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Pseudomonas aeruginosa is a significant cause of mortality in patients with cystic

fibrosis (CF). To explore the interaction of the CF isolate P. aeruginosa PASS1 with the

innate immune response, we have used Danio rerio (zebrafish) as an infection model.

Confocal laser scanning microscopy (CLSM) enabled visualization of direct interactions

between zebrafish macrophages and P. aeruginosa PASS1. Dual RNA-sequencing

of host-pathogen was undertaken to profile RNA expression simultaneously in the

pathogen and the host during P. aeruginosa infection. Following establishment of

infection in zebrafish embryos with PASS1, 3 days post infection (dpi), there were

6739 genes found to be significantly differentially expressed in zebrafish and 176 genes

in PASS1. A range of virulence genes were upregulated in PASS1, including genes

encoding pyoverdine biosynthesis, flagellin, non-hemolytic phospholipase C, proteases,

superoxide dismutase and fimbrial subunits. Additionally, iron and phosphate acquisition

genes were upregulated in PASS1 cells in the zebrafish. Transcriptional changes in the

host immune response genes highlighted phagocytosis as a key response mechanism to

PASS1 infection. Transcriptional regulators of neutrophil and macrophage phagocytosis

were upregulated alongside transcriptional regulators governing response to tissue injury,

infection, and inflammation. The zebrafish host showed significant downregulation of

the ribosomal RNAs and other genes involved in translation, suggesting that protein

translation in the host is affected by PASS1 infection.

Keywords: RNA-Seq, host-pathogen interactions, virulence,Pseudomonas aeruginosa, zebrafish, innate immunity

INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic fibrosis
transmembrane conductance regulator gene (Freedman et al., 1999; Phennicie et al., 2010). It is
most prevalent among the Caucasian population, affecting 1 in 2,500 new-borns (Freedman et al.,
1999). CF lung disease is the major cause of morbidity and mortality among CF patients and is a
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result of colonization and infection of airways with bacteria,
fungi, and viruses (Cantin et al., 2015). In early childhood,
the CF lung is mainly colonized by Staphylococcus aureus and
Haemophilus influenzae, although later in a CF patient’s life,
P. aeruginosa typically takes over as the dominant pathogen
(Davies, 2002).

P. aeruginosa is a versatile Gram-negative microorganism
found commonly in both terrestrial and aquatic environments
(Whitehead et al., 2006; Sousa and Pereira, 2014). Its 6.3Mb sized
genome supports its metabolic versatility and, consequently, its
adaptability to diverse environments (Blázquez et al., 2006). This
opportunistic pathogen can cause acute and chronic infections
in immunocompromised people, such as AIDS sufferers and
neutropenic patients undergoing chemotherapy, and patients
with injuries, catheters, burn wounds, and non-CF-associated
pulmonary infections (Lyczak et al., 2000; Papaioannou et al.,
2013). P. aeruginosa infection often becomes the major cause of
morbidity and mortality in CF patients (Folkesson et al., 2012).

The respiratory pathogenesis of P. aeruginosa can be
attributed to an array of key virulence factors, including flagella,
type III secretion system, phenazines, the iron scavenging
siderophores pyochelin and pyoverdine, lipopolysaccharide,
elastase, alkaline proteases, hemolysins (phospholipase and
lecithinase), cytotoxins (leukocidin), and exotoxin A (Sadikot
et al., 2005; Gellatly and Hancock, 2013). P. aeruginosa chronic
infections in the CF lung also provoke aggressive inflammatory
reactions, such as the host neutrophilic response which releases
oxidants and enzymes detrimental to the host tissue (Davies,
2002; Phennicie et al., 2010; Gellatly and Hancock, 2013).

The pathogenesis of P. aeruginosa has been studied using
diverse model host organisms including Dictyostelium
discoideum, Arabidopsis thaliana, Caenorhabditis elegans,
Drosophila melanogaster, Galleria mellonella, rodents, and
zebrafish (Clatworthy et al., 2009). Zebrafish has been previously
used to study aspects of pathogenesis of P. aeruginosa (Phennicie
et al., 2010; Diaz-Pascual et al., 2017), as well as other bacterial
pathogens including Salmonella typhimurium, S. aureus,
Burkholderia cenocepacia, H. influenzae, Leptospira interrogans,
and Listeria monocytogenes (Meijer and Spaink, 2011).

Zebrafish is a teleost fish with a total genome size of 1.412
gigabases (van der Sar et al., 2003; Howe et al., 2013). Genome
comparison has revealed that ∼70% of human genes have
a clear zebrafish ortholog (Howe et al., 2013). Remarkable
similarities have been observed with human transcriptional
regulators, immune effectors, immune recognition systems,
defense signaling pathways, and macrophage lineages (Cui et al.,
2011; Meijer and Spaink, 2011; Hall et al., 2013) which make
zebrafish a good model for studying host-pathogen interaction.

There are several other advantages in using zebrafish embryos
as a model organism for study of human infections. These
include ease in handling, low cost, rapid development and the
ability of a single pair of adult zebrafish to produce hundreds

Abbreviations: CF, cystic fibrosis; CLSM, confocal laser scanning microscopy;
YFP, yellow fluorescent protein; HPI, hours post infection; DPI, days post
infection; PBS, phosphate buffered saline; LB, Luria-Bertani; SOCS, suppressors
of cytokine signaling; HPF, hours post fertilization.

of offspring every week (Lessman, 2011; Meijer and Spaink,
2011). It is optically transparent and the availability of transgenic
lines with fluorescently marked immune cells allows for real-
time visualization of in vivo microbe-phagocyte interactions at
high resolution throughout the organism (Clatworthy et al., 2009;
Lessman, 2011; Meijer and Spaink, 2011).

In zebrafish, the innate and adaptive immune systems develop
sequentially. The innate immune response is developed at the
embryonic and early larval stages with early lymphocytes making
their first appearance in the 4-day-old larvae, and a full adaptive
immune system developing at about 3 weeks of age (Torraca
et al., 2014). The innate immune system is the host’s first line of
defense against infections and includes physical barriers, cellular,
and humoral components such as complement and acute phase
proteins (Cui et al., 2011; van Soest et al., 2011). It is responsible
for early recognition of pathogens and triggering an appropriate
pro-inflammatory response (Mogensen, 2009; van der Vaart et al.,
2012; Torraca et al., 2014). The main phagocytic cell types of the
innate immune system are macrophages and neutrophils (Sieger
et al., 2009; Torraca et al., 2014). In zebrafish embryos, as early
as one day post fertilization, functional macrophages are capable
of sensing and responding to microbial infections (Meijer and
Spaink, 2011). Both neutrophils and macrophages can lead to
bacterial clearance by engulfing and killing bacterial pathogens.
The bacterial pathogens shown to be engulfed by these phagocytic
cells include P. aeruginosa and S. aureus (Brannon et al., 2009;
Clatworthy et al., 2009; Sieger et al., 2009).

Global gene expression studies of wild-type zebrafish embryos
using a zebrafish microarray have been conducted following
static immersion with Edwardsiella tarda, Escherichia coli, P.
aeruginosa strain PA14 and strain PAO1, whereas systemic
infection has been studied with E. tarda and S. typhimurium
(Ordas et al., 2011; van Soest et al., 2011). Infection in
zebrafish embryos is often established via injection into the
blood circulation, and response to infection with various
bacterial pathogens has been subjected to microarray analysis
(Stockhammer et al., 2009; van der Sar et al., 2009; van Soest
et al., 2011; van der Vaart et al., 2013; Lima et al., 2014).
Specifically, zebrafish embryos are usually microinjected with
bacterial pathogens directly into the blood circulation at 1-3 day
post fertilization, mostly using the posterior blood island or into
the duct of Cuvier, a wide blood circulation valley on the yolk sac
connecting the heart to the trunk vasculature (Meijer and Spaink,
2011).

RNA sequencing (RNA-Seq) has previously been used
to study innate immune response of zebrafish embryo to
systemic S. typhimurium infection (Ordas et al., 2011). Ordas
et al. (2011) used a combination of Tag-Seq, RNA-Seq and
microarray transcriptome data to compile an annotated reference
set of infection-responsive genes in the zebrafish embryos.
These included genes encoding transcription factors, signal
transduction proteins, cytokines and chemokines, complement
factors, proteins involved in apoptosis and proteolysis, proteins
with antimicrobial activities, as well as many known or novel
proteins not previously linked to the immune response.

Despite the importance of P. aeruginosa pathogenesis in CF
lung infection, the use of zebrafish as an alternative model
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to understand host-pathogen interaction until recently had
remained unexplored. Diaz-Pascual et al. (2017) have recently
profiled the global proteome of both zebrafish and P. aeruginosa
PAO1 following establishment of P. aeruginosa PAO1 infection
via immersion and injection (Diaz-Pascual et al., 2017). However,
the interaction of zebrafish and P. aeruginosa remains to be
elucidated at a global transcriptome scale. Hence, the aim of this
study was to investigate the interaction of zebrafish embryos with
the virulent P. aeruginosaCF isolate PASS1 (Penesyan et al., 2015)
by visualizing macrophage-PASS1 interaction and analyzing the
simultaneous global gene expression profiles of both organisms
via RNA sequencing (RNA-Seq). To our knowledge, this is the
first study describing the dual transcriptome of P. aeruginosa-
zebrafish interaction.

METHODS

P. aeruginosa Strain and Growth
Conditions
The bacterial strains used in this study were P. aeruginosa PASS1
(Penesyan et al., 2015) obtained from the sputum of a 40-
year old female patient and yellow fluorescent protein (YFP)-
tagged P. aeruginosa PASS1 (Kaur et al., 2015). The strains
were maintained in a glycerol stock at −80◦C, and prior to
each experiment, were grown on Luria Bertani (LB) agar plates
and incubated at 37◦C till isolated colonies were obtained. The
isolated colonies were then cultured in LB broth overnight at
37◦C with constant shaking at 150 rpm. Cells from overnight
cultures were washed, pelleted at 6,000 g for 10min at 4◦C
and resuspended into sterile PBS. The cell concentration was
estimated by measuring the optical density at 600 nm. Following
estimation of cell concentration, the cells were diluted in PBS
to an optical density OD600 of 2.0 which corresponds to 4.08 ×

108 CFU/mL. For visualization of the bacterial suspension during
injection of zebrafish embryos an aliquot of phenol red sodium
salt stock solution was added to a final concentration of 0.01%.

Visualization of PASS1-YFP Infection in
Zebrafish Embryos by Confocal
Microscopy
The injection apparatus for the zebrafish embryos was set up
as described by Brudal et al. (2014). Zebrafish embryos derived
from adults of the Tg(mpeg1:Gal4, UAS;mCherry-CAAX) (Ellett
et al., 2011) were manually dechorionated and maintained at
29◦C prior to injection at 48 hours post fertilization (hpf).
The embryos were anesthetized with 0.005 w/vol % ethyl 3-
aminobenzoate methanesulfonate (Tricaine) for 1–2min and
placed on 2% agarose plates for injection. PASS1-YFP cells (in
a volume of 0.7 to 1 nl) were microinjected into the duct
of Cuvier, as visually ascertained under the stereomicroscope.
Infected embryos were returned to a petri dish with fresh
embryo medium and incubated for 6 h at 29◦C prior to confocal
microscopy. A mock-infection with only sterile PBS was also
set-up for comparison with the PASS1-YFP infection. Prior to
confocal microscopy zebrafish embryos were anesthetized with
Tricaine as described above, and then transferred to a glass

bottom petri dish with glass cover slip containing a mixture of
embryo water (Zebrafish embryo medium, 2011) and Tricaine.
The anesthetized embryos in the petri dish were then covered
with 1.3% low-melting-point agarose. Confocal microscopy was
performed with an Olympus Fluoview FV1000 IX81 inverted
confocal microscope.

RNA Extraction and RNA-Seq
Transcriptomics
The zebrafish embryos derived from adults of the AB wild-type
line were infected with PASS1 or mock-infected with PBS with
microinjection into the duct of Cuvier (48 hpf) according to
the procedure described above. Infected embryos were returned
to a petri dish with fresh embryo medium and incubated for
3 dpi at 29◦C prior to RNA isolation. At 3 dpi, 9 randomly
chosen zebrafish embryos from each group were euthanized
by a prolonged immersion in an overdose of 50 mg/L Tricaine
solution and transferred into 1.5ml Eppendorf tubes. Three
embryos were then pooled to represent one sample to allow for
sufficient amount of starting material for RNA isolation. The
embryo water was replaced by RNAlater (Ambion) immediately
after transfer of embryos to fresh 1.5ml Eppendorf tubes. The
samples were kept at 4◦C until RNA was isolated. For the
extraction of total RNA, RNAlater was replaced with 600 µl of
Qiazol, and the tissue was homogenized using a pestle motor
followed by drawing of sample with a needle 5 times till tissue
was completely homogenized. As a control, RNA was isolated
from PASS1 cultures grown in LB to anOD600 = 1.0. For both the
zebrafish and bacterial culture, RNA extractions were performed
using the miRNeasy Mini kit (Qiagen) according to the
manufacturer’s protocols. An additional DNase treatment was
performed with a TURBO DNA-free kit (Ambion) according to
the manufacturer’s protocols. The concentration of the extracted
RNA was measured using a NanoDrop Spectrophotometer.
The total RNA samples were subjected to ribosomal RNA
(rRNA) depletion, zebrafish samples mock-infected with
PBS were treated with Ribo-Zero Gold rRNA Removal Kit
(Human/Mouse/Rat) (Illumina), zebrafish infected with PASS1
were treated with Ribo-Zero rRNA Removal Kit (Gram-negative
Bacteria) (Illumina) followed by Ribo-Zero Gold rRNA Removal
Kit (Human/Mouse/Rat) and the PASS1 sample grown in LB
was treated with Ribo-Zero rRNA Removal Kit (Gram-negative
Bacteria). The depletion steps and subsequent 125 bp paired-end
RNA Sequencing on a HiSeq2500 (Illumina) were performed at
the Australian Genome Research Facility (Melbourne, Australia).

Bioinformatic Analyses of Transcriptomic
Data
Sequencing data were assessed for quality using FastQC software
(Babraham Bioinformatics). The transcriptomes of zebrafish
infected with PASS1 and PBS were mapped against the zebrafish
genome (Ensembl). Bacterial transcriptomic data were mapped
against the PAO1 (NCBI) genome. Transcriptome mapping was
undertaken with TopHat2 and normalized based on FPKM
differential expression calculation using Cuffdiff (Trapnell et al.,
2012).
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Significantly differentially expressed genes in PASS1 (p ≤

0.01 and log2 fold-changes cut-off −1≥ to ≤1) were mapped
to annotated pathways and to cluster of orthologous groups
of P. aeruginosa strain PAO1, obtained from the Pseudomonas
Database (Winsor et al., 2016).

Significantly differentially expressed genes in zebrafish
(p ≤ 0.01 and log2 fold-changes cut-off −1≥ to ≤1) were
functionally annotated using Ingenuity Pathway Analysis
(Ingenuity Systems Inc., Redwood City, CA). A total of
3,238 differentially expressed genes were successfully mapped
(Table S6). Functional annotation and gene ontology (GO)
classification was conducted separately of the upregulated and
downregulated genes in zebrafish-P. aeruginosa PASS1 infection
using DAVID (The Database for Annotation, Visualization, and
Integration Discovery) version 6.8 (Huang da et al., 2009a,b).

RESULTS AND DISCUSSION

Confocal Laser Scanning Microscopy of
Macrophage - P. aeruginosa PASS1
Interaction in Zebrafish
Macrophages are important effector cells of the innate immune
response that can rapidly phagocytose bacteria and alert the
immune system to danger (Kline et al., 2009).We have previously
generated a (YFP)-labeled derivative of the CF isolate P.
aeruginosa PASS1, PASS1-YFP (Kaur et al., 2015). The PASS1-
YFP cells were injected into the Duct of Cuvier of transgenic
zebrafish embryos Tg(mpeg1:Gal4, UAS;mCherry-CAAX) (Ellett
et al., 2011) which produce mCherry-labeled macrophages. This
enabled the analysis of macrophage behavior in zebrafish by
confocal laser scanning microscopy (CLSM) visualization.

Strikingly, within 6 h post infection (hpi), P. aeruginosa
PASS1-YFP cells were predominantly found to be associated or
engulfed by macrophages (Figures 1A–C). Previous studies have
shown that macrophages can kill both Gram-positive and Gram-
negative bacteria, including P. aeruginosa, via phagocytosis
(Brannon et al., 2009). Brannon et al. (2009) have shown
the phagocytosis of P. aeruginosa strains PAO1 and PAK by
macrophages to occur within 2 hpi (Brannon et al., 2009).

A central advantage of the zebrafish embryo model is the
ability to monitor infection at a detailed cellular level in real
time. Our CLSM results corroborate previous observations
that macrophages are capable of phagocytosing and killing P.
aeruginosa (Tang et al., 1995; Brannon et al., 2009). Earlier studies
have used the laboratory strains PAO1 and PAK, this is the first
zebrafish study to use a CF isolate. Our previous work showed
that PASS1 is non-mucoid and has a mutation in the lasR gene,
and displays significant phenotypic differences compared with
PAO1, including increased biofilm formation and production of
virulence factors such as phenazines (Penesyan et al., 2015).

Generation of a Dual Host-Pathogen
Transcriptome
The use of a zebrafish embryo model allows the possibility
of global gene expression analysis of both host and microbe
in parallel. This provides an opportunity to investigate the

molecular mechanisms of the interaction between the host innate
immune system and the pathogen. The survival of zebrafish
embryo infected with PASS1 displayed increasedmortality within
24 h of infection followed by gradual decrease in embryo survival
rate till 3 days post infection (dpi) (Figure 2). To investigate host-
pathogen interaction prior to increase in mortality, we isolated
total RNA from PASS1-infected zebrafish (3 dpi), and RNA-Seq
was used to examine the zebrafish and PASS1 transcriptomes in
parallel. The infected zebrafish transcriptome was compared with
phosphate buffered saline (PBS)-injected zebrafish as a negative
control. The transcriptome of P. aeruginosa PASS1 in zebrafish
was compared with PASS1 grown in Luria-Bertani (LB) culture
medium.

A total of 214,749,236 sequence reads were generated from the
total RNA extracted from three independent biological replicates
of PASS1-infected zebrafish. Around 53.2% of the reads aligned
with the P. aeruginosa reference genome while 90% aligned with
the zebrafish reference genome (Table 1).

Whole-Cell Transcriptome Analysis of P.
aeruginosa Infected Into Zebrafish
Analysis of the P. aeruginosa transcriptome data revealed 176
genes to be differentially expressed in P. aeruginosa within the
infected zebrafish (p ≤ 0.01 and log2 fold-changes cut-off −1≥
to ≤1) with 140 genes upregulated and 36 genes downregulated
(Figure 3). Ribosomal RNA genes were the most upregulated
transcripts in P. aeruginosa PASS1 during zebrafish infection
(Figure 3). A number of studies have shown a correlation
between growth rate and rRNA concentration (Bartlett and
Gourse, 1994; Rang et al., 1999; Ramos et al., 2000; Schneider
et al., 2003; Dennis et al., 2004; Benítez-Páez et al., 2012;
Blazewicz et al., 2013). Additionally, translation initiation and
elongation factor genes were also more highly expressed by
PASS1 within the zebrafish (Table S1). This suggests that within
the host there is a higher rate of protein synthesis and cell
proliferation at 3 dpi compared to the late log (OD600 = 1.0)
culture of PASS1 in LB medium.

Expression of Virulence Genes in PASS1
Cells in a Zebrafish Model
Vertebrates are known to deplete both inorganic phosphate and
iron in response to bacterial infection (Skaar, 2010). Consistent
with this the P. aeruginosa phosphate transport and iron
acquisition genes were highly expressed in zebrafish compared
with PASS1 culture in LB (Figure 4). The pyrophosphate
porin gene oprO and the phosphate-binding protein gene
pstS were highly upregulated (9 log2 fold-change and 6.9
log2 fold-change, respectively). Phosphate regulation (phoU),
and DNA degradation (eddA) genes were also upregulated.
All four genes have been identified to be upregulated under
phosphate limitation in vitro (Hancock and Brinkman,
2002; Bains et al., 2012). P. aeruginosa is able to obtain
phosphate from the host cell membrane via hydrolysis of the
phospholipids using phospholipases (Sadikot et al., 2005). The
non-hemolytic phospholipase C gene was highly upregulated
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FIGURE 1 | P. aeruginosa PASS1-macrophage interaction in zebrafish at 6 hpi. (A) A schematic view of a zebrafish embryo. The red box represents the tail region,

and the red arrow indicates vertebrate notochord. Confocal laser scanning microscopy of transgenic embryos of Danio rerio Tg(mpeg1:Gal4, UAS;mCherry-CAAX )

injected into the duct of Cuvier with (B) phosphate buffered saline and with (C) YFP-labelled P. aeruginosa PASS1 at 48 hpf. (B) Post-infection with phosphate

buffered saline, macrophages are localized in the tail region of the vertebrate. (C) The black arrows on the vertebrate notochord in the tail region of zebrafish embryos

indicate either an association or engulfment of P. aeruginosa PASS1-YFP cells (in green) by macrophages (in red).

FIGURE 2 | Percentage survival of zebrafish embryos infected with P. aeruginosa PASS1. Kaplan-Meier representation of the survival of zebrafish embryos infected

with PASS1 and mock-infected with PBS via injection into the duct of Cuvier.

5.8 log2 fold-change in P. aeruginosa PASS1 during zebrafish
infection (Figure 4).

Also upregulated were iron scavenging systems of PASS1.
Pyoverdine biosynthesis genes and the ferri-pyoverdine receptor
gene of the PASS1 strain were significantly upregulated in
zebrafish. P. aeruginosa synthesizes and secretes the siderophore
pyoverdine to scavenge ferric iron from host to overcome iron
limitation during infection (Lamont et al., 2002; Konings et al.,
2013; Nguyen et al., 2014).

In addition, a range of known P. aeruginosa virulence genes
were differentially expressed in the zebrafish host compared
with the culture in LB medium. These include genes encoding
flagella biogenesis and the PasP protease (Figure 4). PasP is an
extracellular protease (Pelzer et al., 2015) able to cleave collagen,
contributing to the loss of epithelial cells (Tang et al., 2009, 2013).

The P. aeruginosa flaG flagellin gene was upregulated 1
log2 fold-change in the zebrafish host. The delivery of bacterial
flagellin into the mice macrophage cytosol has been shown to
trigger the NLRC4 inflammasome which mediates activation
of the protease, caspase-1 (upregulated in our data set by 1
log2 fold-change (Mariathasan et al., 2004; Sutterwala et al.,
2007). The activation of caspase-1 promotes the secretion of the
proinflammatory cytokines IL-1β and IL-18 as well as pyroptosis,
a form of cell death induced by bacterial pathogens (Franchi et al.,
2007).

Expression of the cupA1 and cupC1 genes, encoding fimbrial
subunits of chaperone-usher type fimbriae, were both increased
in PASS1 in zebrafish. These class of fimbriae are important
tissue-specific adhesins in many pathogens, and are presumably
playing a role in adhesion to zebrafish cells.
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TABLE 1 | Summary of P. aeruginosa PASS1 and zebrafish embryos mapped

reads at 3 days post-infection.

Condition (3 dpi) Replicate Mapped

reads

Percentage

aligned (%)

SEQUENCE READS MAPPED TO ZEBRAFISH

PASS1-infected zebrafish 1 39709254 90.2

2 43085353 89.8

3 40410278 90.0

PBS-infected zebrafish 1 38104344 90.2

2 40702248 90.3

3 39929890 90.0

SEQUENCE READS MAPPED TO P. aeruginosa PAO1

PASS1-infected zebrafish 1 27297 52.5

2 15089 53.1

3 21174 54.0

PASS1 grown in Luria-Bertani medium 1 12449136 94.0

2 16617581 94.3

3 15580588 94.6

The pycR gene encoding a LysR-type transcriptional regulator
was upregulated by 2.5 log2 fold-change. This regulator
modulates expression of virulence factors such as lipase/esterase
and biofilm formation, as well as genes implicated in lipid
metabolism and anaerobic respiration (Kukavica-Ibrulj and
Levesque, 2008) (Figure S1).

The P. aeruginosa sodM superoxide dismutase gene was
upregulated by 4 log2 fold-change in zebrafish. SodM protects
P. aeruginosa against toxic effects of superoxides (Iiyama et al.,
2007), so the increased expression level of sodM may be a
defensive response against oxidative killing in the zebrafish
macrophage phagolysosome. Iron limitation has been reported
to lead to an increase in SodM activity in P. aeruginosa (Chang
et al., 2005), which may be an alternate explanation for increased
sodM expression. All of the P. aeruginosa type VI secretion
system genes (orthologous to PA1656-PA1671 of PAO1) encoded
within the Hcp secretion island-2 (H2-T6SS) showed lower
expression levels in zebrafish compared with the culture in LB
medium, although not all of them were below the significance
threshold (p ≤ 0.01) (Table S1). This type VI secretion system in
PAO1 has been shown to be important in virulence in a worm
model and in mammalian cell cultures, and its expression has
been shown to be induced by the Fur regulator during iron
limitation and by quorum sensing (Sana et al., 2012). However,
our transcriptomic data indicates that PASS1 is responding to
iron limited conditions, thus the downregulation of the H2-T6SS
genes in our infected zebrafish model suggests that there are
other unknown regulatory pathways governing expression of this
secretion system.

Other Differentially Expressed PASS1
Genes in a Zebrafish Model
The PASS1 genes faoA and foaB located in the fadBA5 β-
oxidation operon were upregulated in the infected zebrafish.
β-oxidative enzymes have been shown to be induced in vivo
during lung infection in CF patients (Kang et al., 2008). In vitro
studies have demonstrated that the fadBA5 operon is required

for phosphatidylcholine (PC) and fatty acid (FA) degradation
(Kang et al., 2008; Turner et al., 2014). The lung surfactant
consists of ∼10% surfactant proteins and ∼90% lipids with
phosphatidylcholine (PC) accounting for ∼80% of the lipids
(Griese, 1999; Son et al., 2007). The most abundant lipids in the
zebrafish embryo are cholesterol, PC, and triglyceride (Fraher
et al., 2016). These lipids are processed within the yolk prior to
mobilization to the embryonic body (Hölttä-Vuori et al., 2010;
Fraher et al., 2016). The PASS1 psrA gene encoding a TetR family
transcriptional regulator required for regulation of the fadBA5
operon also showed increased expression in the zebrafish host
(Figure S1). PsrA has been reported to also regulate the electron
transfer flavoprotein B-subunit, etfB gene during stationary phase
of bacterial growth (Kojic et al., 2005), and etfB also showed
increased expression in PASS1 in zebrafish.

A variety of amino acid utilization genes, for example, liuA,
liuB, and liuE encoding enzymes in the branched chain amino
acid degradation pathway, showed decreased levels of expression
in PASS1 cells in zebrafish. Conversely, a variety of PASS1 amino
acid biosynthesis genes showed increased levels of expression
in the zebrafish infection model. This most likely reflects the
availability of amino acids in LB medium that was used for the
in vitro control PASS1 culture.

The PA0622 and PA0623 genes in the bacteriocin R2 pyocin
gene locus (Waite and Curtis, 2009; Purschke et al., 2012)
were downregulated in PASS1 cells in the zebrafish model
(Figure 3, Figure S2). This gene cluster has been implicated
in the production of a cryptic prophage endolysin that
mediates P. aeruginosa explosive cell lysis (Turnbull et al.,
2016). This cell lysis results in the production of extracellular
DNA that facilitates biofilm formation. Other biofilm-related
genes, such as GacS/GacA and RetS/LadS two-component
systems and quorum-sensing systems including las, rhl, and pqs
(Rasamiravaka et al., 2015) were not significantly differentially
expressed (Table S1).

Whole-Cell Transcriptome Analysis of
Zebrafish Embryos Infected With P.

aeruginosa PASS1
The transcriptome of zebrafish infected with PASS1 was
compared with PBS-injected zebrafish to identify genes
upregulated in response to P. aeruginosa infection. RNA-Seq
analysis revealed 6,739 genes to be differentially expressed (p ≤

0.01 and log2 fold-changes cut-off −1≥ to ≤1). This represents
a quarter of the protein-encoding genes in the zebrafish genome,
suggesting that there is a dramatic transcriptional response to
infection. Of the differentially expressed genes, 2,510 were found
to be upregulated and 4,229 were downregulated. The complete
list of genes is provided in Table S2, and their log2 fold change
in expression (p ≤ 0.01, log2 fold-change cut-off −1≥ to ≤1) are
shown graphically in Figure 5.

Two of the most highly upregulated genes in the infected
zebrafish are PSMB8 (4.4 log2 fold-change) and TNFRSF18 (3.3
log2 fold-change) (Figure 5). The PSMB8 gene has been linked to
a number of auto-inflammatory diseases and found to be induced
during the innate immune response of zebrafish to bacterial
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FIGURE 3 | Differential gene expression of P. aeruginosa PASS1 in zebrafish compared to PASS1 cells grown in Luria-Bertani medium. Each dot represents a gene

within the P. aeruginosa PASS1 genome (x-axis) and its fold-change (log2) expression in vivo, 3 dpi. Only significantly differentially expressed genes are shown (p ≤

0.01 and log2 fold-change cut-off −1≥ to ≤1).

FIGURE 4 | Differential gene expression of virulence-related genes of P. aeruginosa PASS1 during infection of zebrafish compared to PASS1 cells grown in

Luria-Bertani medium. Log2 fold-change differential expression of known virulence genes (p ≤ 0.01 and log2 fold-changes cut-off −1≥ to ≤1).

infection (Meijer and Spaink, 2011; Warnatsch et al., 2013). The
TNFRSF18 gene is part of the TNF receptor signaling family and
plays a role in anti-apoptotic signaling via TRAF2 (upregulated
0.4 log2 fold-change), which is thought to be involved in

protection of lymphocytes against activation-induced cell death
(Donaldson et al., 2005). Mycobacterial infection of zebrafish has
suggested that TNF receptor signalingmediates resistance against
mycobacteria (Meijer and Spaink, 2011). PSMB8 and TRAF2
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FIGURE 5 | Gene expression changes in zebrafish embryos (log2 fold-change) infected with P. aeruginosa PASS1 compared to zebrafish embryos injected with

phosphate buffered saline. Each dot represents a gene within the zebrafish genome (x-axis) and its fold-change (log2) expression 3 dpi (p ≤ 0.01 and log2
fold-changes cut-off −1≥ to ≤1).

genes may play a similar role in the zebrafish immune response
against P. aeruginosa PASS1.

The most significantly downregulated genes in the zebrafish
infected with P. aeruginosa PASS1 were the 5.8S rRNA genes
(Figure 5). RNA isolated from both the infected and uninfected
control cells underwent an rRNA depletion step, which makes
it difficult to conclusively draw inferences about translation,
as the differences in the 5S rRNA abundance could be due
to artifacts introduced by the depletion process. Nevertheless,
22 mitochondrial ribosomal proteins, 9 ribosomal proteins,
as well as several ribosomal proteins modifying enzymes all
showed decreased expression in the infected zebrafish cells
compared with the uninfected control (Table S2). This suggests
that translation in the zebrafish is negatively impacted by the
bacterial infection.

The downregulation of transcription of rRNA genes and
ribosomal protein genes has been previously reported to occur
due to intracellular and extracellular stressors (Xiao and Grove,
2009; Hayashi et al., 2014). Stress leads to the induction of
processes such as cell cycle arrest, apoptosis or autophagy (Naora,
1999; Gupta et al., 2012; Hayashi et al., 2014). Consistent with
this the PASS1-infected zebrafish transcriptome was significantly
enriched in transcripts related to organismal injury and cell death
(Figure S3).

PASS1-infected zebrafish displayed decreased expression
of the prohibitin 2 (PHB2) mitochondrial protein, a
coordinator/communication protein for cell division,
metabolism, and cell death (Bavelloni et al., 2015). Proteins
known to interact with PHB2, including transcription
factors ATF2, MEF2A, TEAD3, DNA modifying proteins,
SIRT2, HDAC5, RNF2, protease, AFG3L2, RNA binding/
processing proteins, AGO3, DDX20, cell cycle, KIF23,
cytoskeleton/structural protein, NUP93, signal transduction,

ADRB2, ATP5B, COX4I1, cellular respiration protein, COX6C,
mitochondrial transport/translation TIMM50 were also
significantly downregulated in PASS1-infected zebrafish,
suggesting that PASS1 infection is impacting a swathe of
activities linked to PHB2.

Cellular and Humoral Innate Immune
Response in Zebrafish Infected With
PASS1
Pathway analysis of the zebrafish transcriptome using the
Ingenuity package revealed that several canonical pathways
within the category of cellular and humoral innate immunity
were highly enriched in zebrafish upon infection (Figure S4).
These included phagosome maturation, leukocyte extravasation
signaling, FcÈ receptor-mediated phagocytosis in macrophages
andmonocytes, CXCR4 signaling, clathrin-mediated endocytosis
signaling, IL-8 signaling, caveolar-mediated endocytosis
signaling, fMLP signaling in neutrophils, production of
nitric oxide and reactive oxygen species in macrophages, and
macropinocytosis signaling.

In the leukocyte extravasation signaling pathway, the
chemokines CXCR3 and CXCR4 was upregulated by 2 log2
fold-change and 1.1 log2 fold-change, respectively (Figure 6).
The leukocyte extravasation signaling pathway involves the
movement of leukocytes out of the circulatory system and toward
the site of tissue damage and infection. Members of the CXC
chemokine family have a role in inducing neutrophil recruitment
(Gellatly and Hancock, 2013). Previously, the CXC chemokine
family has been shown to be involved in the inflammatory
response in mice to Pseudomonas lung infection (Tsai et al.,
2000). These chemokines are presumably involved in enhancing
migration of leukocytes to the site of bacterial infection.
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FIGURE 6 | Expression of host defense-related genes in response to infection with P. aeruginosa PASS1. The upregulated genes in zebrafish infected with PASS1 (p

≤ 0.01 and log2 fold-change cut-off −1≥ to ≤1).

Toll like receptors (TLRs) which are expressed by neutrophils
and macrophages play a key role in recognition of bacterial
ligands (Lloyd et al., 2007; Mittal et al., 2014). TLR3, 4, and 7
were significantly upregulated in the zebrafish transcriptome
following PASS1 infection (Table S2). In particular, TLR4,
which can recognize bacterial lipolysaccharide, plays a
significant role in the response to P. aeruginosa infections
in mammalian lungs (Campodónico et al., 2008). TLRs also
play important roles in regulating phagocytosis at multiple
steps including internalization and enhancement of phagosome
maturation (Blander and Medzhitov, 2004; Kagan and Iwasaki,
2012). RAB7 which is a mediator of late phagosome process
(Flannagan et al., 2009) was upregulated by 1.7 log2 fold-change,
suggestive of phagosomal activity against PASS1 inside the
zebrafish host, which is consistent with interaction between
PASS1 and phagosomes observed in our confocal microscopy
(Figure 1).

Key transcriptional regulators in the acute phase response
to tissue injury, infection, and inflammation, including FOS,
JUN, and STAT3 were upregulated, while the NFKB2, NFKBIB,
NFKBIE regulators were downregulated in response to PASS1
infection (Moshage, 1997). Previous studies using zebrafish
embryos have shown upregulation of FOS and STAT3 in response
to S. typhimurium and M. marinum (van der Vaart et al., 2012).
The JUN and FOS transcriptional regulators together are known
as activating protein 1 (AP-1), both are conserved between
mammals and zebrafish (Meijer and Spaink, 2011; Ordas et al.,
2011). AP-1 is involved in cellular expression, cell proliferation

and differentiation, with its activation dependent on a variety of
stress-related stimuli (Kim et al., 2003).

The intracellular suppressors of cytokine signaling (SOCS)
genes SOCS1, SOCS2, and SOCS3 were upregulated in the acute
phase signaling pathway by 1.8-, 1.4-, and 1 log2 fold-change,
respectively, in response to PASS1 infection. The SOCS proteins
are important regulators of acute phase response and cytokine
signaling pathways as they regulate the balance between pro- and
anti-inflammatory signals during infection (Wang et al., 2011;
Brudal et al., 2014).

Identification of Genes Previously Linked
to Cell Infection
Based on the Ingenuity Pathway Analysis there were 233
differentially expressed genes related to infection of cells
(Figure S5). The 233 differentially expressed genes comprised
genes encoding enzymes, G-protein coupled receptors, ion
channels, growth factors, kinases, ligand–dependent nuclear
receptors, peptidases, transcription regulators, translational
regulators, transmembrane receptors, and transporters. The
genes with the highest expression changes (> 2 log2 fold-
change) were the transmembrane receptor (tumor necrosis
factor receptor superfamily 14, TNFRS14), poly (ADP-ribose)
polymerase PARP9, transcription regulator (BTG2) and the serine
protease inhibitor SERPINA1 genes (Figure 6). This suggests a
complex cascade of cellular events in response to P. aeruginosa
infection.
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FIGURE 7 | Schematic representation of host-pathogen interactions of zebrafish embryos infected with P. aeruginosa PASS1. Up and down regulated processes and

genes are highlighted in green and red, respectively.

Other Genes Differentially Expressed in
Zebrafish in Response to Bacteria
Functional analysis of upregulated genes using DAVID (Huang
da et al., 2009a,b) (Tables S3, S4) showed enrichment within the
GO category “response to bacterium.” The genes upregulated

by 2 log2 fold-change included G protein-coupled receptor 84
(GPR84), leukocyte cell-derived chemotaxin 2 like (LECT2L), and
the tumor necrosis factor receptors TNFRSF18 and TNFRSF14.
GPR84 is expressed in leukocytes, monocytes and macrophages,
and is known to play a critical role in immune regulation
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(Cha et al., 2013; Figure 6). The acute phase response LECT2
protein attracts neutrophils (Škugor et al., 2009) and studies
of mammalian LECT2 indicate that it plays a role in immune
regulation (Chen et al., 2010). Infection studies with Aeromonas
salmonicida and S. aureus have shown high induction of
LECT2 in adult zebrafish (Lin et al., 2007). MPX, which is a
zebrafish ortholog of the mammalianMPO gene was upregulated
suggesting that there is presence of neutrophils at the site of
infection which are undergoing apoptosis (Mathias et al., 2009).

Comparison of Zebrafish Infection With
Various Pathogens
Previously Ordas et al. (2011) have compared Salmonella
infection of zebrafish embryos with M. marinum infection of
adult zebrafish (Hegedus et al., 2009). Transcriptomic datasets
from zebrafish were compared to identify the overlap between
the up- and downregulated transcripts of the Salmonella- and
Mycobacterium-infected zebrafish. This revealed 288 and 3
commonly up- or downregulated transcripts. Comparison of
our dataset to both these infection studies revealed 47 and 1
common up- or downregulated transcripts (Table S5). The one
downregulated gene common to these two datasets, as well as
our PASS1 zebrafish embryo infection, was KRT78, involved in
translation.

The common set of 47 upregulated genes included 19
previously implicated in the vertebrate immune response. The
MCL1A gene was upregulated by 1 log2 fold-change protects
against apoptosis during initial steps of differentiation in human
macrophages (Arslan et al., 2012). Complement factor B in
macrophages was upregulated by 1.5 log2 fold-change, and its
expression was proposed to be facilitated by TLR3, TLR4, and
TRIF (Li et al., 2011). The transcriptional regulator CEBPβ

was upregulated by 0.9 log2 fold-change, and it has been
suggested to influence expression of the IL-1β gene (Didon
et al., 2011), which, in turn, was upregulated by 2.7 log2 fold-
change in our study, and is known to activate neutrophils
and macrophages in bacterial phagocytosis (Didon et al., 2011).
HIF-1α, a global regulator of macrophage and neutrophil
inflammatory and innate immune functions that is stimulated
by TLR4 (Zinkernagel et al., 2007), was upregulated by 0.7 log2
fold-change.

The gene encoding SRGN which interacts with inflammatory
mediators such as IL-1β and TNF (Korpetinou et al., 2014) was
upregulated by 1.4 log2 fold-change. The protease cathepsin C
gene was upregulated by 1 log2 fold-change and is involved in
the activation of granule serine peptidases in inflammatory cells
(Turk et al., 2001). The cathepsin D protease gene was also
upregulated (0.8 log2 fold-change) and has been implicated in
macrophage apoptosis (Bewley et al., 2011).

Comparison of transcriptomic data from infection studies
with different bacterial pathogens can thus be used to collectively
define a common set of innate host genes expressed in response
to infection. Comparison of zebrafish embryo infection studies
with adult zebrafish infection studies provides an opportunity
to dissect the innate immune response separate from the
adaptive immune response. The generation of transcriptomics

data investigating response to infection to various pathogens is
valuable for future host-pathogen interaction studies as well as
developing targeted therapeutics.

CONCLUSIONS

Previously, zebrafish was used as a model organism for P.
aeruginosa infection by looking at the expression of specific
immune related genes and in vivo interaction of the pathogen
with phagocytes. In this study we report, for the first time, the
simultaneous global gene expression of a zebrafish-P. aeruginosa
systemic infection. RNA-Seq analysis has yielded a detailed view
of both host and pathogen transcriptional responses. During
infection, PASS1 displayed increased expression of an array
of genes shown previously to be important in pathogenesis.
We have also shown that phosphate and iron acquisition
genes are significantly upregulated in PASS1, suggesting these
are limiting nutrients within the zebrafish host. The response
of zebrafish to PASS1 infection involved both humoral and
cellular components of the innate immune system. Significant
upregulation was observed for genes involved in bacterial
recognition and clearance, inflammation and tissue injury.
Based on the transcriptomic data, we present a schematic
overview of the key response mechanisms in both host
and pathogen during PASS1 infection of zebrafish embryos
(Figure 7).
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Turk, D., Janjić, V., Stern, I., Podobnik, M., Lamba, D., Dahl, S. W.,

et al. (2001). Structure of human dipeptidyl peptidase I (cathepsin C):
exclusion domain added to an endopeptidase framework creates the machine
for activation of granular serine proteases. EMBO J. 20, 6570–6582.
doi: 10.1093/emboj/20.23.6570

Turnbull, L., Toyofuku, M., Hynen, A. L., Kurosawa, M., Pessi, G., Petty, N.
K., et al. (2016). Explosive cell lysis as a mechanism for the biogenesis
of bacterial membrane vesicles and biofilms. Nat. Commun. 7:11220.
doi: 10.1038/ncomms11220

Turner, K. H., Everett, J., Trivedi, U., Rumbaugh, K. P., and Whiteley, M. (2014).
Requirements for Pseudomonas aeruginosa acute burn and chronic surgical
wound Infection. PLoS Genet. 10:e1004518. doi: 10.1371/journal.pgen.1004518

van der Sar, A. M., Musters, R. J., van Eeden, F. J., Appelmelk, B. J.,
Vandenbroucke-Grauls, C. M., and Bitter, W. (2003). Zebrafish embryos as a
model host for the real time analysis of Salmonella typhimurium infections. Cell
Microbiol. 5, 601–611. doi: 10.1046/j.1462-5822.2003.00303.x

van der Sar, A. M., Spaink, H. P., Zakrzewska, A., Bitter, W., and Meijer,
A. H. (2009). Specificity of the zebrafish host transcriptome response
to acute and chronic mycobacterial infection and the role of innate
and adaptive immune components. Mol. Immunol. 46, 2317–2332.
doi: 10.1016/j.molimm.2009.03.024

van der Vaart, M., Spaink, H. P., and Meijer, A. H. (2012). Pathogen recognition
and activation of the innate immune response in zebrafish. Adv. Hematol.

2012:19. doi: 10.1155/2012/159807
van der Vaart, M., van Soest, J. J., Spaink, H. P., and Meijer, A. H. (2013).

Functional analysis of a zebrafish myd88 mutant identifies key transcriptional
components of the innate immune system. Dis. Model. Mech. 6, 841–854.
doi: 10.1242/dmm.010843

van Soest, J. J., Stockhammer, O. W., Ordas, A., Bloemberg, G. V., Spaink, H. P.,
and Meijer, A. H. (2011). Comparison of static immersion and intravenous

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14 November 2018 | Volume 8 | Article 406

https://doi.org/10.1089/ars.2012.5149
https://doi.org/10.1128/CMR.00046-08
https://doi.org/10.1046/j.1440-1711.1999.00816.x
https://doi.org/10.1128/JB.01491-14
https://doi.org/10.1016/j.fsi.2010.08.022
https://doi.org/10.3390/ijms140919309
https://doi.org/10.1002/mbo3.275
https://doi.org/10.1371/journal.pone.0138527
https://doi.org/10.1128/IAI.00302-10
https://doi.org/10.1074/mcp.M112.017673
https://doi.org/10.1128/AEM.66.2.801-809.2000
https://doi.org/10.1155/2015/759348
https://doi.org/10.1164/rccm.200408-1044SO
https://doi.org/10.1074/jbc.M112.376368
https://doi.org/10.1016/S1369-5274(03)00038-9
https://doi.org/10.1242/dmm.003509
https://doi.org/10.1371/journal.ppat.1000949
https://doi.org/10.1186/1471-2164-10-503
https://doi.org/10.1128/IAI.01807-06
https://doi.org/10.3390/pathogens3030680
https://doi.org/10.4049/jimmunol.0900082
https://doi.org/10.1084/jem.20071239
https://doi.org/10.1167/iovs.13-11788
https://doi.org/10.1167/iovs.08-3107
https://doi.org/10.1242/dmm.015594
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1128/IAI.68.7.4289-4296.2000
https://doi.org/10.1093/emboj/20.23.6570
https://doi.org/10.1038/ncomms11220
https://doi.org/10.1371/journal.pgen.1004518
https://doi.org/10.1046/j.1462-5822.2003.00303.x
https://doi.org/10.1016/j.molimm.2009.03.024
https://doi.org/10.1155/2012/159807
https://doi.org/10.1242/dmm.010843
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Kumar et al. Transcriptomics of Pseudomonas aeruginosa-Zebrafish Interaction

injection systems for exposure of zebrafish embryos to the natural pathogen
Edwardsiella tarda. BMC Immunol. J. 12:58. doi: 10.1186/1471-2172-12-58

Waite, R. D., and Curtis, M. A. (2009). Pseudomonas aeruginosa PAO1 pyocin
production affects population dynamics within mixed-culture biofilms. J.

Bacteriol. 191, 1349–1354. doi: 10.1128/JB.01458-08
Wang, T., Gorgoglione, B., Maehr, T., Holland, J. W., Vecino, J. L., Wadsworth,

S., et al. (2011). Fish suppressors of cytokine signaling (SOCS): Gene
discovery, modulation of expression and function. J. Signal Transduct. 2011:20.
doi: 10.1155/2011/905813

Warnatsch, A., Bergann, T., and Kruger, E. (2013). Oxidation matters:
the ubiquitin proteasome system connects innate immune mechanisms
with MHC class I antigen presentation. Mol. Immunol. 55, 106–109.
doi: 10.1016/j.molimm.2012.10.007

Whitehead, K. A., Rogers, D., Colligon, J., Wright, C., and Verran, J. (2006).
Use of the atomic force microscope to determine the effect of substratum
surface topography on the ease of bacterial removal. Colloids Surf. B 51, 44–53.
doi: 10.1016/j.colsurfb.2006.05.003

Winsor, G. L., Griffiths, E. J., Lo, R., Dhillon, B. K., Shay, J. A., and Brinkman,
F. S. (2016). Enhanced annotations and features for comparing thousands of
Pseudomonas genomes in the Pseudomonas genome database. Nucl. Acids Res.
44(Database issue), D646–D653. doi: 10.1093/nar/gkv1227

Xiao, L., and Grove, A. (2009). Coordination of ribosomal protein
and ribosomal RNA gene expression in response to TOR
signaling. Curr. Genomics 10, 198–205. doi: 10.2174/1389202097881
85261

Zinkernagel, A. S., Johnson, R. S., and Nizet, V. (2007). Hypoxia
inducible factor (HIF) function in innate immunity and
infection. J. Mol. Med. 85, 1339–1346. doi: 10.1007/s00109-007-
0282-2

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Kumar, Tandberg, Penesyan, Elbourne, Suarez-Bosche, Don,

Skadberg, Fenaroli, Cole, Winther-Larsen and Paulsen. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15 November 2018 | Volume 8 | Article 406

https://doi.org/10.1186/1471-2172-12-58
https://doi.org/10.1128/JB.01458-08
https://doi.org/10.1155/2011/905813
https://doi.org/10.1016/j.molimm.2012.10.007
https://doi.org/10.1016/j.colsurfb.2006.05.003
https://doi.org/10.1093/nar/gkv1227
https://doi.org/10.2174/138920209788185261
https://doi.org/10.1007/s00109-007-0282-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	Dual Transcriptomics of Host-Pathogen Interaction of Cystic Fibrosis Isolate Pseudomonas aeruginosa PASS1 With Zebrafish
	Introduction
	Methods
	P. aeruginosa Strain and Growth Conditions
	Visualization of PASS1-YFP Infection in Zebrafish Embryos by Confocal Microscopy
	RNA Extraction and RNA-Seq Transcriptomics
	Bioinformatic Analyses of Transcriptomic Data

	Results and Discussion
	Confocal Laser Scanning Microscopy of Macrophage - P. aeruginosa PASS1 Interaction in Zebrafish
	Generation of a Dual Host-Pathogen Transcriptome
	Whole-Cell Transcriptome Analysis of P. aeruginosa Infected Into Zebrafish
	Expression of Virulence Genes in PASS1 Cells in a Zebrafish Model
	Other Differentially Expressed PASS1 Genes in a Zebrafish Model
	Whole-Cell Transcriptome Analysis of Zebrafish Embryos Infected With P. aeruginosa PASS1
	Cellular and Humoral Innate Immune Response in Zebrafish Infected With PASS1
	Identification of Genes Previously Linked to Cell Infection
	Other Genes Differentially Expressed in Zebrafish in Response to Bacteria
	Comparison of Zebrafish Infection With Various Pathogens

	Conclusions
	DATA Availability Statement
	Impact Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


