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Vector-borne diseases, including arboviruses, pose a serious threat to public health

worldwide. Arboviruses of the flavivirus genus, such as Zika virus (ZIKV), dengue virus,

yellow fever virus (YFV), and West Nile virus (WNV), are transmitted to humans from

insect vectors and can cause serious disease. In 2017, over 2,000 reported cases of

WNV virus infection occurred in the United States, with two-thirds of cases classified

as neuroinvasive. WNV transmission cycles through two different animal populations:

birds and mosquitoes. Mammals, particularly humans and horses, can become infected

through mosquito bites and represent dead-end hosts of WNV infection. Because WNV

can infect diverse species, research on this arbovirus has investigated the host response

in mosquitoes, birds, humans, and horses. With the growing geographical range of

the WNV mosquito vector and increased human exposure, improved surveillance and

treatment of the infection will enhance public health in areas where WNV is endemic.

In this review, we survey the bionomics of mosquito species involved in Nearctic WNV

transmission. Subsequently, we describe the known immune response pathways that

counterWNV infection in insects, birds, andmammals, as well as themechanisms known

to curb viral infection. Moreover, we discuss the bacteriumWolbachia and its involvement

in reducing flavivirus titer in insects. Finally, we highlight the similarities of the known

immune pathways and identify potential targets for future studies aimed at improving

antiviral therapeutic and vaccination design.
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INTRODUCTION

West Nile virus (WNV) belongs to the flavivirus genus, which also includes dengue virus (DENV),
yellow fever virus (YFV), and Zika virus (ZIKV). WNV is endemic to the United States (U.S.)
and Canada, Africa, Europe, the Middle East, and West Asia (WHO, 2011).WNV has a single-
stranded positive-sense RNA genome encoding approximately 11,000 nucleotides. It is translated
as a polyprotein and processed into 3 structural and 7 nonstructural viral proteins (reviewed in
Brinton, 2013). The virus amplifies, or replicates to high titer (Figures 1A,B), within the bird
population, making them likely to transmit the infection to mosquitoes (Figure 1C), primarily of
the Culex genus. Mosquitoes can then reinfect the bird population, further perpetuating enzootic
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infection (Figure 1E), or can bridge the infection to mammals,
most commonly humans and horses (Figure 1F). It is at
this interface that public health becomes a concern. Human
symptoms can be mild, presenting with headache, weakness, or
fever, or more severe, presenting with meningitis or encephalitis
(Petersen et al., 2013). In this review, we discuss mosquito
populations in North America with particular attention to
species that bridge WNV infection to humans, and then
survey the innate immune response pathways of the animals
commonly infected with WNV: mosquitoes, birds, horses, and
humans. While the adaptive immune response is important
for mammalian survival to WNV, this review focuses on
innate pathways and rapid immune activation during WNV
infection. We review possible avenues for therapeutic design,
including antibodies for passive immunity and the endosymbiont
Wolbachia to reduce infection in insects. Lastly, we identify
new areas for investigation, especially those focused on vaccine
development and disease therapeutics.

CULEX MOSQUITOES AS VECTORS OF
INFECTION

Mosquitoes in the culicine family carry WNV, and each species
has a preferred geographical tropism, blood meal host, and
daily and seasonal feeding pattern. Culex quinquefasciatus is
located between the latitudes 36◦N and 36◦S (Barr, 1957), and
in the U.S. from coast to coast (Darsie and Ward, 2005).
Cx. quinquefasciatus has been observed as far north as 39◦N,
giving it some geographical overlap with Cx. pipiens, which lives
above 36◦N (Barr, 1957). Cx. pipiens ranges north into British
Columbia and through Maine. Cx. tarsalis can be found in most
of the U.S., but is not usually found in the easternmost states,
likely due to competition with Cx. salinarius, which prefers
warmer, coastal temperatures (Darsie and Ward, 2005). Finally,
Cx. restuans is found in more urban areas, as the larvae are better
able to tolerate pollution than other mosquito species (Johnson
et al., 2015). Culex population genetics, mating patterns, and
host selection, with emphasis on data collected in California,
has been reviewed by Reisen (2012), which concludes that
urbanization will favor Cx. pipiens and hinder Cx. tarsalis. While
not discussed in Reisen (2012), Cx. restuans is also likely to
thrive in metropolitan areas, perhaps making Cx. pipiens and
Cx. restuans of greatest importance for the study of vector-borne
disease.

Although research on Culex mosquitoes in North America
has been ongoing for over 70 years, the arrival of WNV to
the U.S. spurred deeper research into the species-specific and
region-specific differences between Culex mosquitoes that allow
them to be enzootic vectors (Figure 1E) and bridges to human
infection (Figure 1F). Culex species feed on avian hosts, either
as a primary source of blood meal or more opportunistically
(Molaei et al., 2006; Reisen, 2012). A variety of studies have
investigated the competence of Culex mosquito populations in
specific geographic locations to transmit WNV to mammals.
In a study completed in Connecticut, researchers found that
Cx. restuans and Cx. pipiens tend to feed on birds, determined

by the presence of bird blood meal, making these important
species for enzootic infection. Moreover, Cx. salinarius is most
likely to feed on both vertebrates and birds, making it an
important bridge to humans in this region (Molaei et al., 2006).
In another study in the northeasternU.S., researchers determined
that vector competence can vary over time and is dependent
on environmental factors, such as temperature, and genetic
factors, such as ancestry. Furthermore, the authors conclude that
Cx. restuans are more likely to transmit WNV than Cx. pipiens
(Kilpatrick et al., 2010).

The Cx. quinquefasciatus mosquitoes are the primary species
in the southern U.S. and Mexico. Cx. quinquefasciatus in Cancún
and Chetumal often feed on humans, but rarely on birds, so
this species is not a likely bridge between bird and human
WNV infection (Janssen et al., 2015). However, in East Baton
Rouge Parish, Louisiana, Cx. quinquefasciatus frequently feed on
avian hosts, as well as human and other mammalian sources of
blood meal, suggesting that Cx. quinquefasicatus is a vector for
human transmission of WNV in southern Louisiana (Mackay
et al., 2010). In Bernalillo County, New Mexico, researchers
determined that Cx. quinquefasciatus mosquitoes are likely the
primary vectors for enzootic infection in birds, but Cx. tarsalis
are more likely the bridge to infect humans, as these mosquitoes
feed on both mammals and birds throughout the feeding season
(Lujan et al., 2014).

Laboratory studies have further investigated the species-
specific differences between Culex mosquitoes when infected
with WNV. Cx. tarsalis infected with WNV have decreased
fecundity and increased feeding rates, but no change in survival
(Styer et al., 2007). Conversely, Cx. pipiens show no difference
in survival, fecundity, or feeding rates when infected with
WNV (Ciota et al., 2011). These findings complicate the ability
to predict WNV infection rates in specific mosquitoes. Ciota
et al. predicts that susceptible Cx. pipiens mosquitoes will be
maintained in a community, as there is no cost for infection, but
there is a cost for resistance. The results in Styer et al. suggest that
in Cx. tarsalis the cost for infection, namely decreased fecundity,
may be overcome by an increase in feeding rate. This behavioral
compensation is supported by the finding that Cx. tarsalis
have a higher estimated rate of transmission than Cx. pipiens
(Turell et al., 2001, 2002). The same research group determined
that Cx. restuans and Cx. salinarius are both efficient vectors
of WNV infection, while Cx. quinquefasciatus is moderately
efficient (Sardelis et al., 2001). Additionally of note, Cx. pipiens
can perpetuate WNV infection by vertical transmission (Dohm
et al., 2002); consequently multiple generations of mosquitoes are
infective (Figure 1D).

Alarmingly, the geographic range of Culex mosquitoes is
expanding. Models of Cx. pipiens and Cx. tarsalis reveal that
climate change is likely to contribute to the expansion of
the mosquito population in Canada and extend the WNV
transmission season by the year 2050 (Hongoh et al., 2012;
Chen et al., 2013). Additionally, Cx. quinquefasciatus season
is predicted to increase in length by a few weeks at both the
beginning and end of the summer in the U.S. (Morin and Comrie,
2013). Taken together, these models conclude that the geographic
range of mosquitoes, and consequently WNV infections, will
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FIGURE 1 | Transmission cycle of West Nile virus through its animal hosts. (A,B) Birds become infected with WNV and viral titer increases, (C,D) birds transmit the

infection to mosquitoes, (E) which transmit the infection to birds, causing enzootic infection, or (F) bridge the infection to humans and horses, the common dead-end

hosts.

increase. A summary of the effects of climate change on several
insect-borne infections is provided in Andersen and Davis
(2017).

THE MOSQUITO IMMUNE RESPONSE TO
WNV

Mosquitoes utilize an innate immune response to WNV to
prevent mortality from infection. The RNA interference (RNAi)
pathway is conserved across diverse phyla and provides host
protection against virus infection, including arboviruses (Olson
and Blair, 2015). Dicer-2, the viral nucleic acid sensor of
the RNAi pathway, is utilized in the response to WNV
infection in Cx. quinquefasciatus cells, and orally-infected
Cx. quinquefasciatus mosquitoes respond to WNV (Kunjin
strain) challenge via the RNAi pathway (Paradkar et al., 2014).
In fact, WNV (Kunjin strain) has been shown to antagonize the
host RNAi response in Cx. quinquefasciatus by generating viral
noncoding sfRNA (subgenomic flavivirus RNA) that interacts
with Dicer and Argonaute 2 (Moon et al., 2015). sfRNA is
viral genomic RNA that resists degradation by the host cell by
forming pseudoknot structures (Jones et al., 2012; Chapman
et al., 2014).The RNAi pathway even drives WNV population
diversity in both mosquitoes and Drosophila melanogaster, as
the RNAi pathway selects for the more diverse virus variant
(Brackney et al., 2009, 2015). Like mosquitoes, D. melanogaster
utilize the RNAi pathway for resistance to WNV infection,

determined by the detection of siRNA (small interfering RNA)
(Chotkowski et al., 2008), validating the fruit fly as a possible
model organism to study mosquito immunity.

Mosquitoes also utilize the JAK/STAT pathway in the immune
response to WNV. Transcriptional profiling reveals that Aedes
aegypti mosquitoes utilize this pathway in response to WNV,
DENV, and YFV (Colpitts et al., 2011). Mechanistically, in
Culex cells the immune response to WNV utilizes a secreted
molecule called Vago that, like interferon in mammals, is
hypothesized to act as a second messenger to activate the
JAK/STAT pathway (Paradkar et al., 2012). Finally, apoptosis, a
conserved immediate immune response, occurs in the salivary
glands and midgut of Cx. quinquefasciatus mosquitoes to
control viral load (Vaidyanathan and Scott, 2006; Girard et al.,
2007).

Lastly, of note, the endosymbiont Wolbachia affects the
mosquito host response to WNV. Wolbachia is a bacterium
originally identified in Cx. pipiens (Hertig and Wolbach, 1924),
reviewed in Johnson (2015). It is estimated that 40% of all
arthropod species (Zug and Hammerstein, 2012) and 7% of
Cx. pipiens mosquitoes in California (Rasgon and Scott, 2004)
are infected withWolbachia. There are a few strains ofWolbachia
used in laboratory experiments, discussed inWoolfit et al. (2013):
wMel was identified in D. melanogaster and is benign (Teixeira
et al., 2008), wMelPop was identified in D. melanogaster and has
a pathogenic effect (Min and Benzer, 1997), and wMelPop-CLA
is a strain ofwMelPop adapted forAe. aegypti (McMeniman et al.,
2008). Inaugural experiments inD.melanogaster determined that
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Wolbachia infection increases host resistance to the Drosophila
C virus, Nora virus, Flock House virus, and WNV (Teixeira
et al., 2008; Glaser and Meola, 2010). Subsequently, others
determined that the same effect occurs in mosquitoes: The
presence of Wolbachia (wMel and wMelPop-CLA strains) in
Ae. aegypti mosquitoes is correlated with a reduction in DENV
titer (Walker et al., 2011) and WNV titer (Hussain et al.,
2013). One study determined that the amount of secreted WNV
decreases significantly in Aedes cells that are also infected with
Wolbachia, indicating restriction of the virus. Furthermore, it
determined that the Wolbachia strain wMelPop, but not wMel,
has an inhibitory effect onWNV infection in vivo (Hussain et al.,
2013). Taken together, the strain of Wolbachia is important for
inhibition of WNV in Aedesmosquitoes.

Perhaps of greater biological importance for WNV is the
effect of Wolbachia on Culex mosquitoes. In a study using
Cx. quinquefasciatus, researchers concluded that Wolbachia
increases host resistance to WNV infection (Glaser and Meola,
2010). However, this is in contrast to another study that suggests
that the presence of Wolbachia (wAlbB) can increase WNV titer
in Cx. tarsalis (Dodson et al., 2014). wAlbB is a strain originally
isolated from Ae. albopictus (Zhou et al., 1998).

Because of the controversial results, one study specifically
compared the effects ofWolbachia strain wAlbB in Ae. aegypti on
DENV andWNV (Kunjin strain). The study concluded that both
somatic infection and stable transinfection of Wolbachia lead
to inhibition of DENV and WNV replication and transmission
(Joubert and O’Neill, 2017). Some researchers even suggest that
introducing Wolbachia into the wild mosquito population will
reduce DENV infection in humans (Schmidt et al., 2017), and
modeling predicts that WNV could be eradicated subsequent to
the introduction of Wolbachia in the ecosystem (Farkas et al.,
2017).

Because Wolbachia is a bacterium, it would follow that it is
priming an immune response in mosquitoes. However, this does
not seem to be the case during DENV infection (Rancès et al.,
2012). Rainey et al. describe hypotheses for the mechanism by
which Wolbachia reduces viral titer (Rainey et al., 2014). One
possible mechanism of antiviral action could be competition
between Wolbachia and a virus for cellular resources. This
is supported by Moreira et al. (2009) which determined that
Wolbachia and DENV are not found in the same cells. Another
putative mechanism is modulation of the autophagy pathway.
DENV utilizes the autophagy pathway for replication (Lee
et al., 2008), however, Wolbachia (wAlbB) has been shown to
manipulate this pathway for its own survival (Voronin et al.,
2012). This mechanismmay not be relevant for all flaviviruses, as
WNV does not utilize autophagy for replication in mammalian
cells (Vandergaast and Fredericksen, 2012). More work will need
to be completed in the insect model to determine the role of
autophagy in WNV pathogenesis.

THE BIRD IMMUNE RESPONSE TO WNV

Birds are an important reservoir of WNV, as the virus replicates
to high titers in several bird species (Figure 1B; Komar et al.,

2003). Additionally, the migration of bird populations aids
in the distribution of WNV beyond the range of mosquitoes
(Reed et al., 2003; Owen et al., 2006). Similarly to human and
horse immunity, birds utilize the 2′-5′-oligoadenylate synthase
(OAS) pathway in the immune response to WNV. Briefly, OAS
proteins detect double-stranded RNA from viruses and undergo
a conformational change to synthesize 2′-5′-oligoadenylates.
These second messengers bind inactive RNase L, which then
dimerizes to become active and cleave viral RNA. The OAS
response is often utilized during flavivirus and alphavirus
infections, likely because these positive-sense RNA viruses
develop double-stranded RNA as replication intermediates in
higher concentrations, as compared to a negative-sense RNA
virus (Silverman, 2007). This response pathway ultimately
inhibits the virus and induces apoptosis (Castelli et al., 1998;
Tag-El-Din-Hassan et al., 2012).

While antibodies are a hallmark of adaptive immunity,
passive immunity is a form of rapid immune activation, similar
to innate immunity. Several bird species develop neutralizing
antibodies to WNV, with long-lasting protection over multiple
WNV seasons, including the house sparrow (Passer domesticus)
(Nemeth et al., 2009) and raptor species (Nemeth et al., 2008).
Importantly, young chicks can receive maternally-inherited
passive immunity for rapid protection from virus infection.
Maternally-inherited antibodies to WNV have been measured
in flamingo chicks (Phoenicopterus chilensis and Phoenicopterus
ruber ruber) (Baitchman et al., 2007), Eastern screech owls
(Megascops asio) (Hahn et al., 2006), and rock pigeons (Columba
livia; Gibbs et al., 2005), indicating that this is an effective strategy
for protecting chicks.

Additionally, there is some cross-protection in birds to
multiple flavivirus types. House finches that are first challenged
with St. Louis encephalitis virus (SLEV) first and then WNV
have an antibody response to WNV. Interestingly, finches first
challenged withWNV and then SLEV have an elevation inWNV
antibody titers, but no increase in SLEV antibody titers during the
second infection (Fang and Reisen, 2006). This information could
be useful in vaccine design to protect birds against flavivirus
infection. Perhaps antibodies to WNV could confer resistance
to multiple flaviviruses, theorizing a universal flavivirus vaccine.
Some researchers did vaccinate birds with the goal of saving
rare species. One study used a DNA vaccine to protect captive
California condors (Gymnogyps californianus) during the initial
spread ofWNV in the U.S. The study determined that the vaccine
is safe for California condors, stimulates protective antibodies,
and protects against naturally circulating WNV (Chang et al.,
2007).

THE HORSE IMMUNE RESPONSE TO WNV

Horses are also susceptible to WNV infection (Figure 1F), and
since its entry to the U.S. in 1999, WNV has caused 27,726
confirmed equine cases (data through 2016; USDA APHIS,
2017). In a WNV outbreak in 2002, a survey determined
that 22% of infected horses died from infection (Schuler
et al., 2004). Like humans, horses have a robust immune
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response to WNV that utilizes both the innate and adaptive
responses.

In the early immune response, horses utilize an interferon-
mediated (IFN) response. In one study that used WNV (Kunjin
subtype) authors found increased levels of type I and type II
interferon in blood leukocytes, lymph nodes, and spleen. They
also noted increases in IFN-α, CXCL10, TLR3, ISG15, and IRF-
7 in the brain, but no neuroinvasion of the virus (Bielefeldt-
Ohmann et al., 2017). In a project that investigated global gene
expression of the central nervous system (CNS) of horses by
sequencing the transcriptome of the brain and spinal cord,
researchers identified gene ontology groups utilized in the WNV
immune response. These include IL-15, IL-22, MAPK, and
JAK/STAT signaling, as well as apoptosis pathways and B cell
and T cell receptor expression (Bourgeois et al., 2011). These
pathways also exist in humans, indicating similarities between the
human and horse immune responses to WNV.

Horses also have an OAS1 response to WNV that is inducible
by interferon, and variation in the horse OAS1 gene has been
associated with changes in WNV susceptibility (Rios et al.,
2007, 2010). Furthermore, like birds, horses also mount an
immune response to WNV using antibodies (Bielefeldt-Ohmann
et al., 2017). Pony foals have been shown to receive maternally-
inherited antibodies as a means of passive immunity (Wilkins
et al., 2006). This strategy utilizes antibodies to rapidly activate
the immune response to protect foals from infection.

THE HUMAN IMMUNE RESPONSE TO WNV

Because of the negative impact of WNV on the human
population throughout the U.S., many researchers have
characterized the human immune response to WNV, reviewed
by Suthar et al. (2013). Briefly, the viral RNA sensors RIG-I
and MDA5 detect WNV intracellularly, activating the adaptor
protein MAVS, leading to IRF-3 activation for interferon
induction and downstream induction of interferon-stimulated
genes (ISGs) (Fredericksen et al., 2004, 2008; Fredericksen and
Gale, 2006). The cytokines IFN-α and IFN-β are important
for controlling WNV tropism by inducing an antiviral state
(Samuel and Diamond, 2005). Priming an IFN response with the
unrelated virus Invertebrate Iridescent virus 6 actually reduces
WNV (Kunjin strain) titer in vitro (Ahlers et al., 2016). The
downstream ISGs include the IFIT (interferon-induced protein
with tetratricopeptide repeats) genes and viperin, which inhibit
viral infection and replication (Jiang et al., 2010; Szretter et al.,
2011; Gorman et al., 2016). Notably, the nonstructural protein
NS5 of WNV inhibits the interferon response by preventing
the expression of IFN-α receptor 1 on the surface of host cells
(Lubick et al., 2015). The virus can also evade host restriction
by IFIT proteins via 2’-O methylation of WNV (Daffis et al.,
2010; Szretter et al., 2012). This strategy of antagonizing the IFN
response is common to flaviviruses. ZIKV and DENV NS5 target
human STAT2 for degradation (Morrison et al., 2013; Grant
et al., 2016) by different mechanisms. YFV binds to STAT2 after
host cells are stimulated with IFN to prevent it from binding to
promoter elements (Laurent-Rolle et al., 2014).

Apoptosis is another innate immune response in mammals
that restricts WNV replication, and the mechanisms of apoptosis
induction have been studied in murine models. In one, mouse
embryonic fibroblasts utilize CHOP (cyclic AMP response
element-binding transcription factor homologous protein) to
induce apoptosis and reduce WNV titer (Medigeshi et al.,
2007). However, while apoptosis can be an effective method
for eliminating virus from a host, it has a damaging effect on
neurons. Although caspase 3 is activated during WNV infection,
possibly in an attempt at an immune response, caspase 3
knockout mice have higher survival during WNV infection and
less neuronal death than their wild-type counterparts (Samuel
et al., 2007). Moreover, inhibition of caspase 8 during WNV
infection reduces CNS tissue injury (Clarke et al., 2014). These
findings suggest that the net beneficial or detrimental outcome of
apoptosis as an immune response could be dependent on the type
of tissue and the specific pro-apoptotic pathway activated.

While the interferon response is critical for restricting WNV,
the human immune response to WNV also utilizes the OAS
and RNase L pathway (Hornung et al., 2014). Indeed, a
single nucleotide polymorphism in the OAS1b gene, namely
rs34137742, that contains a C to T substitution in the second
intron of the gene, is a risk factor for human West Nile
encephalitis and paralysis from WNV infection (Bigham et al.,
2011).OAS1 has been demonstrated to undergo positive selection
in Old World primates (Fish and Boissinot, 2016), indicating
a historic interaction between flaviviruses like WNV and
host immunity (Daugherty and Malik, 2012). This pathway is
conserved in birds and horses, as discussed in earlier sections.

Passive immunity is also useful for rapid host protection to
WNV. B cell and antibody-deficient (µMT) mice and B cell
activating factor receptor (BAFFR)-deficient mice are susceptible
to infection, but, if treated with immune sera from a wild-
type mouse with antibodies to WNV, can be protected from
infection (Diamond et al., 2003; Giordano et al., 2017). Strikingly,
the BAFFR-deficient mice can develop sustained protective
immunity after treatment with immune sera (Giordano et al.,
2017). Together, this indicates that passive immunity could be
utilized as a therapeutic option for human infection to induce
a robust immune response. To the best of our knowledge, no
studies have determined if antibodies to WNV are maternally-
inherited in humans.

In summary, the animal hosts of WNV have both shared and
divergent immune response pathways (Table 1).While mammals
do possess an RNAi pathway like insects, the IFN immune
response takes precedence as the primary innate immune
response (Benitez et al., 2015). Both insects and mammals utilize
apoptosis as a rapid response to virus infection. Birds, horses, and
humans all utilize an OAS response and passive immunity, which
are both activated rapidly during infection and are effective at
restricting WNV.

THE FUTURE OF WNV RESEARCH

Presently, no approved vaccine or therapeutic exists for human
use to prevent or treat WNV infection. There are, however,
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TABLE 1 | Summary of the host responses of the animal hosts of West Nile virus.

Mosquito Bird Horse Human

RNAi response Yes Unknown Unknown Not utilized

Interferon-mediated

response

Possibly, using

Vago

Unknown Yes Yes

Apoptosis Yes Unknown Yes Yes

OAS response Absent Yes Yes Yes

Passive immunity Absent Yes Yes Yes

Various classes of conserved host responses are noted if they are utilized in the response

to WNV (yes), present in the host, but not utilized in the response to WNV (not utilized), or

not present/undiscovered in the host (absent).

four approved horse vaccines in use in the U.S., which have
greatly aided in the reduction of equine cases. Veterinary options
include two inactivated whole virus vaccines, a non-replicating
live recombinant canary pox vector vaccine, and an inactivated
flavivirus chimera vaccine (Ishikawa et al., 2014; Balasuriya et al.,
2015). A number of human vaccines have been proposed, with
some in clinical trials.

One promising vaccine is ChimeriVax-WN02, which is a live,
attenuated vaccine created by inserting the genes for the pre-
membrane (prM) and envelope (E) proteins from WNV into
the yellow fever 17D clone (Arroyo et al., 2004). The vaccine
completed a successful phase I clinical trial and two phase II
clinical trials (Monath et al., 2006; Biedenbender et al., 2011;
Dayan et al., 2012). Another chimeric vaccine that passed a
phase I trial, rWN/DEN4130, also utilizes prM and E from
WNV but uses the live attenuated vaccine candidate rDEN4
130 as a vector (Durbin et al., 2013). Another strategy utilizes
a DNA vaccine with the prM and E proteins of WNV, either
with the CMV promoter (Martin et al., 2007) or a modified
CMV promoter (CMV/R) (Ledgerwood et al., 2011). Both

versions of this vaccine completed successful phase I clinical
trials.

Despite these successful early clinical trials, no WNV vaccine
has moved into phase III trials. Some challenges for a phase III
trial for a WNV vaccine are discussed in Ishikawa et al. (2014).
One notable impediment is the low and sporadic incidence
of WNV activity, which would make it difficult to establish
vaccine efficacy. Because of the logistical challenges of developing
and licensing a vaccine for WNV, perhaps a more feasible
avenue for prevention is the introduction of Wolbachia into
the mosquito population. As discussed in an earlier section,
Wolbachia reduces flavivirus titer in mosquitoes, and models
predict that WNV eradication is possible with the introduction
ofWolbachia (Farkas et al., 2017). Certainly, great caution should
be taken to determine if the introduction of Wolbachia into
the Culex population would have any detrimental effects on the
greater ecosystem.
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