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Leishmaniasis is a vector-borne, neglected tropical disease with a worldwide distribution

that can present in a variety of clinical forms, depending on the parasite species and host

genetic background. The pathogenesis of this disease remains far from being elucidated

because the involvement of a complex immune response orchestrated by host cells

significantly affects the clinical outcome. Among these cells, macrophages are the main

host cells, produce cytokines and chemokines, thereby triggering events that contribute

to the mediation of the host immune response and, subsequently, to the establishment

of infection or, alternatively, disease control. There has been relatively limited commercial

interest in developing new pharmaceutical compounds to treat leishmaniasis. Moreover,

advances in the understanding of the underlying biology of Leishmania spp. have not

translated into the development of effective new chemotherapeutic compounds. As a

result, biomarkers as surrogate disease endpoints present several potential advantages

to be used in the identification of targets capable of facilitating therapeutic interventions

considered to ameliorate disease outcome. More recently, large-scale genomic and

proteomic analyses have allowed the identification and characterization of the pathways

involved in the infection process in both parasites and the host, and these analyses have

been shown to be more effective than studying individual molecules to elucidate disease

pathogenesis. RNA-seq and proteomics are large-scale approaches that characterize

genes or proteins in a given cell line, tissue, or organism to provide a global and

more integrated view of the myriad biological processes that occur within a cell than

focusing on an individual gene or protein. Bioinformatics provides us with the means

to computationally analyze and integrate the large volumes of data generated by

high-throughput sequencing approaches. The integration of genomic expression and

proteomic data offers a rich multi-dimensional analysis, despite the inherent technical

and statistical challenges. We propose that these types of global analyses facilitate the

identification, among a large number of genes and proteins, those that hold potential as

biomarkers. The present review focuses on large-scale studies that have identified and

evaluated relevant biomarkers in macrophages in response to Leishmania infection.
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INTRODUCTION

Leishmaniasis is a neglected parasitic disease that is distributed
worldwide and is often associated with poverty. Most cases of this
disease arise in developing countries and result in 20,000–40,000
deaths per year. Leishmania, the causative agent, is transmitted
to vertebrate hosts, including humans, by a bite from the sand fly
during blood-feeding. Its pathogenesis involves the stimulation
of different types of host immune responses that result in distinct
clinical outcomes (Scorza et al., 2017), including cutaneous,
mucocutaneous, and visceral manifestations, depending on the
parasite species and host genetic background (Bañuls et al.,
2011). Localized or mucocutaneous forms of tegumentary
leishmaniasis, e.g., those caused by Leishmania braziliensis,
induce activation of the host immune response, resulting in
an immune-mediated pathology that manifests as localized
ulcerations in human skin or disfigurement involving the nasal
and oropharyngeal mucosa (Gupta et al., 2013). By contrast,
the visceral form of this disease arises from parasites of
the L. donovani complex and may result in severe systemic
manifestations and high morbidity and mortality due to the
inhibition of host inflammation and immunity (Das et al., 2014).

Neutrophils, dendritic cells, and macrophages, the main host
cells that harbor parasites, are immune cells that are recruited
to the infection site, where they recognize parasites that, once
internalized, multiply within their phagolysosomes. In addition,
these cells produce cytokines and chemokines that contribute to
lymphocyte recruitment, which is critical to the disease outcome
(Liu and Uzonna, 2012).

Measures designed to eradicate leishmaniasis necessitate a
combination of intervention strategies, including early diagnosis
and treatment. In visceral leishmaniasis, diagnostic procedures
both evaluate clinical signs and employ parasitological or
serological testing that is potentially capable of discriminating
active visceral leishmaniasis from its asymptomatic form. By
contrast, clinical evaluations are of greater importance in
cutaneous and mucocutaneous leishmaniasis because serological
testing is inadequate. Since leishmaniasis treatment must be
affordable to ensure access by affected impoverished populations,
the development of new compounds to treat leishmaniasis
has attracted limited commercial interest. In addition, studies
unveiling several aspects of the host response to Leishmania
infection have not resulted in the discovery of effective new
therapeutic interventions. Although some new alternative anti-
leishmanials have recently emerged, none are considered ideal
due to their high toxicity, prolonged treatment duration,
and severe adverse reactions, which can lead to treatment
abandonment and frequent cases of relapse (Aronson et al.,
2017).

Biomarkers as surrogate endpoints have been recommended
for use in clinical trials to aid in the early diagnosis of
leishmaniasis since primary clinical markers are sparse and are
only applicable after an extensive follow-up period. Biomarkers
offer another advantage in that they allow measurements to
be obtained more rapidly and in a less invasive context than
do conventional clinical or parasitological evaluations. They
could also facilitate the design of smaller, more efficient clinical

studies that may lead to expedited regulatory evaluation and
treatment approval. A recent elegant systematic review identified
different types of direct and indirect biomarkers that were shown
to be involved in Leishmania infection and disease outcome.
Among the 170 studies evaluated, 53 potential pharmacodynamic
biomarkers were identified, including direct, i.e., of parasite
origin, and indirect, i.e., from host cells, markers of cutaneous,
post-kala-azar dermal leishmaniasis, and visceral leishmaniasis
(Kip et al., 2015).

The identification of a set of soluble biomarkers in host
tissue has been exploited using sera of individuals with visceral
leishmaniasis (Solcà et al., 2016; Araújo-Santos et al., 2017).
A recent study screened a variety of soluble molecules and
identified a set of inflammatory biomarkers that grouped together
under a hierarchical cluster analysis (Araújo-Santos et al.,
2017). A significant increase in the levels of the following
inflammatory mediators was observed: resolvin D1 (RvD1),
leukotriene B4 (LTB4), prostaglandin F2α (PGF2α), IL-1β, IL-
6, IL-8, IL-10, IL-12p70, and TNF-α, in contrast to a decrease
in TGF-β1 in the serum of patients with visceral leishmaniasis
compared with an uninfected endemic control group. After
30 days of therapy, the authors observed that individuals
clustered together in terms of decreases in the levels of these
inflammatory molecules, distinct from the individuals with
active infection, thus reinforcing the idea that this set of
soluble molecules might function as biomarkers for the host
response to therapy. These authors further remarked that the
modulation observed in the concentrations of these markers
provides evidence that “an inflammatory imbalance hallmarks
active visceral leishmaniasis disease,” which more importantly
can greatly aid in the design of new interventions (Araújo-Santos
et al., 2017). Another recent study focused on the identification
of circulating biomarkers of “inflammation, immune activation,
oxidative stress, and anti-sand fly saliva IgG concentrations”
in canine sera to characterize biosignatures associated with the
severity of visceral leishmaniasis in dogs presenting a variety
of clinical manifestations (Solcà et al., 2016). These authors
discovered unique biosignatures according to the frequency
and intensity of clinical signs. A characteristic signature was
found to be associated with animals presenting severe visceral
leishmaniasis, as evidenced by a gradual decrease in LTB4 and
PGE2 concomitant with a gradual increase in CXCL1 and CCL2.
Furthermore, the quantification of three mediators, LTB4, PGE,
and CXCL1, was shown to correlate with different clinical
scores. This study clarified that visceral leishmaniasis severity
in dogs can be associated with inflammatory profiles, which
are distinguishable according to clinical presentation, via the
expression of circulating eicosanoids and chemokines.

Advances in global genomic and proteomic analysis
techniques have enabled the identification and characterization
of pathways involved in the infection process in both parasites
and the host. These approaches have been lauded due to their
greater effectiveness than focusing exclusively on individual
molecules, which rarely lend insight into disease pathogenesis.
RNA-seq and proteomics, both large-scale techniques designed
to characterize genes or proteins in a given cell line, tissue, or
organism, offer the advantage of a more global and integrated
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view of the myriad biological processes that occur within cells
(Wang et al., 2009; Veras and Bezerra De Menezes, 2016).

The analytical tools that are available for studying complex
data include functional enrichment analysis (e.g., the widely
adopted GSEA), in which a set of transcriptionally disturbed
genes belonging to a common group of canonical pathways
or biological processes reflect alterations in the pathways
themselves. Gene co-expression networks can also be used to
infer which genes are related to an infectious process. These
networks offer the distinct advantage of enabling the discovery
of previously unknown relationships by building on the notion
of “guilty by association” (Huang da et al., 2009a; Kuleshov
et al., 2016). A significant advantage of integrating genomic
and proteomic information is that these data can be used in
rich multi-dimensional analyses that allow identification from
an enormous pool of expressed genes and proteins those that
offer promise for use as biomarkers of different endpoints
in leishmaniasis, such as disease diagnosis and treatment, in
addition to markers for disease establishment and progression.

It has been clearly shown that macrophages are not only the
major cells that harbor Leishmania parasites, but are also those
that modulate host immune response by producing cytokines
and presenting parasite antigens to T cells (Podinovskaia and
Descoteaux, 2015). In addition, it has been shown that initial
interactions between Leishmania parasites and macrophages
contribute to the outcome of infection (Laskay et al., 1995;
Scharton-Kersten and Scott, 1995). Thus, the present review
focuses on recent large-scale studies detailing the host-related
genes analyzed by RNA-seq and the proteins identified by
proteomics, as well as describes the types of bioinformatics
analyses used to integrate the large volumes of data generated
by these high-throughput sequencing techniques. Due to the
importance of these cells in the host response to Leishmania
infection, we endeavor to review those genes and proteins
expressed by macrophages in response to infection by this
parasite that offer potential as future targets for use as
indirect markers of pathogenesis or as targets for therapeutic
intervention.

DECODING DATA INTO KNOWLEDGE:
BIOINFORMATIC STRATEGIES TO
ANALYZE, INTEGRATE, AND INTERPRET
HIGH-THROUGHPUT OMICS DATA

Over the last decade, the biomedical field has witnessed a
tremendous increase in its capabilities to generate data. With
large initiatives such as the 1000 Genomes Project (1000
Genomes Project Consortium et al., 2015) (which expanded
upon the foundation established by theHumanGenome Project),
ENCODE (Encode Consortium, 2012), the Genotype-Tissue-
Expression (GTEx) Project (GTEx Consortium, 2013), among
others, the performance of large-scale omics investigations has
gained more traction, and the adoption of high-throughput
technologies is now widespread. The development of novel
analytical strategies to decode and transform these data into

knowledge is of paramount importance. In this section, we
begin by reviewing traditional bioinformatics tools that can be
applied to the analysis of high-throughput datasets. Next, we
present more recent, complementary approaches that have yet to
become entirely embraced by the community, paralleled by the
development of computational techniques used by the scientific
community working with leishmaniasis.

Differentially Expressed Molecules: Only
the Tip of the Iceberg
Traditional RNA-seq analyses begin by identifying genes with
significantly altered expression across groups of samples, yielding
a list of differentially expressed genes (DEGs). Statistical
strategies for detecting DEGs based on RNA-seq-derived count
data rely mainly on the use of Poisson or negative binomial
distributions. The first has the advantage of being simpler, with
a single parameter, λ, entirely defined by the mean, and having
a variance equal to the mean. However, this property limits its
application when biological replicates are available, when this
assumption regarding variance does not hold because biological
replicates typically present high variability (Bullard et al., 2010).
In contrast, the negative binomial distribution, specified by the
mean µ and variance σ2, is considered a more appropriate
alternative since its variance is always greater than or equal
to the mean. It also allows modeling of the mean-variance
relationship typically observed in RNA-seq count data (Oberg
et al., 2012). Computational tools that use the negative binomial
include edgeR (Robinson et al., 2010), DESeq2 (Love et al.,
2014), and baySeq (Hardcastle and Kelly, 2010), among others.
Limitations of the negative binomial distribution include the
observation that, in practice, µ and σ2 are usually estimated
from the data, which can be problematic when only a few
replicates are available, as is still common practice for many
high-throughput experiments, given budget constraints. These
methods also suffer when the distributional assumptions in the
input data do not hold, and non-parametric strategies have been
proposed as more reliable alternatives in these cases (Tarazona
et al., 2011; Li and Tibshirani, 2013). Other strategies, such as
data transformation using voom (Law et al., 2014), in which the
mean-variance trend is modeled in a non-parametric fashion,
allow the subsequent use of traditional microarray packages, e.g.,
limma (based on normal distribution assumptions) and other
microarray-specific downstream analyses. Many studies have
compared the performance of these algorithms under various
scenarios, including the variation in the number of replicates,
sequencing depth, and the use of other tools concomitantly,
such as in mapping steps (Rapaport et al., 2013; Soneson and
Delorenzi, 2013; Law et al., 2014; Zhang et al., 2014; Schurch et al.,
2016; Costa-Silva et al., 2017; Sahraeian et al., 2017; Williams
et al., 2017). The wealth of methods available is indicative that
there is no “one-tool-fits-all” approach for detecting DEGs in
RNA-seq data and suggests that the a priori delineation of the
experimental design together with knowledge of the biological
question addressed is crucial in choosing the best set of tools and
parameters.
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A list of DEGs, however, is only a first step toward defining
the biological processes that appear altered in a given experiment,
and in most settings, the sole study of these genes will be
too reductionist in nature and mostly ineffective as it must be
conducted in a gene-by-gene fashion. Additionally, an intrinsic
problem when detecting DEGs is the need to establish thresholds
for p-values (or multiple testing corrected p-values) and fold-
changes (FC), which can be largely arbitrary and lead to the loss
of true DEGs (if too conservative) or their false inclusion (if too
relaxed). The finding that the different DEG tools present slightly
different true positive and false positive rates performance further
complicates the matter (Schurch et al., 2016). To illustrate this
point, recently published studies in the leishmaniasis field such
as that of Christensen et al. (2016) for instance, used cut-
offs of absolute FC ≥ 2 and a Benjamini-Hochberg corrected
p-value ≤ 0.05 to call DEGs, as did Masoudzadeh et al.
(2017). Others, such as Kong et al. (2017) have relied on a
consensus strategy among different approaches, where a gene was
considered differentially expressed if three methods positively
identified it as a DEG, and gene lists with varying strictness for
the corrected p-values (<0.001 and <0.01) were generated. To
circumvent some of these issues and obtain a more expanded
view of omics datasets, other analytical approaches can be used,
and we detail some alternatives in the two sections that follow.

Proteomics allows the identification and quantification of
many (usually thousands) of proteins present in a given sample.
Recent advances in the experimental approaches available for
accessing the proteome have allowed an improved resolution,
with less input material, when compared to more classical
techniques such as 2D gel electrophoresis (2D-GE) that
can be followed by liquid chromatography coupled to mass
spectrometry (LC-MS). Proteome quantification using MS can
be generally classified as label-based or label-free approaches.
The first relies on the differential labeling of samples using
stable isotopes (such as 2H, 13C, 15N, and 18O) followed
by quantification using MS. Technological improvements in
the field of MS and chromatography have leveraged the
development of high-throughput proteomic analyses that permit
a higher proteome coverage and are collectively termed label-
free quantitative proteomics (LFQP), a highly accurate method
that presents less susceptibility to technical errors. LFQP
relies on measurements of individual samples by MS, and
quantifies proteins based on either peak intensity or spectral
counts of each peptide. Each of these broad techniques have
their specificities regarding sample preparation, purification,
separation, and ionization method, making the recommendation
of specific computational tools for their analysis particularly
more challenging than for RNA-seq data. For instance, the
choice of labeling method will inform the corresponding choice
of appropriate analytical packages, and a software that works
well for 15N label-based quantification may not be suitable
for analyzing 18O data (Anand et al., 2017). For this reason,
we refer the reader to in-depth reviews that have tackled
the methodological aspects related to the analysis of raw
proteomic data (Mueller et al., 2008; Haga and Wu, 2014;
Sandin et al., 2014; Kuharev et al., 2015; Navarro et al., 2016;

Ramus et al., 2016; Välikangas et al., 2017), while focusing,
for this review, on computational tools that use pre-processed
data as input for downstream analyses. Albeit different in
nature, proteomic studies suffer from similar concerns as those
raised for RNA-seq data, in that the sole examination of a
list of differentially expressed proteins across conditions (also
constructed using ad-hoc criteria) may lead to loss of important
biological aspects of the data. Rather, we argue that those
working with high-throughput omics datasets will benefit from
more ample analyses, such as those discussed in the following
sections.

Enrichment Analyses Allow a
Contextualization of Altered Biological
Processes in High-Throughput Data
While the identification of expression changes at the gene-
level allows one to conveniently explain and validate small
phenomena, such as by quantitative RT-PCR assays, the use of
integrative approaches permits a broader understanding of the
biological processes that underlie more complex questions, such
as infection of the host cell by a pathogen. The contextualization
of genes into pathways and other more general cellular processes
effectively reduce the need to interpret causation at the gene-level
and simultaneously reduce the dimensionality of the problem, as
a single pathway is usually composed of several genes that act in
concert to perform their cellular function.

Enrichment analysis tests whether, for a given set of events
of interest (that could be DEGs or proteins, or groups of co-
expressed molecules), there is over-representation (enrichment)
of associated biological features than would be expected by
chance. These biological features are usually cellular processes
based on a common vocabulary (or ontology), including the
Gene Ontology (GO) (The Gene Ontology Consortium, 2017),
KEGG, and Reactome pathways (Kanehisa et al., 2017; Fabregat
et al., 2018), as well as other more specific biological states
such as oncogenic- and immunological-related ones, e.g., those
from the MSigDB, which also comprises a myriad of other
biological collections (Liberzon et al., 2015). Tools that perform
enrichment analysis may utilize a single source of biological
information (such as Reactome and Gene Ontology, which
offer enrichment analysis tools but are restricted to their own
vocabulary) or perform an integrated analysis of many sources
concomitantly such as DAVID (Huang et al., 2007) and Panther
(Mi et al., 2013), with the latter tools having the advantage
of extracting complementary biological information available at
different data sources. It is more important, however, that the
utilized underlying data source be current and updated because
tools based on outdated annotations can profoundly impact the
results of enrichment analysis by effectively underestimating the
functional significance of the gene lists used as inputs (Wadi et al.,
2016).

Enrichment analysis strategies can generally be grouped into
two main approaches: (1) list-based and (2) rank-based methods.
The first relies on a set of biomolecules of interest that can
be derived from the list of DEGs (if working with RNA-seq
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data), proteins (if working with proteomics), or compounds,
if the obtained data are from metabolomics experiments. To
calculate the significance of the enrichment, these tools usually
rely on statistical methods based on distributions, such as
χ2 (chi-squared), hypergeometric, and binomial, and evaluate
whether there is an overrepresentation of biomolecules in the
corresponding annotations from the data sources (such as genes
in a pathway) that could be deemed statistically significant,
usually after correcting for multiple hypothesis tests. One of
the most used tools in this class is DAVID, which registers
over 15,900 citations (Huang da et al., 2009b). A drawback
of these approaches is the creation of the gene list itself, as
different thresholds (such as those previously indicated for DEG
identification) can be used, thus leading to gene lists of variable
reliability. Additionally, genes with small expression changes, but
having important biological roles, will probably not be included
in such lists. Rank-based methods attempt to overcome these
limitations by using the complete list of biomolecules as input
when performing enrichment analysis, and the list is ranked
using an appropriate metric, such as the elements on the top (or
bottom) as more biologically important. Kolmogorov-Smirnov-
like statistics can then be applied to calculate enrichment
significance. In the case of omics studies (such as RNA-seq or
quantitative proteomics), an appropriate metric could be, e.g.,
FC-values ordered in a decreasing manner, where the extremes
represent biomolecules that are upregulated or downregulated (at
the bottom) in a comparison of interest. Alternativemetrics could
be used for other data types, such as p-values and abundance. The
Gene Set Enrichment Analysis tool (Subramanian et al., 2005)
is among the most popular software for performing this class
of analysis. Similar to many enrichment analysis tools, including
DAVID, it was originally developed for use with microarrays, but
its application to RNA-seq data is also possible. In particular,
many tools that were previously restricted to use in microarray
data, such as ROAST (Wu et al., 2010), can now also be employed
with RNA-seq data using transformation strategies such as the
previously described voom/limma pipeline (Law et al., 2014),
so count-based data can be more closely related to those of
microarrays.

Table 1 provides a non-exhaustive list of some of the
tools available to perform enrichment analysis fulfilling two
criteria: (1) they are currently maintained, and (2) the database
annotations on which they rely are updated (at most annually).
However, as this field has grown substantially with the advent
of high-throughput technologies, a multitude of tools have, in
parallel, become available for performing these tasks, and we also
refer the reader to specific reviews for a more comprehensive
assessment, such as those studies from Huang da et al. (2009b),
García-Campos et al. (2015), and Felgueiras et al. (2018), as
well as Huang da et al. (2009a) in the Table 1. By focusing on
11 reports in the leishmaniasis community that used RNA-seq
data, the use of the voom/limma and edgeR’s pipeline for the
identification of DEGs is indicative that somewhat “standard”
tools are in use (Table 2). In particular, voom/limma allows
microarray-like analysis, and its wide use is probably reminiscent
of the extensive application of microarrays by the community,
as exemplified by the recent parasite-focused review by Alonso

et al. (2018). For enrichment analysis, however, only GSEA
appears consistently among studies that performed such analyses,
which may be a reflection of the multiplicity of tools available
for this purpose. Thus, no clear picture emerges. Three of
the 11 studies restricted their analysis to that of the DEG list
(Table 2). In summary, the contextualization of lists of interesting
biomolecules or pre-ranked sets thereof into the pathway and
other cellular processes facilitate the interpretation of results
derived from high-throughput data and should be used as
complementary approaches to address the biological questions
underlying omics experiments, thus allowing broader analyses.

Network-Based Analyses Offer a More
Global View of omics-Derived Data
While enrichment-based methods allow one to obtain a wider
view of high-throughput omics experiments compared to
examining a list of individual biomolecules, a complementary
strategy consists of constructing networks of biomolecules. A
well-known facet of biological systems is that the different
elements (genes, transcripts, and proteins) and scales (genomic,
transcriptomic, proteomic, and regulatory) that form these
systems are intrinsically connected, such that single pathways
or cellular processes seldom occur in isolation in a cell. Instead,
the different cellular programs perform in a coordinated manner
to achieve their biological functions. This behavior is amenable
to modeling using a network-based framework. While there
are various ways of applying network-based techniques, in this
review, we focus on the construction of correlation networks
and module detection approaches, but some methods to infer
regulatory patterns are also described.

Correlation networks are being increasingly used to describe
correlational patterns in omics datasets, and the elements (or
nodes) that form these networks can be genes, proteins, or
metabolites. In simple correlation networks, an interaction (or
edge) between any two nodes is established when the value of
their correlation, which can be obtained using Pearson’s r or
Spearman’s ρ, passes a given threshold. A number of biological
questions have been approached using this framework, and some
applications in the context of leishmaniasis include the study of
distinct states of infection with Leishmania infantum (Gardinassi
et al., 2016) and the evaluation of the host-parasite interplay
in localized cutaneous leishmaniasis caused by L. braziliensis
(Christensen et al., 2016). Both studies used expression data as
input to construct weighted gene-gene correlation networks, a
particular case of a correlation network in which the edges have
associated weights and no strict conditional on the correlation
values is set, which characterizes a soft-thresholding approach.
This method is referred to as weighted gene correlation network
analysis (WGCNA) (Langfelder and Horvath, 2008) and has
been used to search for biomarkers of psoriasis (Sundarrajan
and Arumugam, 2016), various cancer types (Li et al., 2017;
Xia et al., 2018; Yuan et al., 2018), as well as other complex,
multifactorial conditions such as coronary heart disease (Huan
et al., 2013).

Simple correlation networks are constructed by applying a
hard-thresholding approach (i.e., reject correlations below a fixed
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TABLE 1 | Computational tools for performing functional enrichment analysis using omics datasets.

Tool Yeara Description and last updateb No. of

citationsc
Type of omics References/URLd

RNA Protein

DAVID 2003 Free webserver that performs enrichment analysis using various

databases (including Biocarta, KEGG, Reactome, GO) based on a

modified Fisher’s exact test. Last update: 2018

15,954
√ √

Huang da et al., 2009a

http://david.ncifcrf.gov/

GSEA 2005 Free multi-platform software. Performs rank-based enrichment

using annotated gene sets from MSigDB or custom annotations.

Calculates an enrichment score based on weighted

Kolmogorov-Smirnov-like statistics. Last update (MSigDB):

2017

13,892
√ √

Subramanian et al., 2005

Ingenuity

Pathway

Analysis (IPA)

2004* A paid alternative that combines various analyses tools including

functional enrichment (of diseases and biological functions), that is

performed based on Fisher’s exact test using a manually

curated ontology and a continuously updated knowledgebase

1,767$
√ √

http://www.ingenuity.com

Panther 2003 Allows the performance of binomial and Fisher’s exact test

using information from GO, Panther pathways and Reactome

1,732
√ √

Thomas et al., 2003; Mi

et al., 2013 http://

pantherdb.org

ClueGO 2009 A plugin for Cytoscape that performs enrichment analysis using

Gene Ontology, Reactome, and KEGG, also creating

network-based visualizations of gene functions. Supports many

organisms, and others can be added upon request. Performs

enrichment analysis based on the hypergeometric distribution.

The most recent database annotations can be retrieved

automatically

1,338
√ √

Bindea et al., 2009 http://

apps.cytoscape.org/apps/

cluego

WebGestalt 2005 Free webserver supporting 12 model organisms including human

and mouse, and performs both list- (Fisher’s exact test) and

rank-based enrichment of various databases including GO,

KEGG, Reactome, Panther, and WikiPathways. Last update: 2017

1,265
√ √

Zhang et al., 2005; Wang

et al., 2017 http://www.

webgestalt.org

Reactome 2005 Offers a module for enrichment analysis based on a

hypergeometric test using curated information from the

Reactome Knowledgebase

1,124
√ √

Joshi-Tope et al., 2005;

Fabregat et al., 2018; http://

www.reactome.org

Enrichr 2013 Free webserver that performs enrichment analysis of >40

databases taking as input a list of mammalian genes. Allows

various types of visualizations and programmatic access via API.

Employs a modified Fisher’s exact test to perform enrichment

analysis

736
√ √

Chen et al., 2013; Kuleshov

et al., 2016 http://amp.

pharm.mssm.edu/Enrichr

g:Profiler 2007 Free webserver supporting >200 organisms and performing both

list- and rank-based enrichment (hypergeometric

distribution-based) of various databases including GO, KEGG,

Reactome, BioGRID (protein-protein interaction), OMIM,

TRANSFAC (regulatory), and Human Protein Atlas. Updated

quarterly following Ensembl’s releases

447
√ √

Reimand et al., 2007

https://biit.cs.ut.ee/

gprofiler/

GAGE 2009 A methodological framework that uses a two-sample t-test to

test whether a specific gene-set is enriched relative to a

background set

379
√ √

Luo et al., 2009

Consensus

PathDB

2009 Free webserver integrating information from 32 human-related

biological databases and allowing enrichment analysis using a

hypergeometric distribution. Supports only human identifiers

(from UniProt, HGNC, Ensembl, Entrez or RefSeq). Last update:

2018 for most databases

240
√ √

Kamburov et al., 2009

ROAST 2010 R function within the limma package that performs individual gene

set testing based on multivariate regression. The user should

select pathways of interest based on a priori knowledge. RNA-seq

data should be processed using the voom/limma pipeline to use

the package

208
√

Wu et al., 2010

aYear of original publication.
bDate of last update relevant only to tools that rely on embedded or external databases.
cNumber of citations of the original publication retrieved from Google Scholar, current as of May 2018.
d If more than one, the original work and the most recent update are cited.
$Based on PubMed all-time search using “Ingenuity Pathway Analysis” as a query.

*Based on PubMed searches for the first usage of the tool published in the literature.
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TABLE 2 | Statistical and bioinformatics analyses performed in published articles in the leishmaniasis field that employed RNA-seq and proteomics techniques.

Authors Year DOI Statistical methods Enrichment analysis methods Network-based

method

RNA-seq

Alcolea et al., 2018 2018 10.1016/j.parint.2018.03.008 Geneious – –

Osman et al., 2017 2017 10.1371/journal.pntd.0005527 edgeR Ingenuity Pathway Analysis, GSEA –

Masoudzadeh et al., 2017 2017 10.1016/j.actatropica.2017.08.016 edgeR Gene Ontology website, GSEA –

Aoki et al., 2017 2017 10.1371/journal.pntd.0006026 t-test on FPKM-values

estimated by Cufflinks

Performed list-based enrichment

analysis using KEGG as database

without specifying tool.

–

Iantorno et al., 2017 2017 10.1128/mBio.01393-17 edgeR – –

Cuypers et al., 2017 2017 10.1038/s41598-017-03987-0 DESeq2 BiNGO, GSEA –

Fernandes et al., 2016 2016 10.1128/mBio.00027-16 Voom/limma ConsensusPathDB, Goseq –

Christensen et al., 2016 2016 10.1371/journal.pntd.0004992 Voom/limma GSEA WGCNA

Dillon et al., 2015 2015 10.1093/nar/gkv656 Voom/limma ConsensusPathDB, Goseq –

Willis et al., 2014 2014 10.4049/jimmunol.1303216 Voom/limma – –

Maretti-Mira et al., 2012 2012 10.1371/journal.pntd.0001816 CuffDiff Ingenuity Pathway Analysis –

PROTEOMICS

Menezes et al., 2013 2013 10.1016/j.micinf.2013.04.005 Sequest algorithm within

Bioworks software

Ingenuity Pathway Analysis Ingenuity Pathway

Analysis

Singh et al., 2015 2015 10.1128/IAI.02833-14 ProteinPilot Gene Ontology –

Goldman-Pinkovich et al., 2016 2016 10.1371/journal.ppat.1005494 Proteome Discoverer;

MaxQuant

– –

–, did not perform.

threshold), a strategy that may lead to a loss of information
because correlations that fall even slightly below the threshold
will be discarded. Defining such limits can also be overly
arbitrary and dataset-specific. In contrast, correlation networks
constructed using WGCNA mitigate these issues by applying a
mathematical transformation to the correlation values, yielding
a weighted network where the edge strengths are bounded by
the transformed correlation values. The algorithm begins by
first obtaining a correlation matrix from the input, usually
expression data, but other omics data types can also be used.
For expression data, correlation is used as a proxy for co-
expression, which relates biologically to functional coupling (for
instance, a group of co-expressed transcripts probably code
for proteins participating in a common process) or regulatory
aspects (such as activation of a transcription factor leading
to increased expression of the regulated gene). The choice of
correlation metric for constructing these networks has been a
subject of investigation (Kumari et al., 2012; de Siqueira Santos
et al., 2014), and although traditional metrics can be used,
the biweight midcorrelation is recommended by the authors of
WGCNA as a more robust alternative against outliers in the data
(Langfelder and Horvath, 2012). Once all pairwise correlations
are calculated, the correlation matrix is transformed into an
adjacency matrix using a power function of the form f (x) = xβ ,
where x represents elements in the correlation matrix, and a
value of β ≥ 1 (called the soft-thresholding parameter) is chosen
by the user such that the resulting correlation network adheres
to a scale-free property while maintaining high connectivity
(Langfelder and Horvath, 2008). Because this can lead to a
range of valid β-values, an automated selection method has been

proposed in the recently published CEMiTool pipeline (Russo
et al., 2018). With the correlation network at hand, the next
step involves detecting modules of co-expressed genes, which
can be performed using hierarchical clustering per default in
WGCNA or using hybrid approaches such as an additional
K-means clustering step, which has been reported to improve
the quality of the disclosed clusters (Botía et al., 2017). Once
the modules of correlated bioelements are identified, several
downstream analyses can be performed, including functional
enrichment, a strategy coupled to a “guilty-by-association”
paradigm that can lead to identification of novel gene functions
(e.g., genes previously unrelated to a cellular pathway belonging
to a module enriched for genes that belong to said pathway).
Within a module, the pinpointing of “hub” genes, such as
those with more connections, enables further stratification of
genes that compose each module. It is also possible to calculate
the module eigengene, a metric that summarizes the gene
expression/abundance profiles in a module, which is defined by
its first principal component (Langfelder and Horvath, 2008).
The module eigengene can be correlated to trait data, such
as clinical phenotypes and other associated variables in an
experiment, and this module eigengene-phenotype association
facilitates biomarker identification (Cui et al., 2015; Liu et al.,
2015). While WGCNA is not the only tool available to create
networks, its simplicity of use and biologically sound results
may explain its broad acceptance, as measured by its high
number of citations (Table 3). Alternative approaches are shown
in Table 3, with some being independent of network inference,
as exemplified by coseq (Rau and Maugisrabusseau, 2017),
while others are geared toward the elucidation of regulatory
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TABLE 3 | Computational tools for inferring co-expression and regulatory patterns in omics datasets.

Tool Yeara Description No. of

citationsb
Referencesc

WGCNA 2008 R package for constructing weighted gene correlation

networks and module detection using hierarchical clustering

2,721 Langfelder and Horvath, 2008

ARACNe 2006 R package that allows the inference of direct regulatory

relationships between transcriptional regulators and target

genes based on an information-theoretic approach

1,767 Margolin et al., 2006; Lachmann

et al., 2016

Ingenuity Pathway

Analysis (IPA)

2014 Paid alternative with modules for “upstream regulator

analysis,” “mechanistic networks,” “causal network analysis,”

and “downstream effects analysis.” Input can be expression,

proteins, metabolites

668 Krämer et al., 2014

GENIE3 2010 R package that uses an ensemble of decision trees (random

forest) to perform regression analysis, predicting the

expression pattern of one of the target genes from the

expression patterns of all other genes

398 Huynh-Thu et al., 2010

coseq 2017 R package that fits Gaussian mixture models for

co-expression analysis and cluster detection. A predefined

number of clusters (K) should be set a priori

4 Rau and Maugisrabusseau, 2017

CEMiTool 2018 R package that automates the module discovery process,

selecting the optimal parameters for each input dataset and

constructing co-expression networks (based on WGCNA),

performs enrichment analysis (using a hypergeometric

distribution) and creates high-quality plots and reports

1 Russo et al., 2018

aYear of original publication.
bNumber of citations of the original publication retrieved from PubMed.
c If more than one, the original work and the most recent update are cited.

interactions, such as ARACNe (Margolin et al., 2006), GENIE
(Huynh-Thu et al., 2010), and the commercial alternative
IPA (Krämer et al., 2014). It is important to stress that the
development of computational tools for biological data analysis
is a fast-moving and continuously evolving research field, and
while we focused on specific tools and databases that we deemed
appropriate and current, alternative solutions (either commercial
or open-source) are probably available for performing many of
the tasks referred here.

In summary, correlative approaches offer an alternative
way of examining omics datasets in a completely data-driven
fashion. Although we have focused mostly on expression data
to exemplify the use of this technique, correlation networks are
agnostic to the data type and can be constructed using any
biomolecule with interactions that are amenable to modeling
using a systems framework, including proteins (e.g., Zhang
et al., 2016) and metabolites (e.g., Dileo et al., 2011) and
the specificities involved in the adaptation for each data type
were the subject of a recent investigation (Pei et al., 2017).
The coupling of network creation and module detection with
enrichment methods permits researchers to conduct more
integrative analyses and extract biological insights in a much
richer way than in traditional, single-gene based approaches.
With the current trend of expanding the adoption of omics,
particularly RNA-seq data, by the leishmaniasis scientific
community (Figure 1), the knowledge and application of these
more advanced computational techniques will be of utmost
importance for progress in the field.

TRANSCRIPTOMICS CONTRIBUTION TO
UNDERSTANDING THE HOST RESPONSE
TO LEISHMANIA INFECTION

Thus far, we have presented some of the analytical hurdles
involved in the analysis of omics datasets. In the following
sections, we focus on how the use of high-throughput approaches
allowed an improved comprehension of Leishmania infection
and host interplay.

Several studies have explored the advantages of transcriptome
profiling using RNA-seq vs. other techniques to identify,
analyze, and quantify transcriptomes from a variety of
eukaryotic organisms. Most importantly, in comparison to
other transcriptome sequencing techniques, RNA-seq offers
improvements in terms of quality and precision regarding the
level of transcripts and their isoformmeasures (Wang et al., 2009;
Oshlack et al., 2010). A recent study highlighted the importance
of RNA-seq as a tool to reveal gene expression at different stages
of protozoan parasite development and to identify parasite
genes modulated by vertebrate and invertebrate hosts via the
simultaneous sequencing of parasite and host cell transcripts
(Patino and Ramírez, 2017). A series of comprehensive studies
attempted to investigate host cell signatures in response to
Leishmania spp. infection by identifying not only DEGs but also
modulated pathways using enrichment analysis, as discussed
in section Enrichment Analyses Allow a Contextualization of
Altered Biological Processes in High-Throughput Data of this
review. These studies have greatly expanded our knowledge
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FIGURE 1 | Growth of leishmaniasis studies using RNA-seq indexed in

PubMed (2010–2018). Search conducted in May, 2018 using the

PubMed query builder with the following phrase: “leishmania*” AND (rna-seq

OR rnaseq)—restricted to the Abstract or Title of papers. A linear trend line

(black) was fitted to the data. *Data for 2018 comprehends Jan. to Apr.

regarding the virulence mechanisms of these parasites and their
interactions with hosts (Guerfali et al., 2008; Dillon et al., 2015;
Novais et al., 2015; Christensen et al., 2016; Fernandes et al.,
2016). Although beyond the scope of the present review, we
must acknowledge some recent studies that aimed to investigate
the gene-wide transcriptional profiles of cutaneous lesions from
patients infected with Leishmania braziliensis (Maretti-Mira
et al., 2012; Novais et al., 2015; Christensen et al., 2016). One
of these studies comparatively evaluated gene expression in
lesions from patients who developed mucosal leishmaniasis
and those who did not (Maretti-Mira et al., 2012). Another
investigated gene expression in L. braziliensis-infected cutaneous
lesions in comparison to normal skin (Novais et al., 2015),
and a third report simultaneously analyzed the transcriptomic
profiles of L. braziliensis amastigotes derived from skin lesions
in L. braziliensis-infected patients and lesion skin samples
by comparing profiles at early and late stages of disease and
comparing lesions lacking detectable parasite transcripts and
lesions with parasite transcripts that were readily detected,
and used weighted gene-gene networks to globally assess the
human host gene expression (Christensen et al., 2016). In
addition, although comprehensive studies using microarray
technology have contributed to the understanding of the host
gene expression profile in response to parasites that cause visceral
leishmaniasis (Gardinassi et al., 2016), we were unable to identify
any RNA-seq studies analyzing the response to these parasite
species. Another aspect that should be taken into consideration is
metabolic changes induced in host cells by Leishmania parasites.
While we recognize that metabolomic analysis represents an
important aspect that has recently been explored in the field of
leishmaniasis (Armitage et al., 2018; Cuypers et al., 2018), which
certainly contributes to the understanding of disease, the results
from these studies fall outside the scope of the present study. The

present review instead focuses on global transcriptome analysis
of macrophages in response to infection, which has been poorly
investigated using RNA-seq technology (Dillon et al., 2015;
Fernandes et al., 2016).

Transcriptomic Analysis Allowing the
Opportunity to Identify Possible
Biomarkers in Leishmania-Infected
Macrophages
Recent studies that analyzed gene expression profile in host
cells have demonstrated that early stages [4 hours post-infection
(hpi)], as opposed to later time points after infection (24,
48, and 72 h), seem to be ideal for the identification of
DEGs or specifically modulated pathways in mouse or human
macrophages (Dillon et al., 2015; Fernandes et al., 2016). This
notion is supported by a well-designed protocol that used not
only uninfected human macrophages as controls but also cells
that engulfed inert particles to comprehensively distinguish
genetic expression induced by phagocytosis from that arising
upon infection, which has been shown to be indistinguishable
at later infection times (Fernandes et al., 2016). Therefore, this
study was able to capture the unique response of macrophages
to each of the two Leishmania species investigated, Leishmania
major and Leishmania amazonensis, which can potentially
cause different clinical manifestations, by excluding the effect
on human macrophages to inert particles. Interestingly, using
principal component analysis (PCA), both human macrophages
and cells incubated with latex beads for 4 hpi were shown to
be clustered together, indicating that macrophages in culture
can undergo phagocytosis without disturbing their steady-state
transcriptome. As previously described (Vieira et al., 2002; Lee
et al., 2007), phagocytosis triggers the activation of a local cascade
of events that results in a cytoskeletal imbalance and formation
of the phagocytic cup. By contrast, infected human macrophages
seem to activate a unique transcriptional profile in response
to Leishmania parasites at 4 hpi, regardless of species, since
L. major- and L. amazonensis-infected cells have been shown to
cluster together (Fernandes et al., 2016). This approach allowed
the identification of specific genes that are expressed in response
to infection, including potential macrophage biomarkers.

An evaluation of changes in the transcriptomic response
to Leishmania infection over time revealed that murine and
human macrophage responses to infection at early stages
of infection vary significantly from those observed at later
timepoints, by demonstrating that the number of DEGs, in
comparison to uninfected macrophages, is higher in L. major
and L. amazonensis-infected human macrophages at 4 hpi, with
decreasing quantities observed at later time points. By contrast,
infected human macrophages activate a similar transcriptomic
response to uninfected macrophages that internalized inert
particles at 24 hpi. In consonance with this finding, these
two populations of macrophages, as well as uninfected control
macrophages, all clustered together at 48 and 72 hpi (Fernandes
et al., 2016). Evaluation of the phagocytotic effect on gene
transcription demonstrated a lack of response in bead-containing
macrophages at 4 hpi, with no DEGs observed between these
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macrophages and uninfected cells, although highly pronounced
differences were detected at later time points. These findings
indicate that, in contrast to the response exhibited by uninfected
macrophages and macrophages that internalized the latex beads,
Leishmania triggers a unique transcriptomic response shortly
after phagocytosis, with reduced communication between the
parasite and host cell at later stages of infection (Fernandes et al.,
2016).

Similar to what was observed in human macrophages, in
comparison to uninfected cells, L. major-resistant C57BL/6
macrophages were also shown to differentially modulate the
variable numbers and types of genes at 4 hpi vs. later
timepoints. At all tested time points, only 47 genes were up- or
downregulated, which did not seem to be functionally related,
except for the heavy metal transporters metallothionein 1 and 2
(Dillon et al., 2015). In L. major- and L. amazonensis-infected
human macrophages, metallothionein 1 family members were
also found to be some of the most upregulated (up to a 136-
fold increase during L. major infection and a 196-fold increase
in response to L. amazonensis infection, both compared with
uninfected cells). These potential biomarkers are proteins that
have previously been associated with an immunomodulatory
response (Lynes et al., 1993) and are known to be activated
by certain stimuli, such as exposure to reactive oxygen species
(Ghoshal and Jacob, 2001), which has been confirmed to
influence the host response to Listeria spp. (Emeny et al., 2015).
Metallothioneins have also been found to be highly upregulated
in macrophages infected with Leishmania (Chaussabel et al.,
2003; Ettinger and Wilson, 2008) and have also been associated
with resistance to treatment with antimonial drugs (Gómez
et al., 2014). Despite this insight, the actual role played by these
proteins in the establishment of Leishmania infection warrants
further investigation.

Although L. major and L. amazonensis differ in several
aspects of interaction with host cells (Kaye and Scott, 2011;
Real et al., 2014), they surprisingly trigger a quite similar
global transcriptomic response in human macrophages, with
only four genes known to be differentially expressed at 4 hpi,
compared to none at subsequent time points. This finding seems
to indicate that human macrophages possess a nominal ability
to distinguish between L. major and L. amazonensis at the
transcriptional level, despite differences in several aspects of
the clinical presentation of tegumentary leishmaniasis caused
by these parasite species, as well as host immune response
(Fernandes et al., 2016). This finding indicates that, in the search
for novel biomarkers, it is likely that only those that would
be similarly detected in macrophages, regardless of the parasite
species that causes disease, will be identified. Notably, among
the few DEGs identified between L. major- and L. amazonensis-
infected macrophages, the authors reported that two were
involved in the essential mechanisms of parasite establishment
inside host cells: synaptotagmin family members 2 and 8 (SYT2
and SYT8), which are membrane proteins implicated in the
regulation of vesicle docking and fusion in exocytosis (Baram
et al., 1999; Arango Duque et al., 2013) and phagocytosis
(Czibener et al., 2006; Vinet et al., 2008; Arango Duque et al.,
2013). Although other synaptotagmin family members, SYT5

and SYT11, have been implicated in Leishmania infection, the
roles played by SYT2 and SYT8 require further investigation.
It has been proposed that the higher expression levels of SYT2
and SYT8 observed during L. major infection may be linked to
differences in L. major-induced vacuole maintenance throughout
the course of infection in terms of how the parasites divide within
these compartments, i.e., the maintenance of a single parasite in
one vacuole upon division, in contrast to L. amazonensis, which
inhabits large parasitophorous vacuoles that potentially require
more fusion (Veras et al., 1994, 1996) instead of fission events
(Fernandes et al., 2016). Synaptotagmins are also involved in the
regulation of SNARE activity by influencing membrane fusion
via a Ca2-dependent mechanism (Tucker and Chapman, 2002;
Andrews and Chakrabarti, 2005; Südhof and Rothman, 2009).

In comparison to uninfected cells, C57BL/6 macrophages
infected with L. major upregulated two genes (Bnip3 and
Bcl2a1b) related to the Bcl2 inhibitor of apoptosis, which is
associated with inhibiting macrophages from resisting cell death
(Dillon et al., 2015). How this finding is associated with a
resistance profile in this murine model of leishmaniasis seems
unclear. Previously, it was demonstrated that murine bone
marrow-derived macrophages infected with L. major exhibited
reduced programmed cell death when induced by stimuli,
such as the deprivation of growth factors or treatment with
staurosporine. Interestingly, this preventive effect was detected
in both macrophages from L. major-susceptible BALB/c and
L. major-resistant C57BL/6 mice, suggesting that the observed
reduction in programmed cell deathmight be a parasite-triggered
process that is seemingly independent of host genetic background
and is unrelated to resistance and susceptibility to infection
(Akarid et al., 2004).

Integrative Bioinformatics Analyses Offer a
Comprehensive View of Sets of Possible
Biomarkers in Leishmania-Infected
Macrophages
As discussed initially, the identification of pathways using
database resources aids in a more complete understanding
of the global response of host cells and tissues to a specific
microorganism. A comprehensive analysis of these pathways
using e.g., KEGG could help identify those genes that represent
potential targets for disease intervention. In the C57BL/6 murine
infection model involving L. major, the most highly modulated
macrophage gene expression was related to the immune
response, which is consistent with the resistance observed in
these mice. Some of the upregulated genes that clustered together
under KEGG analysis were Tnf, Hif-1, NF-kappa-B, Jak-Stat,
PI3K-Akt, and Mapk, which are involved in cytokine-cytokine
receptor interactions, arginine and prolinemetabolism, glycolysis
and signaling pathways (Fernandez-Figueroa et al., 2016).
Transcripts for inflammatory cytokines and their receptors
were also found to be upregulated in L. major-infected mouse
macrophages, including Il1, Il6, Tnf, Il1rap, Il18r1, and Nos2.
In addition, KEGG enrichment analysis showed that murine
macrophages infected with L. major expressed genes involved
in the anti-inflammatory response, including Il11r, Il1rn, Il10,
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Socs3, Fos-induced growth factor (Figf ), hemoxygenase1 (Hmox1),
epithelium growth factor receptor (Egfr), vascular endothelial
growth factor (Vegf ), colony-stimulating factor 1 (Csf1), and
colony-stimulating factor 3 (Csf3) (Weis et al., 2009; Luz
et al., 2012; Canavese et al., 2015). Accordingly, the responses
observed in human macrophages infected with L. major at 4
hpi were similar to those of murine macrophages, resulting
in the upregulation of genes encoding inflammatory cytokines,
including Il1 and Il6, and the upregulation of immune regulatory
genes, including prostaglandin endoperoxide synthase 2 (Ptgs2),
Csf1 and colony-stimulating factors 2 (Csf2), and superoxide
dismutase 2 (Sod2). This finding suggests that L. major-
infected macrophages probably evolved the ability to inhibit
a deleterious innate inflammatory immune response (Fleming
et al., 2015); alternatively, this anti-inflammatory response could
be a consequence of the effort by host macrophages to control
parasite infection (Dillon et al., 2015). Consistent with these
findings, in the sera of patients during the active phase of
visceral leishmaniasis it was detected a significant increase in
inflammatorymediators including LTB4, RvD1, PGF2α (PGF2α),
IL-1β, IL-6, IL-8, IL-10, IL-12p70, and TNF-α, and a decreased
level of TGF-β1 (Araújo-Santos et al., 2017).

Enrichment analysis involving C57BL/6macrophages infected
with L. major, conducted at 4 and 24 hpi, identified activation
of the glycolysis/gluconeogenesis pathway, which contains genes
that encode glycolytic enzymes, such as phosphoglycerate
kinase, hexokinases, enolase, lactate dehydrogenase A, and
glyceraldehyde-3-phosphate dehydrogenase. This finding seems
to indicate that the glycolysis pathway represents a metabolic
response arising in macrophages due to L. major infection,
which, upon toll-like receptor ligation, likely results in the
stimulation of an inflammatory response capable of triggering
anaerobic glycolysis (Tannahill et al., 2013). Whether this
metabolic response to Leishmania spp infection is typical of host
macrophages or whether it is due to host resistance to infection
warrants further study.

Few pathways have been found to be downregulated in the
L. major murine infection model. At 4 hpi, downregulation of
the lipid metabolism and biogenesis pathways was observed.
In addition, in the “Fc gamma R-mediated phagocytosis”
KEGG pathway, receptors and signaling molecules involved in
the process of phagocytosis were downmodulated at 4 hpi.
Previously, it has been demonstrated that macrophages are more
permissive to IgG-opsonized-Leishmania phagocytosed by the Fc
gamma receptor (Mosser, 1994). It is possible that the observed
resistance to L. major could be related to a possible reduction in
the uptake of L. major by C57BL/6 macrophages secondary to
the downregulation of this pathway. However, the mechanism
underlying this effect in this murine model and resistance to
L. major by C57BL/6 macrophages in general requires further
investigation.

Fernandes et al. (2016) generated transcriptomic data from
infected cells and integrated those data with the database
from a previous study (Dillon et al., 2015) to define a shared
response that characterizes a general mammalian macrophage
gene signature in response to Leishmania spp. infection. To
identify known cellular processes within this signature, KEGG

enrichment analysis was used to ascertain which genes were
commonly up- or downregulated in infected cells. Most of
the pathways identified contained upregulated genes that
were related to immune activation and signaling responses.
Regarding signaling pathways, KEGG analysis identified genes
involved in the pathway of recognition of pathogen associated
molecular patterns (PAMPs), e.g., retinoic acid-inducible
gene-(RIG)-I-like receptor, nucleotide-binding oligomerization
domain-NOD-like receptor, and Toll-like receptor; for the
immune system signaling pathways, the detected genes were
either related to the cytokine-cytokine receptor interaction
pathway, including Fc epsilon RI, Jak-STAT, T cell receptor,
NF-kB, mitogen-activated protein kinase (MAPK), TNF,
vascular endothelial growth factor (VEGF), ErbB, FoxO,
hypoxia-inducible factor 1 (HIF-1), and phosphatidylinositol
3-kinase-Akt [PI3KAkt], or related to the TGF-β signaling
pathway. In addition, among the downregulated genes in both
murine and human models of infection, KEGG identified
pathways related to energy metabolism (glycan and amino
acid degradation), lysosome structure and processes and
apoptosis. KEGG enrichment analysis identified the FoxO
signaling pathway among the genes that were either up- or
downregulated, which is implicated in the regulation of cell
growth, gluconeogenesis, and adipogenesis. The findings
presented in RNA-seq technology raise the possibility of
translating these pathways to biomarkers as surrogate endpoints
following extensive validation studies.

PROTEOMIC CONTRIBUTION TO
UNDERSTANDING THE MACROPHAGE
RESPONSE TO LEISHMANIA INFECTION

Different DNA- and RNA-based strategies have been used
to provide insights into the host cell response to infection
by different pathogens, including Leishmania. However, these
studies did not provide information regarding translational and
post-translational modifications and protein localization, which
are essential to understanding gene functions. Thus, studying
the proteins encoded by mRNAs is crucial for understanding
the biological processes. Therefore, proteomic studies have
gained significant relevance with the advancements in large-scale
technologies and represent one of the most important tools for
biomarker investigation. This approach has provided a wealth
of protein expression data on the host response to infection by
different pathogens (Chambers et al., 2000; Sundar and Singh,
2018).

Although proteomics is a known powerful tool to identify
host cell protein expression (Chambers et al., 2000), only
three studies have evaluated the macrophage response to
Leishmania infection in the past 5 years. A previous work
published by our group, using tandem liquid chromatography-
mass spectrometry (LC-MS/MS), was the first attempt to
employ a large-scale proteomic analysis to identify host
cell proteins expressed in response to Leishmania infection
and, among them, potential macrophage biomarkers that
could be related to a susceptibility or resistance profiles
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(Menezes et al., 2013). Two years after this paper was
published, Singh et al. (2015) used a quantitative proteomic
approach to study human monocyte-derived macrophage
(THP-1) responses to L. donovani infection to investigate
how the intracellular parasite manipulates the macrophage
response. More recently, Goldman-Pinkovich et al. (2016)
applied a phosphoproteomic analysis to understand the arginine
deprivation response in infectedmacrophages and the underlying
mechanisms.

In the first study, our group used a mouse model that was
previously described as being resistant to L. major and susceptible
to L. amazonensis, to identify markers that could be driving
different responses of CBA mouse macrophages to Leishmania
infection. A total of 62 proteins were predominantly expressed
in infected macrophages. Of those, 15 proteins were found to be
differentially expressed between L. amazonensis- and L. major-
infected macrophages. Thirteen of the 15 proteins exhibited
reduced expression in response to L. amazonensis infection,
but they were upmodulated in L. major-infected macrophages;
in contrast, two proteins showed increased expression in
response to L. amazonensis infection. The proteins with higher
expression in L. major-infected macrophages were as follows:
programmed cell death protein 5 (PDCD5), coronin 1B, HIF-1α,
cytochrome C oxidase 6B (cox6B), osteoclast-stimulating factor-
1 (OSTF1), protein phosphatase 2 (PP2), heterogeneous nuclear
ribonucleoprotein F (HNRPF), PYD And CARD domain-
containing protein (PYCARD), RAB1, Serpin, ribosomal protein
S2 (RPS2), and myosin light chain (Menezes et al., 2013).
Networks constructed under the IPA framework revealed that
proteins differentially expressed in CBA macrophages form part
of biological modules related to cellular development and cellular
metabolism, and their different modulation profiles possibly
induce distinct macrophage responses, ultimately leading to
disease susceptibility or control (Menezes et al., 2013). The
upregulation of proteins such as HIF-1α, TRAP1, Serpin, and
PYDCARD strongly suggest a modulation of the immune
response after Leishmania infection. Two of these proteins,
Serpin and PYDCARD, were downmodulated in L. amazonensis-
infected macrophages. Serpin is a protein induced by TNF-
α that, together with IL-1β, is involved in the inflammatory
cascade (Mishra et al., 2006). The reduced expression of Serpin
in L. amazonensis-infected macrophages could be associated with
a diminished inflammatory response, favoring the intracellular
survival of the parasite. Additionally, the PYDCARD adapter
protein also induced by TNF-α activates apoptosis via a
mechanism that is dependent on NF-κB and caspases (Reed et al.,
2003). These results are in accordance with a previous study
performed in our laboratory, showing that CBA macrophages
control L. major infection and express higher levels of TNF-α
than L. amazonensis-infected macrophages (Gomes et al., 2003),
which are susceptible to this parasite (Diefenbach et al., 1998).

Another critical molecule identified in this study as
differentially expressed between L. amazonensis- and L. major-
infected macrophages is HIF-1α. The higher levels of this protein
in macrophages infected by L. major could be associated with
higher production of NO and expression of TNF, which are
mediators that are known to play a role in HIF-1α regulation

(Zhou et al., 2003). Additionally, investigation of the role of HIF-
1α in Leishmania infection led us to the discovery of 17-AAG,
a heat-shock protein-90 (HSP90) inhibitor, as a potential
drug against leishmaniasis (Petersen et al., 2012; Santos et al.,
2014). HIF-1α, a transcriptional factor that can potentially be
modulated by specific drugs, is one of the client proteins of HSP-
90, which is a very plentiful molecular chaperone in mammalian
cells (Minet et al., 1999). This ATP-dependent chaperone, which
is induced during stress responses, is known to play a role
in the stabilization, correct folding and assembly of several
client proteins, including HIF-1α. HSP90 is also expressed
by protozoan parasites, which is crucial to the stabilization
of heat-labile proteins inside these microbes. Treatment of
L. amazonensis- or L. braziliensis-infected macrophages with
17-AAG dramatically reduced not only the percentage of
infected cells, but also parasite load, in a dose- and time-
dependent manner together with decreases in the production of
inflammatory cytokines (Petersen et al., 2012; Santos et al., 2014).
More recently, we investigated the effect of modulating another
identified biomarker using proteomic analysis, the peripheral
benzodiazepine receptor (PBR), known as translocator protein
(TSPO). We found that this mitochondrial transmembrane
protein exhibited a lower relative abundance of peptides in
cells infected with L. amazonensis in comparison to L. major
(Menezes et al., 2013). Modulating TSPO with one of its ligand,
PK11195, caused the killing of amastigotes in vitro at dosages
considered non-toxic to macrophages, indicating its potential
as antileishmanial (Guedes et al., 2018). In sum, these findings
strengthen the potentiality of global analysis of Leishmania-
infected macrophages for the identification of biomarkers
in host cells that probably participate in the pathogenesis of
Leishmania infection and, subsequently, can function as targets
for therapeutic intervention.

The proteomic study described herein also reveals a
modulation of host cell metabolism induced by L. amazonensis.
The results demonstrate that macrophages infected with
L. amazonensis express higher levels of 6-phosphogluconate
dehydrogenase (6PGDH), an enzyme in the pentose phosphate
pathway, compared to L. major-infected cells (Menezes et al.,
2013). The modulation of host cell metabolism induced by
Leishmania has already been explored (Osorio Y Fortea et al.,
2009; Lamour et al., 2012). The modulation of 6PGDH in cancer
cells and its effect on cancer treatment are currently being studied
(Zheng et al., 2017).

Another recently published study used a quantitative
proteomic approach and THP-1-derived macrophages to
evaluate the cell host response to L. donovani infection (Singh
et al., 2015). The authors used the isobaric tag (iTRAQ)
method and LC-MS/MS to compare the protein profiles of
non-infected and L. donovani-infected THP-1 cells, and then
performed an extensive analysis for contextualizing their results
into ampler biological processes, which facilitated a global
interpretation of the altered processes in response to infection.
This analytical strategy is beneficial to obtain a comprehensive
understanding of the studied phenomenon. The results showed
that proteins involved in important metabolic pathways, such
as glycolysis and fatty acid oxidation, were upregulated after
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L. donovani infection, suggesting that this parasite modulates
host cell metabolism. The expression of proteins involved
in gene transcription, RNA splicing [heterogeneous nuclear
ribonucleoproteins (hnRNPs)], histones, and DNA repair and
replication was also upregulated after L. donovani infection. Of
note, several proteins identified in this study as differentially
expressed between non-infected and L. donovani-infected
macrophages had not been previously associated with the host
cell response to Leishmania infection. Another exciting result
of this work was the increased expression of the mitochondrial
antiviral signaling protein (MAVS) after Leishmania infection.
This protein is known to activate NF-κB and interferon (IFN)
regulatory factors (IRF3 and IRF7), inducing the synthesis
of type I interferons (IFN-α and IFN-β), which are essential
during antiviral signaling. The silencing of endogenous MAVS
expression by RNAi inhibits the activation of NF-κB, IRF3,
and IRF7, leading to the blockade of interferon production
and favoring viral infection (Yan and Tsai, 1999). These
authors suggest that a crosstalk might occur between MAVS
and NF-κB and IRF signaling pathways components, which
would lead to the production of proinflammatory cytokines
and type I IFN (Villa et al., 2003). Based on these findings,
MAVS could be an interesting potential marker to investigate
because it helps modulate the host inflammatory response
to Leishmania infection. In addition, the modulation of host
cell metabolism could be an interesting approach that could
contribute to the control of Leishmania infection. Metabolomics
combined with proteomic approaches represents one of the
most important postgenomic analyses to investigate changes in
cell metabolism and identify biomarkers during the course of
infection inside macrophages (Singh et al., 2015). Several studies
have demonstrated an association between host cell metabolism
and response to different pathogens, including Leishmania
(Lamour et al., 2012; Govinden et al., 2018; Price et al., 2018;
Reddy et al., 2018).

The most recent study using a proteomic approach to better
understand the host cell response to Leishmania infection
applied this technology to investigate the signaling pathways
involved in the upregulation of expression and activity of
different transporters, such as Leishmania arginine transporter
(LdAAP3), in response to arginine pool reduction in the host
cell. To study phosphoproteins involved in the signaling pathway
implicated in this response, the authors used a di-methylation
tagging technique to investigate changes in the phosphorylation
profile of Leishmania promastigotes after 5 and 15min of
arginine deprivation. Phosphoproteomic analysis revealed an
increased phosphorylation of mitogen-activated protein kinase
2 (MPK2), indicating that this kinase could be involved in
the arginine-deprivation response during Leishmania infection
(Goldman-Pinkovich et al., 2016). Although this work did not
investigate a more global cell host response to Leishmania
infection, the utilized approach could be of great importance
to identify potential markers that could be used for the
development of new drug treatments and to understand the
disease outcome.

Taken together, these few studies show that Leishmania
parasites modulate the host cell proteome profile, reinforcing
the idea that proteomic technology is a powerful technique
that should be further explored by researchers to discover
its full potential. Proteomics combined with bioinformatics
represents a robust approach to investigate the global host
response to infection and to identify new potential molecular
markers that can control the fate of both host cell and pathogen
during infection (Jean Beltran et al., 2017). In addition, further
proteomic studies are required to investigate whether proteins
that are modulated after Leishmania infection can be used as
novel biomarkers and targets for the control of Leishmania
infection.

CONCLUSIONS

Combining the results from transcriptomic and proteomic
investigations offers a more comprehensive body of information
for the identification of possible biomarkers in Leishmania
infection. The authors recommend compiling the findings from
the studies referenced herein using macrophages, together with
those obtained from blood, tissue and other cell types, and also
relevant results from similar future studies, to form a complete
set of potential biomarkers to aid in global analysis using
transcriptomics, proteomics and metabolomics approaches. This
data could be then used to identify and subsequently validate
specific genes and proteins capable of enhancing the ability of
researchers to identify host cell signatures at early time points
in the context of leishmaniasis, in an effort to predict disease
control or progression, and even the prognostic response to
therapy.
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