvcA and PvcB proteins in P. aeruginosa and are required for the
production of siderophore. In L. pneumophila, the pvcA and pvcB
encode for a siderophore-like molecule, and might contribute
to uptake and sequestration of iron below the toxic level. The
second gene cluster, including ahpC2 and ahpD, encodes for
alkyl hydroperoxide reductases, displayed the highest induction
in biofilm cells (Rocha and Smith, 1999). These proteins play
a role in protection against oxidative stress (Rocha and Smith,
1999; LeBlanc et al., 2006). It is known that iron participates
in the production of reactive oxygen intermediates and that the
metabolism of iron and oxidative stress is related. Induction of
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both pvcAB and ahpC2D genes in sessile cells could thus be
related and reflect the need for protection against oxidative stress
resulting from high iron concentrations.

Further, the virulence of biofilm-associated L. pneumophila
was assessed by examining the expression of the macrophage
infectivity potentiator (mip) to transcriptionally active
L. pneumophila infected in cell culture (Andreozzi et al., 2014).
Expression of mip is important for intracellular replication
in protozoa and human macrophages (Cianciotto and Fields,
1992). mip expression is down-regulated during early stages of
infection but up-regulated in the last stages during escape from
the host cell. Therefore, mip expression is up-regulated during
the transmissive stages of L. pneumophila life cycle (Wieland
et al., 2005). Expression of mip was constant at early stages of
biofilm formation, when the bacteria did not require a new host
for growth, which is similar to the replicative phase. In contrast,
mip expression was predominately up-regulated at the end of
biofilm formation which is similar to the transmissive phase
in vivo (Andreozzi et al., 2014). The switch to the transmissive
phase observed in planktonic form could be associated with
mip up-regulation. This suggests that biofilm could protect the
replicative form of L. pneumophila.

Legionella pneumophila Biofilm
Resistance, a Challenge for Biocides
Treatments
Legionella pneumophila is detected in environmental
and artificial water systems as biofilms covering several
environmental systems such as ventilation and conditioning
systems (Lau and Ashbolt, 2009). In addition, biofilm-containing
L. penumophila can become a transient or permanent habitat for
other relevant microorganisms. Therefore, biofilm-associated
organisms can survive for days, weeks or evenmonths depending
on the substratum and the environmental factors that stimulate
biofilm formation (Blasco et al., 2008; Buse et al., 2014). To
restrict L. pneumophila growth, numerous chemical, physical
and thermal disinfection methods have been used against
L. pneumophila (Kim et al., 2002). However, these treatments
generally do not result in total elimination of the bacterium,
and after a lag period, recolonization occur as quickly as the
treatments are discontinued (Taylor et al., 2009). Biofilm-
associated L. pneumophila is extremely resistant to disinfectants
and biocides (Kim et al., 2002; Borella et al., 2005). Exposure of
biofilm-encased bacteria to biocides could lead to entry into a
VBNC status (Giao et al., 2009). Chlorine and its derivatives are
the most common biocides used in disinfection protocols and
have been shown to be appropriate in eliminating planktonic
L. pneumophila but not biofilms (Cooper and Hanlon, 2010).
Resistance of L. pneumophila to disinfection is due not only to its
capacity to survive within biofilm, but also the bacteria exhibit
the intra-amoebal life-style (Steinert et al., 1998; Hilbi et al.,
2011). Therefore, amoeba- associated L. pneumophila are more
resistant to disinfection possibly due to differences in membrane
chemistry or life cycle stages of this primitive organism (Taylor
et al., 2009; Dupuy et al., 2011). Vesicles containing intracellular
L. pneumophila released by amoeba are resistant to biocide

treatments (Berk et al., 1998). Notably, these vesicles remained
viable for few months (Bouyer et al., 2007). Understanding the
molecular mechanisms that governs the intra-amoeba related
resistance should pave the way for development of new strategies
to eradicate L. pneumophila.

Other methods have been used to limit L. pneumophila
such as applying heat which has been shown to be effective in
reducing the number of bacteria and protozoan trophozoites,
but infective against killing cysts (Storey et al., 2004; Farhat
et al., 2012). UV radiation is also effective when the bacteria
are in direct contact with the radiation (Schwartz et al., 2003).
However, higher UV intensities are required to inactivate the
protozoa (Hijnen et al., 2006). Other methods have been
proposed to control L. pneumophila growth such as controlling
the carbon source within anthropogenic water system (Pang
and Liu, 2006), or addition of phages to control bacterial or
specifically L. pneumophila growth. The phage is capable of
degrading polysaccharides and therefore destabilizing the biofilm
(Hughes et al., 1998; Lammertyn et al., 2008). In addition,
nanoparticles have been shown to be effective in reduction of
L. pneumophila biofilm volume and showed some efficacy against
Staphylococcus aureus and Staphylococcus epidermidis biofilms
(Subbiahdoss et al., 2012; Taylor et al., 2012; Raftery et al.,
2014). Several natural compounds (biosurfactants, antimicrobial
peptides, protein and essential oil) have been shown to exhibit
anti-Legionella properties (Berjeaud et al., 2016). Collectively, it
is necessary to control L. pneumophila growth and their natural
hosts to optimize eradication of the bacteria.

CONCLUSION

Several chemical and physical parameters can influence the
behavior of L. pneumophila in biofilms, including the surface,
the temperature, carbon and metal concentrations, and the

FIGURE 2 | Factors that affect L. pneumophila biofilm formation. Association

of L. pneumophila in biofilm is affected by presence of other bacteria (mixed

colors), adhesin (green) presence of amoeba (Yellow), flagella (black), iron

(magenta), quorums sensing (orange), and the level of C-di-GMP which is

affected by a GGDEF and EAL-containing proteins.
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presence of biocides (Wright et al., 1991; Bezanson et al.,
1992; Rogers et al., 1994; Donlan et al., 2005; van der Kooij
et al., 2005; Liu et al., 2006; Mampel et al., 2006; Pang and
Liu, 2006; Piao et al., 2006; Lehtola et al., 2007; Türetgen and
Cotuk, 2007; Hindré et al., 2008). Biological factors such as
being a member of mixed species biofilm or parasitizing free-
living amoeba or nematodes influence biofilm formation by
L. pneumophila (Figure 2). Biofilm- associated L. pneumophila
is resistant to biocides and Legionellosis outbreaks have been
attributed to biofilms. Therefore, it is essential to design new
remedies for eradication of L. pneumophila biofilm in different
environmental settings. Treatment studies should be performed
when the bacterium is in its natural host to determine how
the bacteria are protected inside the amoeba and if the passage
through the natural hosts modify the resistance. Thus, preventing
biofilm formation appears as one strategy to reduce water system
contamination.
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