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Chikungunya virus (CHIKV) is a re-emergent arthropod-borne virus (arbovirus) that

causes a disease characterized primarily by fever, rash and severe persistent

polyarthralgia. In the last decade, CHIKV has become a serious public health problem

causing several outbreaks around the world. Despite the fact that CHIKV has been

around since 1952, our knowledge about immunopathology, innate and adaptive

immune response involved in this infectious disease is incomplete. In this review,

we provide an updated summary of the current knowledge about immune response

to CHIKV and about soluble immunological markers associated with the morbidity,

prognosis and chronicity of this arbovirus disease. In addition, we discuss the progress in

the research of new vaccines for preventing CHIKV infection and the use of monoclonal

antibodies as a promising therapeutic strategy.

Keywords: Chikungunya virus, immune response, immunovirology, innate immunity, adaptative immunity,

immunological markers, vaccines

INTRODUCTION

Chikungunya virus (CHIKV) is an arthropod-borne virus that belongs to the Togaviridae family
(genus Alphavirus), and was first isolated in 1952–53 from mosquitos and from human serum
during an epidemic in Tanzania (Robinson, 1955). CHIKV causes a self-limiting disease known
as Chikungunya fever (CHIKF) that is characterized by high fever, rash, myalgia, polyarthralgia
and headaches (Burt et al., 2017). While many of the symptoms generally disappear within 1 week,
joint pain can persist in some patients for up to a few years (Javelle et al., 2015; Rodriguez-Morales
et al., 2016). Over the past decade, the disease caused by CHIKV re-emerged as a serious public
health problem and resulted in several outbreaks around the world (Wahid et al., 2017). Although
CHIKV has been studied for over 60 years, little is known about immunopathogenesis caused by
this virus and about protective immune response against it. In this review, we briefly outline the
characteristics of CHIKV, including its structure, transmission, epidemiology, and diagnosis. We
then focus on the innate and adaptive immune responses and soluble immunological markers.
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CHIKUNGUNYA VIRUS

CHIKV is an enveloped alphavirus of ∼60–70 nm in diameter.
It has an 11.8 kb-long single-stranded positive-sense RNA
genome that encodes six structural (C-E3-E2-6K/TF-E1; Metz
and Pijlman, 2016) and four non-structural (nsP1, helicase nsP2,
nsP3 and polymerase nsP4; Ahola and Merits, 2016) proteins.
Genomic RNA associates with 240 copies of 261 amino acid-long
structural capsid protein C that forms icosahedral nucleocapsid
(Khan et al., 2002; Jose et al., 2009). E1 and E2 are surface
glycoproteins, 439 and 423 amino acid-long, respectively (Khan
et al., 2002). E1 and E2 carry the major viral epitopes and
participate in the attachment and the entry of the virus into
target cells, where E2 is responsible for receptor binding, and
E1–for membrane fusion (Voss et al., 2010). E3 consists of 64
amino acids that are required for E3-E2-6K-E1 or E3-E2-TF
polyprotein translocation into the endoplasmic reticulum for
virus spike formation (Snyder and Mukhopadhyay, 2012). The
61 amino acid-long 6K protein is a cation-selective ion channel
that is responsible for increased cell permeability to monovalent
cations and virion budding during infection (Melton et al., 2002).
Transframe protein TF is produced as a result of C-terminal
extension of 6K protein in the −1 frame (Firth et al., 2008). It
retains ion-channel activity similar to that of 6K and appears to
be important for the virus particle assembly and release (Snyder
et al., 2013). Although the non-structural proteins nsP1-nsP4 are
primarily associated with the viral replication process (Solignat
et al., 2009; Lum and Ng, 2015), they carry out additional
functions during the viral infection, just like in other alphaviruses
(Rupp et al., 2015). It is worth noting that non-structural proteins
are not packaged into the final virions, and hence the structural
proteins (mainly surface glycoproteins E2 and E1) are the key
targets of the host humoral immune response and of most anti-
CHIKV vaccines (Powers, 2018).

EPIDEMIOLOGY AND VECTORS

CHIKV is a zoonotic virus that uses several non-human primates
(NHPs) and possibly other vertebrates as amplification hosts
(Tsetsarkin et al., 2016), which could also serve as virus reservoirs
(Althouse et al., 2018) during inter-epidemic periods.

The first reported case of CHIKV human infection happened
in Tanzania in 1952–53. Since then, several outbreaks occurred
throughout the African continent (Robinson, 1955; Powers et al.,
2000). Between 1960 and 1980, the virus was identified in Central,
Western and Southern Africa (Powers et al., 2000), and in
following years—in India and other countries of Asia and Africa
(Wahid et al., 2017). Phylogenetic reconstruction of CHIKV
evolution identified Asian, East/Central/South African (ECSA)
and West African lineages which until 2004 (Sam et al., 2015)
were mostly confined to the geographic regions after which they
were named (Schuffenecker et al., 2006; Sudeep and Parashar,
2008; Wahid et al., 2017).

The first case of autochthonous transmission of CHIKV in
the Americas was reported on Saint Martin Island in 2013
(Leparc-Goffart et al., 2014), and it was shown that the risk exists
that CHIKV will establish enzootic/sylvatic cycle in the tropical
regions of the American continent (Lourenço-de-Oliveira and

Failloux, 2017). Increased traveling in the recent years and the
presence of appropriate vectors allowed for a further spread of
CHIKV with reports from the United States (Kendrick et al.,
2014), Brazil (Tanabe et al., 2018), Spain (Bocanegra et al., 2016),
Italy (Zammarchi et al., 2016) and Australia (Huang et al., 2017),
among others (Wahid et al., 2017). CHIKV virus spread and
outbreaks around the world in the last years are shown on
Figure 1.

CHIKV disease (CHIKVD) has enzootic/sylvatic and urban
cycles of transmission (Weaver, 2013) and occurs through a
bite of infected female mosquitoes of Aedes genus (Sudeep
and Parashar, 2008). Aedes aegypti and Aedes albopictus are
the two most significant and well-documented CHIKV vectors,
associated with outbreaks worldwide (Mourya and Mishra,
2006). The urban cycle of transmission is possible because of
the sufficiently high levels of viremia developed in the infected
individuals (Go et al., 2014) and it can start with the spillover of
enzootic/sylvatic CHIKV via bridge vectors, such asAedes furcifer
(Diallo et al., 2012). The spread of CHIKV in the United States
and Europe was linked to the adaptation of the ECSA strains to
Aedes albopictus mosquitoes that are abundant in these regions
(Madariaga et al., 2016). This adaptation to a different vector
was attainable due to a mutation in the envelope protein gene
(E1-A226V; Tsetsarkin et al., 2007, 2011), which is sometimes
regarded as giving rise to Indian Ocean lineage (Wahid et al.,
2017). Several other mutations that further enhance fitness and
adaptation of CHIKV to its hosts were identified in E1 and E2
proteins (Singh et al., 2012; Agarwal et al., 2016), and were shown
to occur in the intrinsically disordered regions of these proteins
(Singh et al., 2018).

Cases of maternal-fetal transmission were reported (Ramful
et al., 2007; Gérardin et al., 2008; Economopoulou et al., 2009)
and the virus was detected in human breast milk (Campos
et al., 2017), although the data on the impact of the infection is
somewhat controversial (Laoprasopwattana et al., 2015; Torres
et al., 2016), and experimental data from Rhesus macaques
(Macaca mulatta) speaks against possibility of trans-placental
transmission (Chen et al., 2010).

DIAGNOSIS OF CHIKV INFECTION

To date, several different methods are used to diagnose the
CHIKV infection. These methods are based on the detection
of (i) viral RNA (Pfeffer et al., 2002; Pastorino et al., 2005),
(ii) IgM and IgG antibodies against the virus (or viral antigens
proper; Kashyap et al., 2010; Johnson et al., 2016a,b), or (iii) viral
particles in the conditioned media of cell lines that were exposed
to samples of patients’ serum in vitro (Pan American Health
Organization, 2011). It is important to keep in mind that the
detection efficiency of these methods varies depending on both
the presence of the viral particles in the bloodstream of a patient
and on the time of sample collection (Figure 2).

PATHOLOGY OF CHIKV INFECTION

The incubation period of 2–10 days is usually followed by
CHIKVD that can be divided into acute and chronic phases. The
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FIGURE 1 | Distribution of CHIKV lineages that are associated with recent outbreaks around the world before and after year 2000. Top: CHIKV cases reported in the

XX century (1953–2000). Bottom: CHIKV cases reported recently (2001–2018). Only cases where the virus lineage was identified are shown. Orange icon–Asian

lineage; green icon–East/Central/South African (ECSA) lineage; green icon with a white circle–ECSA strain with a mutation A226V in the E1 envelope glycoprotein, this

strain is sometimes referred to as Indian Ocean lineage (Wahid et al., 2017).

acute phase occurs during the first 2 weeks after the onset of the
disease and can be further subdivided into viral (before day 5
post-illness onset, pio) and convalescent (days 5–14 pio) stages
(Thiberville et al., 2013a). Polyarthralgia, the most characteristic
symptom of the acute phase, is reported in 87–98% of cases
(Thiberville et al., 2013b). When and if the disease continues into
the extended symptomatic-chronic phase, arthralgia that usually
affects multiple joints can remain for several months or even
years (Moro et al., 2012; Schilte et al., 2013).

Generally, acute clinical symptoms include high fever
(>38.5◦C) and shivers, severe joint and muscle pain, skin rash,
weakness and headache (Figure 3). High viral load, lymphopenia
and moderate thrombocytopenia are also observed in the acute
phase (Thiberville et al., 2013b). In most cases, the symptoms
remain for about 4–7 days as a self-limiting disease and are
followed by a complete patient recovery (Schwartz and Albert,
2010). Nonetheless, clinical cases of symptomatic chronic disease
for up to several years were reported (Brighton et al., 1983;

Borgherini et al., 2008; Soumahoro et al., 2009; Gérardin et al.,
2011; Moro et al., 2012; Schilte et al., 2013). Studies conducted
after CHIKV outbreaks on Reunion Island in 2006 and in Italy
in 2007 showed persistence of myalgia, asthenia and arthralgia in
60–67% of cases 36 and 12 months post-infection, respectively
(Moro et al., 2012; Schilte et al., 2013).

Newborns and infants are predisposed to develop a more
severe disease (Sebastian et al., 2009; Thiberville et al., 2013b).
Fever is the main symptom in children (Simarmata et al., 2016).
Both atypical and severe cases were frequently observed in this
patient group, with the disease leading to hyperpigmentation,
erythema (Nair, 2008; Rao et al., 2008), bullous skin lesions
(Robin et al., 2010) and neurological symptoms, such as seizures
and encephalitis (Robin et al., 2008), and a variety of other
complications (Ramful et al., 2007).

Elderly individuals are another group with an increased risk
of a more severe progression of the CHIKVD. Recently reported
fatal cases of CHIKV infection in elderly people described liver
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FIGURE 2 | Applicability of different diagnostic methods in the course of CHIKV infection. In the acute phase, viremia can persist until days 5–7 pio (Silva and

Dermody, 2017) and CHIKV genomic RNA can be detected by RT-PCR reliably until day 7 pio (Edwards et al., 2017). It is therefore suggested that the detection of

CHIKV RNA and virus isolation from serum samples for diagnostic purposes is done before day 5 pio (Johnson et al., 2016b), because the chance of false-negative

results increases with the decrease in viral load. IgM and IgG antibodies against CHIKV begin to be produced at days 2 pio (Jain et al., 2018) and 4 pio (Prince et al.,

2015), respectively. Stable titers of IgM can be seen in the serum from day 6 pio till around 4 months pio (Prince et al., 2015) [and can be detected mostly until 6

months pio (Chua et al., 2017)], whereas sustained levels of IgG can be present for more than 1 year (Chua et al., 2017). The antibodies against CHIKV can be

detected by immunoassays after the development of humoral immune response (in case of IgG–long into the chronic phase, both–symptomatic or asymptomatic). A

more detailed overview of the methods available for diagnostics of CHIKV is given in a review by Sam et al. (2015).

failure with subsequent cardiovascular collapse (Chua et al.,
2010), and neurological and pulmonary deterioration followed
by multiple organ failure (Hoz et al., 2015). Furthermore, 65
fatal cases after atypical CHIKV infection were reported during
the 2006 outbreak on Reunion Island (Economopoulou et al.,
2009). Mortality rate and overall severity of the disease increased
there with age (Josseran et al., 2006), which seems to be a
common theme for CHIKV infection in humans (Hoarau et al.,
2010; Lang et al., 2017) and NHPs (Messaoudi et al., 2013). The
incidence of atypical cases of CHIKF reported previously was
<1%, taking into consideration the total number of infected
people (Economopoulou et al., 2009). Some of the major atypical
cases of CHIKV infection (as of 2010) are summarized in the
review by Rajapakse et al. (2010).

After the mosquito bite, CHIKV replicates at the site of
the inoculation and then spreads to peripheral organs and
target cells via the circulatory system (Mourya and Mishra,
2006). CHIKV is able to infect a variety of adherent model
cell lines and primary cells, but it fails to either infect or even
bind to both–blood-derived cell lines (Jurkat, THP-1, U937,
B-420) and primary blood cells (lymphocytes and monocyte-
derived dendritic cells) (Sourisseau et al., 2007). Conflicting
data is published by Sourisseau et al. (2007) and by Her et al.
(2010) regarding susceptibility of primary human monocytes to
CHIKV. Notably, monocyte-derived macrophages were found
to be susceptible to CHIKV infection (Sourisseau et al., 2007;
Solignat et al., 2009).

Similar to its behavior in humans, in a mouse model, CHIKV
has a pronounced tropism to fibroblasts of the muscle, joint

connective tissue and deep dermis (Couderc et al., 2008). From
the infected skin fibroblasts and dermal macrophages, the virus
spreads to lymph nodes, reaching spleen and liver in the acute
phase, and muscles and joints through blood—later in the course
of the disease (Roosenhoff et al., 2016). In severe cases—the
spread of the virus into the central nervous system was shown in
a mouse model (Couderc et al., 2008; Gardner et al., 2010) and
in cynomolgus macaques (Macaca fascicularis) (Labadie et al.,
2010).

IMMUNE RESPONSE TO CHIKV

Innate immune response against viruses consists of macrophages,
dendritic cells (DCs) and natural killer cells (NKs) and is followed
by the activation of B and T lymphocyte-mediated adaptive
immune response. The subsequent generation of memory cells
then leads to a specific response to the viral infection and
protects from reinfection. In the following sections we review the
current knowledge of cellular and molecular immune responses
to CHIKV in humans and animal models.

Innate Immune Response
Natural Killer (NK) Cells
Acute phase of CHIKVD is marked by a significant increase
in activation of components of the cell-mediated immunity led
by an extensive activation of innate NK cells (Hoarau et al.,
2010). The function of NK cells is regulated by a combination
of signals from activating (e.g., CD94/NKG2C and NKG2D,
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FIGURE 3 | Symptoms of the acute phase of CHIKV infection. Some minor

variation exists in the frequency of symptoms reported in different studies.

Typically, the clinical symptoms in the acute phase of the disease include high

fever, pain and swelling in the joints, myalgia, and skin rash, often

accompanied by headache, backache and fatigue. Here, the average

percentage of symptomatic cases where a given symptom was reported is

based on the data from Thiberville et al. (2013b), with the exception for the

percentages for fever and headache that were taken from Huits et al. (2018).

These symptoms usually remain for about 5–7 days as a self-limiting disease

and are followed by a complete recovery within 2 weeks. However, severe joint

pain can remain for months or even years in some individuals, often in distal

joints (Roosenhoff et al., 2016) and in fluctuating manner (Hoarau et al., 2010).

It has been estimated that ∼16% of cases are asymptomatic (Thiberville et al.,

2013b). The symptoms in CHIKV-infected children differ from those in adults

and are listed in Table 1 from the study by Simarmata et al. (2016).

activating killer cell immunoglobulin-like receptors KIRs–
KIR2DS, KIR3DS) and inhibitory receptors (e.g., CD94/NKG2A,
inhibitory KIRs–KIR2DL, KIR3DL) on their cell membranes
(Pegram et al., 2011).

Recent data associate the expression of KIR and NKG2
receptors with susceptibility (Petitdemange et al., 2014) to
CHIKV infection and viral clearance (Petitdemange et al., 2011).
KIRs are involved in recognition of human leukocyte antigen
(HLA) class I molecules (HLA-A, -B and -C) on nucleated cells,
and specific KIR ligand/receptor combinations were implicated
in HIV and hepatitis C (Jamil and Khakoo, 2011). In a similar
fashion, a significant increase in the frequency of HLA-C
subtype 2 allele (HLA-C2) in combination with the expression of
KIR2DL1 gene (encodes the receptor that can interact with HLA-
C2) was found in CHIKV-infected patients during the CHIKV
outbreak in Gabon in 2010 (Petitdemange et al., 2014).

At the same time, high viral load during the acute phase
of infection and subsequent clearance of the infected cells
were both associated with the expansion of the subpopulation
of CD3−CD56+ NK cells that co-expressed the activating
NKG2C receptor and KIR2DL2/KIR2DL3 inhibitory receptors
for HLA-C subtype 1. This NKG2C+ subpopulation of NK
cells rapidly increased in the acute phase (at the expense
of NKG2A+ population) and demonstrated strong cytolytic
response and reduction in IFN-γ production. This argues for a

dichotomy between cytolytic and immunoregulatory functions
of NK cells in the acute phase of infection (Petitdemange
et al., 2011). In contrast, compared to controls, NK and NKT-
like (CD3+CD56+) cells had lower cytotoxicity and higher
expression of IFN-γ in the chronic phase. In addition, more of
these cells expressed the inhibitory NKG2A receptor, while fewer
were positive for the activating NKG2D (Thanapati et al., 2017).

Strong cytolytic response and decreased responsiveness to
cytokine stimulation are typical for terminally differentiated
NK cells that mature in progression from CD56brightCD57−

to CD56dimCD57− and then—to CD56dimCD57+ phenotype
(Nielsen et al., 2013). In agreement with that, the shift from
CD56bright to cytolytic and mostly unresponsive to cytokines
CD56dim cells was observed among CD3−CD56+ NK cells
in CHIKV-infected patients (Petitdemange et al., 2011). The
number of terminally differentiated CD57+ NK cells peaked at
the early (up to day 3 pio) acute phase. Persistence of these NK
cells correlated with the viral load, and extended past the day
30 pio in some patients, all of which later developed chronic
arthralgia (Petitdemange et al., 2016). Interestingly, acute joint
pathology in CHIKV-infected mice was associated with NK cell
activity that also becomes detectable in the early acute phase of
the disease (Teo et al., 2015).

Monocytes, Macrophages And Dendritic Cells (DCs)
Monocytes and monocyte-derived macrophages appear to play
a central role in the CHIKV-associated joint pathology. During
CHIKV outbreaks, patients generally develop polyarthritis as
an arthritis-like syndrome (Amdekar et al., 2017) in synovial
joints (Phuklia et al., 2013). The inner lining of synovial joints
is formed by macrophage-like synovial cells and fibroblast-like
synoviocytes, and the latter are known to be important for
the pathogenesis of rheumatoid arthritis (Bartok and Firestein,
2010). Similar to primary human osteoblasts (Noret et al., 2012),
in vitro cultures of primary human fibroblast-like synoviocytes
are susceptible to CHIKV infection, which results in the
secretion of IL-6, IL-8, CCL2/MCP-1 and RANKL by the infected
cells. The supernatants from these CHIKV-infected synoviocytes
induce migration of monocytes as well as differentiation of
monocytes/macrophages into osteoclast-like cells that produce
high levels of arthritis mediators, such as IL-6 and TNF-α
(Phuklia et al., 2013). In the joint, osteoclast-like cells can damage
joint structure and contribute to the arthritic-like syndrome, as it
was shown for rheumatoid arthritis (Schett, 2007).

In the chronic phase, macrophages were proposed to act as
cellular reservoirs of persistent CHIKV (Labadie et al., 2010) and
as regulators of the local Th1/Th2 balance (Dupuis-Maguiraga
et al., 2012) in the damaged tissues that they infiltrate together
with other mononuclear inflammatory cells. Such infiltrates were
observed in the muscles of CHIKV-infected mice (Ziegler et al.,
2008), in the muscles, joints, lymphoid tissues and liver of the
infected macaques (Labadie et al., 2010), and in human biopsy
samples. For example, in one chronic patient, both CHIKV
RNA and proteins in the perivascular synovial macrophages
were detected 18 months post-infection. While the synovial fluid
contained activated CD56+ NK and CD4+ T cells, the majority
(∼50%) of infiltrating cells were CD14+ monocytes (Hoarau
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et al., 2010). Virus persistence and active monocyte trafficking
into the synovial tissue and fluid were associated with the robust
expression of IFN-α (Hoarau et al., 2010), a potent inhibitor of
CHIKV replication (Sourisseau et al., 2007). In agreement with
that, high levels of IFN-αwere produced bymonocytes andwhole
blood cultures that were infected with CHIKV in vitro (Her
et al., 2010). The importance of monocytes for limiting CHIKV
infection is further illustrated in a mouse model, where depletion
of Ly6Chi CCR2+ (receptor for CCL2/MCP-1) monocytes in vivo
promoted a more severe disease (Haist et al., 2017).

In a mouse model, macrophages were shown to be important
for both–viral clearance and development of arthritic symptoms
(Gardner et al., 2010). Similar to human primary macrophages
(Sourisseau et al., 2007), primary mouse macrophages (Gardner
et al., 2010) and transformed RAW264.7 mouse macrophage cells
(Kumar et al., 2012b; Nayak et al., 2017) are also susceptible to
CHIKV in vitro. Nonetheless, in the two recent studies conflicting
results were obtained regarding CHIKV ability to cause apoptosis
in the infected cells. No apoptosis was observed by Kumar et al.
(2012b), while the study by Nayak et al. reported apoptosis
induction through both–intrinsic and extrinsic pathways (Nayak
et al., 2017). Both studies recorded an upregulation of IL-6
and TNF-α levels (Kumar et al., 2012b; Nayak et al., 2017).
We note here, that two protective mechanisms of the host—
apoptosis and autophagy—can play both pro- and antiviral roles
in CHIKV infection, as discussed in the review by Long andHeise
(2015).

DCs, another monocyte-derived cell type, participate in
antigen presentation and therefore connect the innate and
adaptive immune responses. Although shown to be susceptible to
CHIKV in cynomolgus macaques (Labadie et al., 2010), cultures
of primary human DCs (unlike monocyte-derived macrophages)
appear to be resistant to CHIKV (Sourisseau et al., 2007).
There are only a few studies related to the interaction of DCs
with CHIKV. One of those assessed the role of dendritic cell
immunoreceptor (DCIR) in CHIKV infection in mice. In this
work, CHIKV decreased the number of DCIR+ cells at the site
of infection. It also altered cytokine expression in cultures of
bone marrow-derived dendritic cells from DCIR−/− mice. In
addition, infected DCIR−/− mice developed more severe disease
symptoms, such as edema, increased inflammation and weight
loss, suggesting a role for this receptor in limiting CHIKV-
induced inflammatory response (Long et al., 2013). In another
study, intracerebroventricular injection of CHIKV in neonate
mice promoted the infection of astrocytes that was accompanied
by a robust mobilization of DCs restricted to the site of infection
(Das et al., 2015).

It is important to mention, that the current understanding
of the cell-mediated immune responses to CHIKV is often
based on the research done in animal models [reviewed
comprehensively elsewhere (Broeckel et al., 2015; Fox and
Diamond, 2016; Haese et al., 2016)], and none of those
models completely recapitulates the course of CHIKVD in
humans (Roosenhoff et al., 2016). In line with that, the roles
of the less studied immune cell types, such as γδ T cells
(Long et al., 2016), neutrophils and eosinophils (Poo et al.,
2014) to our knowledge are only described in the context

of CHIKVD in mouse models. Therefore, further research is
required to fully understand the role of those cell types in the
protection from or development of CHIKV-associated pathology
in humans.

Humoral and Cellular Adaptive Immune
Response to CHIKV
Pathogen-specific, humoral and cell-mediated immune responses
that together constitute the adaptive immunity are carried
out by B and T lymphocytes, respectively. An induction
of anti-CHIKV antibodies that subsequently led to rapid
clearance of the virus was demonstrated in a mouse model.
In accordance with that, B cell (µMT) knockout mice
showed a more severe disease and persistent viremia (for
over a year) highlighting the importance of these antibody-
producing cells for CHIKV clearance (Lum et al., 2013). In
Rag1−/− mice that lack both B and T cells, prophylactic
administration of anti-CHIKV monoclonal antibodies was
sufficient to prevent virus persistence (Hawman et al., 2013).
In addition, therapeutic administration of a human neutralizing
monoclonal antibody in rhesus monkeys at days 1 and 3 after
CHIKV infection blocked virus spread and inflammation in
several tissues including joints and muscles (Broeckel et al.,
2017).

In humans, anti-CHIKV IgG is first detected in the
early convalescent stage, when naturally-acquired IgG response
is dominated by the antibodies of IgG3 subtype. Early
appearance of these antibodies correlates with protection against
complications of the chronic CHIKVD (Kam et al., 2012b).

Both in humans and mice the antibody-mediated immune
response seems to primarily target the envelope glycoprotein
E2 of CHIKV (Kam et al., 2012a; Smith et al., 2015; Weber
et al., 2015; Weger-Lucarelli et al., 2015). Moreover, the
majority (70–80%) of the antibodies are estimated to be directed
against the single linear epitope (E2EP3) in the N-terminus
of the viral E2 protein. Accordingly, CHIKV infection in
mice vaccinated with E2EP3 peptides was characterized with
reduced infectivity of the virus and better clinical outcomes
with decreases in viremia and joint inflammation. In plasma
samples from patients in convalescent and recovery stages, anti-
E2 antibodies were also shown to be the most persistent—
they were detectable 21 months pio, unlike anti-E3, anti-capsid
and anti-nsP3 antibodies that had been present only earlier in
the course of the disease (Kam et al., 2012a). According to
epitope mapping, monoclonal antibodies produced only against
the epitopes on the outer surfaces (and not facing the interior
of the E2/E1 trimer structure) were neutralizing (Fong et al.,
2014).

The role of specific anti-CHIKV antibodies in the disease
immunopathology has also been studied. Recently, two
peptides of CHIKV E1 glycoprotein were identified by
in silico bioinformatic analysis and showed similarity to
human proteins. These E1 peptides were recognized by
the serum from CHIKV-infected patients and were able
to induce muscle inflammation in mice, thus showing
that molecular mimicry between virus and host proteins
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contributes to CHIKV pathology (Reddy et al., 2017). In
another study, sub-neutralizing levels of CHIKV-specific
antibodies aggravated the disease in mice, showing thereby
that antibody-mediated enhancement of CHIKVD severity
is also possible and requires consideration (Lum et al.,
2018).

Cytotoxic CD8+ T cells represent one of the major resources
of antiviral immunity and are responsible for destruction of
the infected cells. Analysis of circulating T lymphocytes showed
that in acutely infected patients the early stage of the CHIKVD
is accompanied by activation and proliferation of CD8+ T
lymphocytes with a peak at day 1 pio (Wauquier et al., 2011).
Higher percentages of activated CD8+ cells remained in the
blood 7–10 weeks post-infection in the patients with CHIKV-
associated arthritis symptoms. Elevated numbers of CD8+ cells,
as compared to healthy controls, were also observed in patients
with untreated rheumatoid arthritis (Miner et al., 2015).

While CD8+ T cell response marks the early stage of CHIKV
infection, CD4+ T cell lymphocyte-mediated immune response
increases toward the end of the acute phase, peaking at day 4 pio
(Wauquier et al., 2011).

The main function of CD4+ T helper cells is to support and
modulate the activity of other immune cells. This is achieved via
production of cytokines that stimulate cell-mediated immunity
and antibody responses. The role of these cells in CHIKV
infection was studied in CD4−/− andCD8−/− KOmice. CHIKV-
specific CD4+ and not CD8+ T cells were directly linked to the
IFN-γ-independent inflammation in the joints, without evident
role in replication and dissemination of the virus in the body
(Teo et al., 2013). Moreover, a transfer of splenic CD4+ T
cells from CHIKV-infected wild-type mice into T cell receptor-
deficient CHIKV-infected mice promoted a severe joint disease
in the latter, further illustrating the essential role of CD4+ T
cells in the CHIKV-associated joint inflammation (Teo et al.,
2017).

Therapeutic strategies based on the inhibition of CD4+

T cells were developed and proved to be promising. For
example, a treatment with FTY720 (fingolimod), an agonist
of a phosphorylated sphingosine 1-phosphate receptor 1
(S1PR1), successfully abrogated joint pathology in CHIKV-
infected mice by blocking the S1PR1-mediated emigration
of CD4+ T cells from the lymph nodes into the joints
(Teo et al., 2017). In a parallel study, CHIKV-infected mice
were treated with a fusion protein CTLA4-Ig (abatacept) that
blocks costimulatory receptors on the surface of T cells and
prevents activation of the latter. The treatment resulted in
decreased inflammation and lower numbers of CD11b+/Ly6C+

monocytes, NK and T cells in the joints of the infected
animals. Although unsuccessful at completely clearing the viral
RNA, a combined therapy with CTLA4-Ig and anti-CHIKV
monoclonal antibodies quickly eliminated the infectious virus
and further improved disease pathology (Miner et al., 2017).
Both works focused on acute joint pathology and called for
testing of abovementioned approaches for the treatment of the
chronic CHIKV-induced arthritis (Miner et al., 2017; Teo et al.,
2017).

CYTOKINES AS IMMUNOLOGICAL
MARKERS IN CHIKV-ASSOCIATED
DISEASE

A vast number of samples were collected during the recent
outbreaks around the world. In combination with increasing
availability of high-throughput screening platforms, this allowed
researchers to link various aspects of CHIKVD to expression
profiles of cytokines, chemokines and growth factors in humans.
We outline these expression profiles on Figure 4 and summarize
the principal findings below.

Ng et al., Wauquier et al., and Reddy et al. used plasma
samples from acutely infected patients and uninfected individuals
to compare levels of cytokines, chemokines and growth factors.
The study by Ng et al. analyzed the levels of 30 such molecules,
of which 12 were upregulated, and 4–downregulated (Ng et al.,
2009). A similar comparison by Wauquier et al. included
50 soluble proteins, of which 25 were upregulated (including
ICAM-1, VCAM-1, and RANTES that were undetectable in
controls) and 10–downregulated. Notably, the exclusion of older
individuals from the analysis did not affect these results. Many
of the upregulated proteins (e.g., IFN-γ, IL-6, CXCL10/IP-10,
CCL2/MCP-1, and others) showed dynamic expression pattern
with levels changing across the sampling timeline (day 0–7
pio). The levels of many cytokines varied sufficiently not only
at different time points, but also between individuals. IFN-
α2, whose inter-individual levels were somewhat homogenous,
represented one of the few exceptions (Wauquier et al., 2011).
Out of 15 cytokines and chemokines tested by Reddy et al. (2014),
seven were upregulated, one was downregulated, and only the
upregulation of IL-6 and CXCL10/IP-10 was in agreement with
both of the abovementioned studies (Ng et al., 2009; Wauquier
et al., 2011).

Dynamic expression of cytokines and chemokines is not
exclusive to the early acute phase. Venugopalan et al. showed
that Th1 cytokines (e.g., IFNs -α, -β, -γ, IL-1β, CXCL10/IP-
10, CCL2/MCP-1) reach maximum levels between days 0 and
5 pio, and Th2 cytokines (e.g., IL-4, IL-13)—between days 15
and 30 pio (Venugopalan et al., 2014). Chow et al. also reported
the bias toward Th2 cytokines in the early convalescent stage
(around 10 days pio). In the same study, the levels of RANTES
and EGF peaked in the late convalescent stage (4–6 weeks pio)
and of IL-17—in the chronic phase (2–3 months pio) (Chow
et al., 2011). Later in the chronic phase Kelvin et al. found that
high IgG levels were accompanied by increased levels of IL-6,
CXCL9/MIG, and CXCL10/IP-10 in the 6-months follow-up of
CHIKVD patients. In the 12-months follow-up, high IgG levels
coincided with higher levels of CXCL9/MIG and lower—of IL-10
(Kelvin et al., 2011).

The relationship between the expression profile of cytokines
and chemokines in the early phases of CHIKVD and the severity
of the disease was studied in various contexts and yielded
different results. The severity of symptoms in the 2007 outbreak
in Singapore was associated with high levels of IL-1β and IL-
6 and a decrease in the level of RANTES (Ng et al., 2009). At
the same time, in the 2007 outbreak in Italy the severity of
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CHIKVD was associated with increased levels of CXCL9/MIG,
CXCL10/IP-10, and IgG (Kelvin et al., 2011). During the 2009–
2010 outbreak in Thailand, the severity of CHIKVD was linked
to elevated levels of IL-6 and CCL2/MCP-1 and decreased levels
of IL-8 (Lohachanakul et al., 2012). In CHIKV-infected mice, the
expression levels of monocyte chemoattractant proteins MCP-
1/CCL2, MCP-2/CCL8, and MCP-3/CCL7 were increased in
joints and the treatment with MCP inhibitor reduced the virus-
induced bone loss in these animals (Chen et al., 2015).

Other relationships of cytokine and chemokine levels in the
course of CHIKVD were established as well. For example, strong
Th2 cytokine response was associated with prolonged presence
of musculoskeletal symptoms of CHIKVD (Venugopalan et al.,
2014), and increased levels of IL-6 (Chaaitanya et al., 2011; Chow
et al., 2011) and of GM-CSF (Chow et al., 2011)—specifically with
persistent arthralgia.

Another interesting observation regards the correlation of
cytokine and chemokine levels with viral loads. High viral load
positively correlates with the levels of IFN-α, IL-6, IL-12, IL-1RA,
CXCL10/IP-10, and CCL2/MCP-1 (Chow et al., 2011), which
seems to be in agreement with the recent data from Teng et al.
(2015). Similarly, CCL2/MCP-1 correlated strongly, and IL-6—
moderately with high viral load in the patients in the acute phase
that were positive for CHIKV RNA (Reddy et al., 2014).

A comprehensive catalog of genes that are differentially
expressed upon CHIKV infection was obtained by using RNAseq
in a mouse model. Gene expression changes were in agreement
with previously published mouse, monkey and human studies,
and allowed for identification of an emerging role for granzymeA
in CHIKV-associated arthritis (Wilson et al., 2017). Nonetheless,
we would like to emphasize that extreme caution should be taken
when extrapolating conclusions from studies in animal models to
humans. For example, anti-CHIKV IgG3 antibodies, abundant in
humans (Kam et al., 2012b), were not detected in mice at all (Patil
et al., 2012; Teo et al., 2015). Opposite to humans (Venugopalan
et al., 2014), the cytokine response in mice is shifted from Th2
early in the acute phase (Patil et al., 2012; Teo et al., 2015) toward
Th1 later in the course of the disease (Patil et al., 2012). This early
Th2 response was further enhanced when mice were infected via
mosquito bite (Thangamani et al., 2010; Saraswat et al., 2016).
This finding highlights the importance of both–the choice of
the animal model and of the virus transmission route in the
experimental system.

The authors of the abovementioned works further discussed
the roles of Th1 and Th2 cytokine responses (Venugopalan
et al., 2014), type I and II IFN signaling (Chirathaworn et al.,
2010; Wauquier et al., 2011; Long and Heise, 2015), and the
involvement of individual cytokines and chemokines: IL-6
(Chow et al., 2011; Kelvin et al., 2011), IL-13 (Venugopalan
et al., 2014), IL-7, IL-15, RANTES (Ng et al., 2009), IL-18
(Chirathaworn et al., 2010), IL-1β, TNF-α, CXCL9/MIG,
CXCL10/IP-10, and CCL2/MCP-1 (Kelvin et al., 2011).
Simarmata et al. elaborated on the association of lower levels of
pro-inflammatory cytokine GM-CSF with joint pain in CHIKV-
infected children (Simarmata et al., 2016). Recent work by Chen
et al. also connected the activation of NLRP3 inflammasome by
CHIKV with upregulation of IL-1β and IL-18, as well as with the

inflammation and osteoclastogenic bone loss in the CHIKVD
(Chen et al., 2017).

Several explanations were suggested for discrepancies between
cytokine, chemokine and growth factor expression profiles
observed in patients with CHIKVD. One variable that needs
to be considered is the genotype of the virus, which can
affect the degree of joint pathology, the extent of inflammatory
cells infiltration, and the intensity of cytokine response (Teo
et al., 2015). Other important factors were pointed out by the
authors of the studies that are shown here on Figure 4. In
particular, attention was drawn to the differences in experimental
approaches (Wauquier et al., 2011; Venugopalan et al., 2014),
cohort sizes (Chow et al., 2011; Wauquier et al., 2011;
Venugopalan et al., 2014), genetic backgrounds (Kelvin et al.,
2011; Reddy et al., 2014), disease stages included into analyses
(Chirathaworn et al., 2013), disease severity (Reddy et al., 2014),
sources (e.g., plasma or serum) of the samples (Teng et al.,
2015) and their collection times (Chirathaworn et al., 2013;
Venugopalan et al., 2014).

CHIKV VACCINES AND ANTI-CHIKV
MONOCLONAL ANTIBODIES

As of September of 2018, after over 50 years of development,
there are no licensed vaccines or antiviral therapeutic strategies
for prevention or treatment of CHIKV infection (Ljungberg et al.,
2016; Powers, 2018).

The first formalin-inactivated CHIKV vaccine was produced
in the culture of green monkey kidney tissue in the 1970s and
was shown to be tolerated and immunogenic in 16 healthy
human adults (Harrison et al., 1971). Recently, a formalin-
inactivated CHIKV vaccine produced in Vero cells neutralized
the virus infectivity by stimulation of both humoral and
cellular immune response in the immunized mice (Tiwari et al.,
2009). Additionally, both recombinant E2 protein and whole-
inactivated virus vaccines protected mice from CHIKV infection,
and no virus was detected in the tissues of immunized animals
(Kumar et al., 2012a).

Over the years, several vaccine candidates were evaluated as
possible preventive approaches. Among those are inactivated
(Rudd et al., 2015; DeZure et al., 2016) and live attenuated
(Edelman et al., 2000; Plante et al., 2011; Chu et al., 2013;
Hallengärd et al., 2014; Roy et al., 2014; Roques et al., 2017)
viruses, DNA (Mallilankaraman et al., 2011; Bao et al., 2013;
Hallengärd et al., 2014; Tretyakova et al., 2014; Muthumani
et al., 2016; Roques et al., 2017) and subunit (Metz et al.,
2011, 2013; Khan et al., 2012) vaccines, as well as vaccines
that are based on virus-like particles (VLPs) obtained from
yeast (Saraswat et al., 2016), insect (Metz et al., 2013) and
mammalian cells (Akahata et al., 2010; Chang et al., 2014). A
large group of promising vaccine candidates takes advantage of
chimeric avirulent backbones of measles (Brandler et al., 2013;
Ramsauer et al., 2015) and vaccinia viruses (García-Arriaza et al.,
2014; Weger-Lucarelli et al., 2014), adenovirus (Wang et al.,
2011a), vesiculovirus (Chattopadhyay et al., 2013) and alternative
alphaviruses (Wang et al., 2011b; Erasmus et al., 2017). Candidate
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vaccines are tested in mouse and NHPmodels, and some of them
have completed—NCT02861586 (Edelman et al., 2000) or are
currently in the phase 2 clinical trials NCT02562482 (Chang et al.,
2014).

Each of these approaches has its own advantages and
limitations, and their immunogenicity should be carefully
balanced with tolerability, lack of adverse effects and overall
safety. For example, one of the early candidate vaccines was
based on the live attenuated CHIKV strain 181/clone 25. In
phase 2 clinical trials, it elicited neutralizing antibodies in 98%
of recipients by day 28, and 85% of vaccinated individuals
remained seropositive 1 year after immunization. Nonetheless,
8% of vaccinees developed transient arthralgia, although without
arthritic signs or flu-like syndromes (Edelman et al., 2000).

Recently, vaccine candidates were developed that employ
a picornavirus internal ribosome entry site (IRES) to render
them incapable of infecting mosquitos and to reduce the
expression of CHIKV structural protein genes (Plante et al.,
2011; Roy et al., 2014). A single dose of such live attenuated
virus was shown to be highly immunogenic and prevented
the development of the hyperthermia and acute viremia
in cynomolgus macaques (Roy et al., 2014). Interestingly,
this Indian Ocean lineage-based vaccine can provide both–
protection against other CHIKV lineages (Langsjoen et al.,
2018) and cross-species protection against O’nyong’nyong virus
(Partidos et al., 2012).

Current antiviral development strategies rely on exploitation
of known antiviral agents and chemicals against other pathogens
and synthesis of novel compounds (Ravichandran and Manian,
2008; Abdelnabi et al., 2015; Powers, 2018; Subudhi et al.,
2018), nucleic acid-based therapies (Dash et al., 2008; Parashar
et al., 2013; Lam et al., 2015) and anti-CHIKV monoclonal
antibodies (Pal et al., 2013, 2014; Selvarajah et al., 2013; Clayton,
2016; Broeckel et al., 2017). In the last years, the use of
monoclonal antibodies (mAbs) as therapeutic agents against
CHIKV infection was evaluated by several groups, as reviewed
by April M. Clayton (Clayton, 2016). Human anti-CHIKV mAbs
were shown to have both–prophylactic and therapeutic effects
in an adult wild-type mouse model of CHIKVD (administered
8 or 18 h post-virus challenge; Selvarajah et al., 2013), and to
protect immunocompromised Ifnar1−/− mice from lethal virus
challenge (Smith et al., 2015). Similarly, in the screening of 230
mouse anti-CHIKV mAbs, 36 were found to be neutralizing, of
which a combination of two was the most potent in protecting
Ifnar1−/− mice against CHIKV-induced death (Pal et al., 2013).
This combination was used in the follow-up study, where

it neutralized infectious CHIKV in blood and reduced viral
burden in the joints and muscles of the legs of infected rhesus
macaques (Pal et al., 2014). Recently, it was also shown that
the treatment of rhesus macaques with an anti-CHIKV mAb
(SVIR0001) administered after virus infection reduced viremia,
joint disease, cellular inflammatory infiltration and the levels
of pro-inflammatory cytokines and chemokines (Broeckel et al.,
2017).

CONCLUSIONS

In the light of recent outbreaks, interest in CHIKV from
the scientific community has grown significantly. Despite
an outstanding progress in the CHIKV research, several
questions regarding its immunopathology and associated
arthritic syndrome remain to be answered. It is clear that
further research is necessary to establish better in vitro and
in vivo systems to study CHIKV infection and a consistent
and reproducible picture of molecular immune response
elicited against it, which in turn would pave the way to the
discovery of markers that may be associated with disease
morbidity and prognosis. Lastly, the treatment of CHIKVD
is mostly symptomatic and no approved vaccine or antiviral
drug currently exists. We believe that the development of
safe and robust prevention and treatment approaches for
CHIKV infection needs to be given top priority among
researchers.
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