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The purpose of this prospective observational study was to evaluate the richness

and diversity of bacteria in samples from diabetic foot infections using a culturomics

approach. Bacterial culture findings from wound samples were analyzed together with

clinical characteristics and treatment outcomes. We included 43 patients admitted to

a French referral center with a moderate to severe diabetic foot infection. The 30,000

colonies identified yielded 53 different bacterial species. The global α-Shannon diversity

was 3.34 and the bacterial richness per patient was 4 ± 2. Of all the identified

bacterial species, 19 (35.8%) had never been previously cultured or identified by

molecular methods from diabetic foot ulcers. Most of the samples were polymicrobial

(N = 38; 88.3%). Of all the isolated species, the most prevalent were Staphylococcus

aureus (N = 28; 52.8%), Enterococcus faecalis (N = 24; 45.2%), Enterobacter cloacae

(N = 12; 22.6%), Staphylococcus lugdunensis (N = 10; 18.7%), Staphylococcus

epidermidis (N = 6; 11.3%), Proteus mirabilis (N = 6; 11.3%), and Finegoldia magna

(N = 5; 9.4%). The only factor associated with wound improvement after a 1-month

follow-up was the presence of E. faecalis (p = 0.012) when compared with patients

without wound improvement. This study confirms the complementary role of culturomics

in the exploration of complex microbiota. Further studies on a larger scale are needed to

fully understand the clinical importance of the microbiota of diabetic foot infections.
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INTRODUCTION

Diabetes mellitus is considered to be one of the most widespread chronic diseases, with almost
10% of global adult population being diabetic or at risk of developing diabetes (World Health
Organization, 2016). Nearly 15–20% of diabetic patients will suffer from a diabetic foot ulcer
(DFU) during their lifetime (Singh et al., 2005). This morbidity is due to several factors
combining poor glycaemia control, a peripheral neuropathy, peripheral vascular disease, poor
hygiene habits, and trauma or micro-lesions of the foot (Lipsky et al., 2012). Osteomyelitis
is a frequent complication of diabetic foot infections (DFI) and is related to more than 20%
of moderate infections and 50–60% of severe infections (Lipsky et al., 2016). DFI is also a
well-recognized risk factor for major amputation in diabetic patients (Lavery et al., 2006).
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In contrast to DFU, DFI is defined by the presence of
an inflammatory response and tissue injury that can run
the clinical spectrum from superficial cellulitis to chronic
osteomyelitis, being a consequence of interaction between the
host and multiplying bacteria (Williams et al., 2004). Due to
the confounding effect of neuropathy and ischemia on the
local and systemic inflammatory response, diagnosing DFI
in diabetic individuals is often difficult. As microorganisms
are always present on skin wounds, DFUs have usually
a polymicrobial nature, making the accuracy of bacterial
identification challenging (Jneid et al., 2017). Recent studies on
the microbiota of DFI suggested that molecular techniques, such
as 16S rRNA PCR amplification, identify a greater diversity of
bacteria and reveal more fastidious anaerobes andGram-negative
species than standard culture methods. However, molecular
tools for bacterial identification are hampered by several biases
(Lagier et al., 2015). Remarkably, molecular studies overlook
minority species and cannot distinguish between living and dead
bacteria. Moreover, they do not enable an assessment of antibiotic
susceptibility.

A study under optimized anaerobic conditions reported that a
wide range of anaerobes were cultured from DFIs (Claros et al.,
2013). Culturomics, which has recently been developed in our
laboratory, consists of the use of large-scale culture conditions
with colony identification by matrix-assisted laser desorption
ionization time-of-flight mass spectrometry (MALDI-TOF) or
16S rRNA PCR, and has revealed the potential to dramatically
enlarge the spectra of bacteria identified by culture methods
(Lagier et al., 2015).

Here, we describe the first systematic analysis of the
microbiota of samples (N = 43) from patients with DFI using
culturomics, in relation to clinical factors that may influence
this microbiota. We report the bacterial composition, diversity
and richness of the wound samples from patients with DFI and
examine the clinical factors and treatment outcomes associated
with DFI microbiota.

MATERIALS AND METHODS

Study Design
This study was approved by the CHU Nimes institutional
review board and carried out in accordance with the Helsinki
Declaration, as revised in 2000. All patients gave written
informed consent for their participation in the study. Between
October 1, 2013 and December 31, 2013, all diabetic patients
managed in the two diabetology departments of the Nîmes
University Hospital who were suspected to have a new or
aggravating episode of DFI, were included prospectively and
consecutively in the study. The following criteria were used:
over the age of 18, clinical signs of infection, and absence of
osteomyelitis. All wounds were assessed for the presence and
severity of infection (grade 2–4) by a trained diabetologist using
the PEDIS (Perfusion, Extent, Depth, Infection, and Sensation)
classification system (Lipsky et al., 2012). All patients had a
systematic follow-up visit 1 month later. The following clinical
data were recorded at the time of sampling by clinicians:
demographic data, diagnosis at admission, PEDIS grade of

wound severity, topography, number, ulcer size (including
surface area and depth of the wound), diabetes type, duration
of diabetes, HbA1C value, previous history of DFU, underlying
diseases and their severity according to the Charlson score,
and antibiotic therapy in the 14 previous days. When patients
had several wounds, the sample was taken from the most
severe wound. DFI management was performed according to
international guidelines (Lipsky et al., 2012), independently of
our study results. At the follow-up visit, the trained diabetologist
noted the evolution of the most severe wound (PEDIS grade, size,
and depth) and the antibiotics used.

Samples
After wound debridement, samples for bacterial culture were
obtained by scraping the wound base, collecting debris, and
swabbing the wound base (the swab was rotated over a 1 cm2

area of the viable non-necrotic wound tissue). The samples were
immediately placed into a transport medium (Eswabr, Becton
Dickinson, New Jersey, USA). All samples were sent within an
hour to the Department of Microbiology. They were then frozen
at−80◦C and were then sent to the Unité de RechercheMicrobes
Evolution Phylogenie et Infections (MEPHI) at Marseille to be
cultured and analyzed. Transport tubes were degasified over the
previous 3 days by incubating them with anaerobic generators
(Anaerogen Thermo Scientific, MA USA).

Culturomics Method
Each sample (50 µL) was inoculated into aerobic and anaerobic
blood-culture bottles enriched with 2.5mL sheep blood and 5mL
rumen filtrated at 0.2 microns as previously described (Lagier
et al., 2012). After incubation at 37◦C for 24 h, 100 µL of the
solution was drawn out of the blood-culture bottle and added
to 900 µL of phosphate buffered saline (PBS). A 10-fold serial
dilution was then performed, ranging from 10−1 to 10−6. All
obtained dilutions were plated under seven preselected culture
conditions (Table S1). Anaerobic incubation was performed in
an anaerobic chamber (AES Chemunex, Combourg, France).
Identification of the bacterial colonies was first performed by
MALDI-TOF (Autoflex IIr, Bruker Daltonik, Germany), as
previously described (Seng et al., 2009). Isolates that were
not identified by MALDI-TOF were submitted for molecular
identification using 16S rRNA gene amplification and sequencing
(Lagier et al., 2012).

Statistical Analysis
Descriptive statistics included percentages for the categorical
variables and medians with interquartile ranges (IQR) for the
non-normally distributed continuous variables. The comparisons
were performed using the Chi-square test or Fisher’s exact test for
the categorical variables. The correlation analysis was performed
by assessing the Spearman’s rho coefficient of correlation. A
P-value < 0.05 was considered to be statistically significant.
Statistical analysis was performed using SPSS statistics 2016
(IBM, NY, USA). The principal component analysis was
performed with XLSTAT 2017 (Addinsoft, Paris, France).
Because richness (defined as the number of different species)
does not take into account the abundance of species, we used
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the Shannon index to compare diversity (taking abundance into
account), as previously described (Wang et al., 2008).

RESULTS

Clinical Data
In total, 43 patients were hospitalized for an episode of DFI
and were enrolled into the study. The demographic and clinical
characteristics of these patients are presented in Table S2.

Most of the included patients were male (69.7%) with a
median age of 67.5 years (27–90). Thirty-eight patients (88.4%)
had Type 2 diabetes. Twenty (46.5%) of the DFI were located
on the plantar forefoot. Overall, the mean hemoglobin A1C was
7.16% (±1.13), the mean ulcer surface area was 1.7 cm (±1.9),
and the mean ulcer depth was 1.22 cm (±1.36). Eighteen (58.1%)
of the DFI were classified as grade 2 (PEDIS score), while the
remainder were classified as above grade 2. For 31 patients (72%),
the current wound was the first episode of DFI and 12 (27.9%)
were included during a relapse of a previous DFU or DFI. Most
of the selected patients (34, 79%) had not taken antibiotics in the
previous 14 days. After a 1-month follow-up appointment and
a standardized care in accordance with international guidelines,
25 (58.1%) of these patients had a favorable outcome with an
evolution toward healing (Table S2).

Culturomics Results
We analyzed DFI microbiota using culturomics. We generated
∼30,000 colonies with an average of 698 colonies per sample.
A total of 53 different bacterial species were identified
(Table S3). The majority were classified as belonging to four
phyla: Actinobacteria (15.09%), Bacteroidetes (3.77%), Firmicutes
(52.83%), and Proteobacteria (26.41%). To compare bacterial
diversity among the infecting ulcers, the global α-Shannon
index was determined, an ecological measure of diversity that
contains the total number of different species and their relative
proportions. The higher the Shannon index values, the greater
the diversity. The α-Shannon index was 3.34 when considering
all samples, suggesting great heterogeneity in the DFI. Of all
the identified bacterial species, 30 (56.6%) were shared by at
least two samples and 23 (43.4%) were isolated only once
(Figure 1). The majority (44; 81.4%) of species had previously
been cultured from human stool samples as part of the human
gut microbiota study, and 19 (35.8%) had never been cultured
or identified by molecular methods from a DFU (Table S3).
Five species (9.4%) (Raoultella ornithinolytica, Eubacterium
massiliense, Eggerthella timonensis, Lachnoclostridium timonense,
and Vaginiphocea massiliensis) had previously been described as
new species by our laboratory as part of the Culturomics Project
(Lagier et al., 2016). Bacterial richness, defined by the median
number and standard deviation of different species isolated per
patient, was 4± 2 in this study. Most samples were polymicrobial
(38, 88.3%) corresponding to a mean number of 4.07 isolates per
sample.

Analysis of the culturomics results showed that aerobic
Gram-positive bacteria were the most frequent species isolated
(29, 54.7%), followed by aerobic Gram-negative bacteria (14,
26.4%) and strict anaerobes (10, 18.9%). At the patient level,

aerobic Gram-positive were isolated in all patients (43, 100%),
followed by aerobic Gram-negative bacteria (26, 60.5%) and
strict anaerobes (14, 32.6%). The most prevalent Gram-positive
species were Staphylococcus aureus (28, 52.8%), Enterococcus
faecalis (24, 45.2%), Staphylococcus lugdunensis (10, 18.7%), and
Staphylococcus epidermidis (6, 11.3%). The most prevalent Gram-
negative bacteria were Enterobacter cloacae (12, 22.6%) and
Proteus mirabilis (6, 11.3%). The most prevalent strict anaerobe
was Finegoldia magna (5, 9.4%; Figure 1).

Influence of DFI Microbiota and Evolution
of the Wound
We determined whether clinical factors and the most frequently
isolated bacterial species of the DFI microbiota were associated
with evolution of the ulcer. Principal component analysis
suggested that the factors associated with wound improvement at
the 1-month follow-up appointment were HbA1C<7%, age>65
years, female, DFI location in the dorsal face, bacterial richness
(number of different species isolated per wound sample), Type
2 diabetes, duration of diabetes <10 years, a Charlson score
>5, a PEDIS grade of 2, a wound size <2 cm, a wound depth
<1 cm, the presence of only one wound, and the presence in
the wound sample of S. lugdunensis, S. epidermidis, E. cloacae,
P. mirabilis, and E. faecalis. Conversely, principal component
analysis suggested that the factor associated with unfavorable
wound evolution at the 1-month follow-up appointment were
HbA1C >7%, age <65 years, male, DFI location in the plantar
face, Type 1 diabetes, duration of diabetes >10 years, a Charlson
score <5, a PEDIS grade above 2, a wound size >2 cm, a wound
depth>1 cm, the presence of more than one wound, the presence
in the wound sample of S. aureus and F. magna (Figure 2).

Further investigation by univariate analysis showed that
the presence of E. faecalis was significantly associated with
wound improvement at the 1-month follow-up appointment,
when compared to patients without wound improvement
(p= 0.012; Table 1). The only two factors significantly associated
with unfavorable wound evolution at the 1-month follow-up
appointment was a PEDIS grade above 2 (p = 0.005), and the
length of diabetes (p= 0.015).

We found a correlation between the presence of E. cloacae
with E. faecalis (rho = 0.523; p = 0.026) and S. lugdunensis
with F. magna (rho = 0.478; p = 0.045) in wound samples
from patients who had an unfavorable outcome at the 1-month
follow-up appointment, and between the presence of S. aureus
with S. lugdunensis (rho = 0.418; p = 0.018), E. cloacae with
P. mirabilis (rho = 0.457; p = 0.022), and S. lugdunensis with
F. magna (rho = 0.478; p = 0.045) in patients who had a
wound improvement at their 1-month follow-up appointment
(Table S4).

DISCUSSION

This study described for the first time, to our knowledge, the DFI
microbiota using culturomics methods. With this technology, we
observed a high bacterial diversity (number of different bacteria
isolated = 53) which represents the highest number of different
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FIGURE 1 | Bacterial species isolated from wound samples from 43 patients (blue circles), analyzed using culturomics. In purple, the most prevalent bacterial species;

in red, the bacterial species isolated in five or more patients; in orange, the bacterial species isolated in more than one patient; in yellow, species isolated in only one

patient.

bacterial species cultured from DFI in a single study (Jneid et al.,
2017). Of particular note is the fact that 35.8% of the identified
bacteria had not been isolated fromDFI in previous studies (Jneid
et al., 2017). Indeed, while metagenomics provides a fairly good
analysis of the presence of majority flora, particularly in terms
of not yet cultivable bacteria, culturomics is likely to provide a
better assessment of the diversity of minority flora, especially for
relatively poor flora such as in DFI. The role of minoritary species
on the evolution or the prognosis of the disease should be further
investigated to evaluate its value for clinicians but culturomics
and bacterial metagenomics appear to be two complementary
tools for studying the human microbiota (Jneid et al., 2017).

The first key observation of this study is that most
of the samples were polymicrobial (88.3%). While this has
traditionally been the case of DFUs, most of the studies presented
bacterial ecology without debridement, including commensal
and pathogenic bacteria. However, even when debridement was
performed, it remained difficult to assess the role of these bacteria
and, in particular, to distinguish pathogenic bacteria from

commensal ones. The most recent guidelines on managing DFI
are based on standard culture-dependent bacterial identification
and the administration of a narrow spectrum of antibiotics based
on sensitivity results (Lipsky et al., 2016). However, success
rates are far from satisfactory, with rarely more than half of
the patients responding positively to this approach (Pereira
et al., 2017). Recently, Dowd et al. introduced the concept
of the “functionally equivalent pathogroup,” responsible for
chronicity of the infection and maintenance of the pathogenic
biofilm (Dowd et al., 2008). Moreover, in a prospective,
randomized, multi-center trial comparing antibiotic regimens
for the treatment of DFI, MRSA-positive patients exhibited
positive responses to non-anti-MRSA antibiotic treatments
(Lipsky et al., 2005). Furthermore, in a recent study by Malone
et al. the authors used next-generation DNA sequencing to
analyze the DFI microbiota and found no overall differences in
the microbiomes of patients whose treatment failed and those
who experienced treatment success with directed antimicrobial
therapy based on conventional bacterial cultures (Malone et al.,
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FIGURE 2 | Link between patients and wound characteristics, bacterial composition and clinical outcome at 1-month follow-up appointment and following

standardized treatment. Principal component analysis using XLSTAT-2017 (Addinsoft, Paris, France) was performed on species’ raw data (presence on each patient’s

wound sample) obtained by culturomics. The first (F1), and second (F2) components accounted for 17.5 and 11.7%, respectively, of the overall variability.Y, years; F,

female; M, male; DFU, diabetic foot ulcer; S. aureus, Staphylococcus aureus; S. lugdunensis, Staphylococcus lugdunensis; S. epidermidid, Staphylococcus

epidermidis; E. faecalis, Enterococcus faecalis; E. cloacae, Enterobacter cloacae; F. magna, Finegoldia magna; P. mirabilis, Proteus mirabilis.

2017). Therefore, it is still unclear whether assessing the bacterial
diversity of DFI samples may have an impact on clinical
practice.

The second observation is that S. aureus was the most
prevalent (52.8%) bacteria isolated in the different samples, and
the presence of S. aureus in the DFI was associated with a
worsening of the wound (Figure 2). This result is consistent with
previous studies, although the bacterial diversity and prevalence
of specific bacteria vary greatly between studies (Dunyach-
Remy et al., 2016). Indeed, the diabetic foot microbiota is
influenced by several factors such as demographic characteristics,
personal hygiene, grade of severity, glycemic control and
ongoing or previous antibiotic treatments, as well as by
the bacterial identification method used (Jneid et al., 2017).
However, the geographical origin of the patient seems to
be one of the most important factors. Indeed, in warmer
countries (particularly in Asia and Africa), Gram-negative bacilli
are more prevalent compared to western countries (Dunyach-
Remy et al., 2016). Two large culture-dependent studies in
western countries on the ecology of DFIs which sampled over
1,266 patients revealed similar results (Ge et al., 2002; Citron

et al., 2007). They identified mostly Gram-positive aerobic
bacteria, primarily Staphylococcus spp. (24–35%) and especially
S. aureus (47–55%). A higher incidence of Gram-negative
aerobes (P. aeruginosa, Enterobacteriaceae) and anaerobes was
found in the most chronic wounds (Citron et al., 2007).
Gardner et al. profiled the microbiome of 52 individuals with
non-infected DFUs using 16S rDNA pyrosequencing (Gardner
et al., 2013). Staphylococcus spp. was present in 49 of 52
DFU samples, comprising 29.6% of the total sequences. The
majority of Staphylococcus spp. sequences (96.5%) were classified
as S. aureus. Interestingly, culturomics analysis showed that
anaerobes represent 32.6% of the DFI samples. A recent
meta-analysis noted that the unweighted average of anaerobes
identified by molecular techniques was 11% of all isolates
(Charles et al., 2015). The true frequency of anaerobes in
DFI remains unclear, largely related to a large variety of
bacterial culture methods, the types of sample taken for analysis,
and the transport media used. Anaerobes are predominantly
seen in DFI with ulcers that are deeper, and more chronic,
associated with ischemia, necrosis, gangrene, or a foul odor
(Charles et al., 2015). In line with these results, through a
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TABLE 1 | Demographic and clinical characteristics of 43 patients with DFI together with the presence of bacterial species in their wound samples were analyzed.

Characteristics Value P

Improvement

n = 25

No improvement

n = 18

Total

n = 43

Improvement vs. no

improvement

Age (mean ± SD), y 67.84 (15.96) 64.66 (13.87) 66.51 (15.03) 0.557

Male/female, n (%) 17 (68)/8 (32) 14 (77.77)/4

(22.22)

31 (72.09)/12

(27.9)

0.513

Type 1/Type 2 diabetes mellitus, n (%) 2 (8)/23 (92) 3 (17) / 15 (83) 5 (12)/38 (88) 0.681

Clinical context (first visit/ follow up), n (%) 17 (68)/8 (32) 13 (72)/5 (28) 30 (70)/13 (30) 0.785

PEDIS severity grade, n (%)

2

3

4

15 (60)

10 (40)

0 (0)

3 (17)

14 (78)

1 (5)

18 (42)

24 (56)

1 (2)

0.005*

Charlson score> 5, n (%) 12 (48) 2 (11) 14 (33) 0.113

Diabetes duration, (mean ± SD), y 17.04 (7.02) 20.25 (12.1) 18.38 (9.48) 0.015*

HbA1C, (mean ± SD), % 7.016 (0.94) 7.35 (1.35) 7.15 (1.12) 0.421

Previous antibiotics, n (%) 7 (28)/18 (72) 3 (17)/15 (83) 10 (23)/33 (77) 0.620

Number of wounds, n (%)

1

2

3

4

20 (80)

3 (12)

1 (4)

1 (4)

14 (78)

3 (17)

0 (0)

1 (5)

34 (79)

6 (14)

1 (2)

2 (5)

0.862

Wound size, (mean ± SD), mm 12.75 (16) 20.37 (17) 15.8 (16) 0.769

Wound depth, (mean ± SD), mm 15.3 (13) 18.45 (10) 16.65 (12) 0.268

Plantar/dorsal face 8 (32)/17 (68) 9 (50)/9 (50) 18 (42)/26 (58) 0.254

Staphylococcus aureus, n (%) 17 (68) 11 (61) 28 (65) 0.862

Enterobacter cloacae, n (%) 7 (28) 5 (28) 12 (28) 0.163

Proteus mirabilis, n (%) 4 (16) 2 (11) 6 (14) 0.648

Enterococcus faecalis, n (%) 17 (68) 7 (39) 24 (56) 0.012*

Staphylococcus lugdunensis, n (%) 6 (24) 4 (22) 10 (23) 0.891

Staphylococcus epidermidis, n (%) 3 (12) 2 (11) 5 (12) 0.757

Strict anaerobes 7 (28) 10 (55) 17 (40) 0.068

Finegoldia magna, n (%) 2 (8) 3 (17) 5 (12) 0.382

Factors associated, by univariate analysis, with wound improvement at the 1-month follow-up appointment and following standardized treatment. DFI, diabetic foot infection; SD,

standard deviation; y, years. *Statistically significant.

principal component analysis of our culturomics approach,
we observed that the presence of F. magna was associated
with an unfavorable outcome in relation to ulcers at 1 month
and, although not statistically significant, we identified strict
anaerobic species in more patients with no improvement.
However, the majority of the wounds analyzed in this study
were superficial (PEDIS grade 2). Therefore, the prevalence of
anaerobes reported here (32%) probably falls well below that of
deeper wounds.

Univariate analysis, suggested that the main factor associated
significantly with wound improvement at the 1-month follow-
up appointment and following standardized treatment was
the presence of E. faecalis. Although this result needs further
confirmation on a larger scale, it is relevant since some
E. faecalis strains have been described as probiotics (Franz
et al., 2011). Moreover, a study by Lipsky et al. noted that
the clinical response rates were similar for ertapenem and
piperacillin/tazobactam in patients with isolates of Enterococcus
spp. (86.8 vs. 80.8%, respectively), despite the fact that these

isolates were resistant to the former but not to the latter
agent (Lipsky et al., 2005), suggesting the low virulence
potential of this species. Interestingly, using principal component
analysis, we found an association between the presence in the
wound of some coagulase-negative staphylococci (S. epidermidis,
S. lugdunensis) and wound improvement. This is consistent
with recent studies by Zipperer et al. who observed that
human nasal colonization by S. lugdunensis, which produces
lugdunin, was associated with a significantly reduced S. aureus
carriage rate (Zipperer et al., 2016). In a previous study,
our team also showed that commensal Gram-positive cocci,
Helcococcus kunzii, frequently associated with S. aureus in DFI,
decreased the virulence of this pathogenic bacterium. These
results suggest the presence of an important network of cell-to-
cell communication between commensal and pathogenic bacteria
in DFI, with this being valuable for preventing staphylococcal
infections.

Our study has several limitations that warrant further study.
First, due to the small sample size (N = 43), any clinical
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inferences between patients, bacteria and clinical outcome need
to be validated in a larger study. Furthermore, the study is
monocentric. However, the number of patients represents an
significant volume for a pilot study and patients were recruited
from the national reference center for DFI, which specializes
in the management of samples (Zipperer et al., 2016). Second,
antimicrobial susceptibility testing was not performed on our
bacterial isolates, basically because of the high number of
colonies obtained by culturomics (N = 30,000). It should be
noted, however, that studies using new molecular techniques
have the same limitations (Lavigne et al., 2015). Finally a last
limitation of this study is the number of bacterial species likely
missed by culturomics. Despite bacterial metagenomics presents
several bias, simultaneous analysis would better appreciate
bacterial species missed by culturomics and proportion of
different bacterial species. Indeed, the need for enrichment
broth in the culturomics procedure does not allow to determine
the real proportion of the different bacterial species in the
wound. Using cryopreservative before freezing samples such
as recently engineered swabs with amies buffer containing
glycerol (http://www.copanusa.com/files/2114/7224/0314/ASM_
2016_ESwab_20_glycerol_poster.pdf) or inoculation of culture
broth at the bedside would also probably increase the number
fastidious bacteria identified.

CONCLUSIONS

This study provides a useful insight into the bacterial
composition of samples from DFI. It confirms the
complementary role of culturomics in relation to molecular
methods in the exploration of complex microbiota. Although
this new knowledge on the bacterial composition of wounds
has not yet led to useful improvements in clinical practice, an

exciting area of research would be microbiota transplants in the
skin (or wounds), as has already been tested for atopic dermatitis
(Nakatsuji et al., 2017).
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