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Twenty-two compounds belonging to several classes of polyamine analogs have been

examined for their ability to inhibit the growth of the human malaria parasite Plasmodium

falciparum in vitro and in vivo. Four lead compounds from the thiourea sub-series and

one compound from the urea-based analogs were found to be potent inhibitors of both

chloroquine-resistant (Dd2) and chloroquine-sensitive (3D7) strains of Plasmodium with

IC50 values ranging from 150 to 460 nM. In addition, the compound RHW, N1,N7-bis

(3-(cyclohexylmethylamino) propyl) heptane-1,7-diamine tetrabromide was found to

inhibit Dd2 with an IC50 of 200 nM. When RHW was administered to P. yoelii-infected

mice at 35 mg/kg for 4 days, it significantly reduced parasitemia. RHW was also assayed

in combination with the ornithine decarboxylase inhibitor difluoromethylornithine, and the

two drugs were found not to have synergistic antimalarial activity. Furthermore, these

inhibitors led to decreased cellular spermidine and spermine levels in P. falciparum,

suggesting that they exert their antimalarial activities by inhibition of spermidine synthase.

Keywords: polyamine, Plasmodium, malaria, spermidine, spermine, spermidine synthase, thiourea

INTRODUCTION

Malaria is a global health threat, especially in the developing world. Plasmodium falciparum
causes the most lethal form of the disease. It is responsible for a high number of clinical
cases and deaths annually. About 3.2 billion people remain at risk of malaria. In 2015
alone, there was an estimated 214 million new cases of malaria and 438,000 deaths (World
Health Organization, 2015). The number of malaria cases fell from an estimated 262 million
in 2000 to 214 million in 2015 (World Health Organization, 2015), due to employment of
artemisinin and drug-impregnated bed nets (White et al., 2014; World Health Organization,
2015). Artemisinin-based combination therapies ACTs have become widely adopted as
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first-line treatment in almost all countries where malaria is
endemic (White, 2008). However, recent studies report decreases
in parasite clearance rates following artesunate monotherapy
or artesunate-mefloquine combination therapy in Thailand and
Cambodia, suggesting increasing resistance to this therapeutic
approach (Dondorp et al., 2009; Amaratunga et al., 2012; Phyo
et al., 2012; Ferreira et al., 2013). In light of the challenge posed
by resistant strains of P. falciparum, development of new drugs to
combat this infection is increasingly necessary and will save lives.

The intraerythrocytic life cycle of P. falciparum is dynamic,
with the parasite undergoing numerous morphological and
physiological transformations throughout the course of infection.
Whilst actively dividing, the parasite is capable of generating
36 daughter parasites within 2 days. Innumerable parasitic
cellular processes offer diverse chemotherapeutic targets for the
inhibition of parasite replication and, thereby, abrogation of
disease. Among these targets, is the biosynthesis of polyamines.
There is a 10 to 20-fold increase in polyamine levels when
the parasite transitions from ring stage to schizonts in infected
erythrocytes and there is evidence of parasitic dependence
on the polyamine pathway for intraerythrocytic development
(Assaraf et al., 1984; Gupta et al., 2005). Moreover, inhibitors of
this pathway cause decreased polyamine levels, which, in turn,
results in transcriptional arrest (van Brummelen et al., 2009).
Consequently, the polyamine pathway appears to be a valid target
for further exploration and small molecular development, given
its essential role in parasite survival. Polyamines, which include
putrescine, spermidine, spermine, and cadaverine (an analog
of putrescine), are amine-containing, cationic, low molecular
mass compounds, and ubiquitous in eukaryotes and prokaryotes.
These polycation compounds interact electrostatically with
anionic macromolecules like RNA, DNA, ATP, proteins, and
phospholipids (Igarashi and Kashiwagi, 2000; Wallace et al.,
2003). These interactions regulate replication, transcription,
membrane biogenesis, maintenance of chromatin conformation,
specific gene expression, ion channels, and confer protection of
nucleic acids against oxidative stress (Igarashi and Kashiwagi,
2000; Wallace et al., 2003). Synthesis of polyamines in most
cells is initiated by the production of putrescine from ornithine
through the activity of ornithine decarboxylase (ODC). The
addition of either one or two aminopropyl groups to the
terminal amino groups of putrescine form spermidine and
spermine, respectively via S-adenosylmethionine (AdoMet)
decarboxylase. Most animal and yeast cells can take up
polyamines and convert them back to spermidine and putrescine
via spermidine/spermine-N-acetyltransferase and polyamine
oxidase (Pegg and McCann, 1982; Marton and Pegg, 1995). P.
falciparum lacks the capacity for polyamine interconversion, and
the parasite controls polyamine levels exclusively through de
novo spermidine synthase, which determines levels of spermidine
(Müller et al., 2001; Clark et al., 2010). This enzyme has the
additional unique function of producing low levels of spermine
(Haider et al., 2005).

Many inhibitors of both ODC and AdoMetDC have been
synthesized, with the goal of interfering with polyamine
metabolism in tumor cells as anti-cancer therapy and
prevention (Marton and Pegg, 1995; Casero and Marton,

2007). DFMO (alpha-difluoromethylornithine) was successfully
exploited against West African human sleeping sickness
(Trypanosoma brucei gambiense) (Bacchi et al., 1980; Burri
and Brun, 2003). Interestingly, the functions of AdoMetDC
and ODC are combined into a single unique bi-functional
protein (PfAdoMet/ODC) in P. falciparum (Müller et al.,
2000). This enzyme has formed the basis of multiple studies
assessing polyamine metabolism as a chemotherapeutic target
in this organism. Inhibitors of this enzyme, however, have
only cytostatic effects in vitro with cure achieved only with
co-administration with polyamine analogs in murine malaria
models (Bitonti et al., 1989).

Other polyamine analogs interfering with polyamine
functions and metabolism have been synthesized and
tested in different organisms. The tetraamines, homologs
of spermine in which the external aminopropyl groups
present in spermine were replaced by aminobutyl groups,
are shown along with oligoamines to be effective in the
treatment of microsporidiosis, an opportunistic infection
associated with severe HIV infection (Bacchi et al., 2002).
Spermine analogs were found to condense DNA and are
indeed powerful inhibitors of human cell proliferation
(Osland and Kleppe, 1977).

Based on these findings, we tested the oligoamines (SL-
11158 and SL-11144) and the tetraamine SL-11093, with
demonstrated efficacy against microsporidia, for their activities
against malaria parasites. Here we report the identification
of four lead compounds from the thiourea sub-series and
one compound from the urea-based analogs from the list of
twenty-two polyamine analogs effective against chloroquine-
sensitive and -resistant parasites, at nanomolar levels. Moreover,
these compounds were tested in vivo in a murine model with
Plasmodium yoelii and found to significantly reduce levels
of parasitemia. These effects are correlated with an observed
decrease in spermidine and spermine levels and highlight the
importance of this polyamine to the parasite.

METHODS

Strains
The P. falciparum strains 3D7 and Dd2 used in this study
were obtained from the Malaria Research and Reference Reagent
Resource Center (MR4). P. yoelii clones were obtained from
the WHO Registry Standard Malaria Parasites, University
of Edinburgh.

Chemicals
Hypoxanthine radiolabelled chemicals were purchased from
NEN Life Science Products. Compounds SL-11144, SL-11158,
SL-11091, and SL-11093 were synthesized by the Frydman group
as described elsewhere (Reddy et al., 1998; Valasinas et al., 2003).
All of the remaining compounds were synthesized by Dr. Patrick
M. Woster, Medical University of South Carolina, as previously
described (Zou et al., 2001; Bi et al., 2006; Verlinden et al., 2011;
Verlinden et al., 2015).
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Cell Culture and Materials
P. falciparum was cultured in vitro with erythrocytes using a
gas mixture of 3% O2, 3% CO2, and 94% N2 as described by
the method of Trager and Jensen (1976). Briefly, we used RPMI
medium 1,640 supplemented with 30 mg/liter hypoxanthine
(Sigma), 25mM Hepes (Sigma), 0.225% NaHCO3 (Sigma), 0.5%
Albumax I (Life Technologies, Grand Island, NY) and 10µg/ml
of gentamycin (Life Technologies) for the parasite growth.
Synchronization of the parasites was obtained by incubation
with 5% sorbitol treatments (Lambros and Vanderberg, 1979).
The stage of the parasite was confirmed by fixed smears of the
infected erythrocytes using Giemsa staining and observation by
bright-field microscopy.

Hypoxanthine Incorporation Assay
The susceptibility of parasites to different compounds was
assessed by tritiated hypoxanthine uptake as described by
Desjardins et al. (1979). Briefly, infected erythrocytes with 3%
at the ring stages were incubated with the compounds from the
list of twenty-two polyamine analogs at 0, 0.01, 0.05, 0.1, 1, 5, 10,
50, 100, 250, 500, and 750µM in a medium free of hypoxanthine
for 48 h. Two hundred microliter of the mixture was then added
to a 96-well plate with 3H-hypoxanthine at a concentration of
0.5 µCi/well. The cells were incubated for 24 h, washed on an
ultrafilter and radioactivity was counted using a scintillation
counter. IC50 values are calculated from the sigmoidal inhibition
curves using Prism and are represented in nM. Values are means
of three independent experiments each performed in triplicate.

Infection of Mice With Blood-Stage
Parasites and Drug Treatments
Naive 8-weeks-old female SwissWebstermice were intravenously
infected with 2 × 105 infected red blood cells (iRBCs) of P.
yoelii YM parasites; 3 mice were included in each infection
group. Two groups per treatment were performed. Drugs were
dissolved in dimethyl sulfoxide (DMSO). For example, to inject
35 mg/kg, we first dissolved 35mg of the drug in 1mL of
DMSO and then diluted it in 0.05% Tween 80 H2O, for a
total of 10mL. We then injected 200 µL of this solution into
mice with a body weight of 20 g. The polyamine compounds
and pyrimethamine were administered intraperitoneally. All
mice were treated for 4 days. Parasitemia was monitored by
Giemsa staining of blood smears obtained after the 4 days of
treatment and on a daily basis. Parasites were harvested by
collecting blood samples from the tail vein of infected mice.
The mice tolerated (without observable toxicity) up to 35 mg/kg
when the schedule described above was used. All mice studies
were performed with the Institutional Animal Care and Use
Committee at the Albert Einstein College of Medicine approval
and oversight.

Polyamine Quantification
Polyamine content was quantified as described previously
(Bacchi et al., 2004). Briefly, P. falciparum Dd2 strain infected
red blood cells were treated in the late schizont stage (42 h
post invasion) with 1µM of RHW (IC50 = 200 nM), 750 nM of
compound 13 (IC50 = 150 nM), and with 5mM DFMO (IC50 =

1mM), to ensure complete parasite arrest. Treated and untreated
cultures, at 10% parasitemia, were harvested at trophozoite phase
(18–24 h). Polyamine interconversion was assayed by incubation
infected red blood cells to 0.25 µCi (2.1 nmol) [1-14C]spermine
as described previously by Bacchi et al. (2001). After incubation,
mixtures were centrifuged and the supernatant was discarded.
Pellets were extracted with 10% TCA overnight and frozen.
Separation of polyamines was performed by HPLC equipped
with a 5µmC-18 reversed-phase column, samples and standards
were detected by a UV detector (Perkin Elmer), and signals
were integrated using a β-ram (IN/US Systems) Version 3.1
software package.

Molecular Modeling
The graphical user interface Maestro (version 10.3, Schrodinger
LLC, New York, NY, 2018) was used to visualize the Pf SpdS
protein (PDB IDs: 2I7C and 4CWA), which was prepared using
the Protein Preparation Wizard. Only chain A was used in both
crystal structures for further modeling. The ligand RHW was
prepared using the Maestro user interface. MacroModel force-
field based molecular modeling (MacroModel v10.3, Schrodinger
LLC, New York, NY, 2018) was used to predict the binding pose
of the ligand RHW (Harder et al., 2015). The obtained molecular
conformations were visualized using PyMoL (The PyMOL
Molecular Graphics System, Version 1.8 Schrödinger, LLC).

RESULTS

Effects of Polyamine Analogs on Growth of
3D7 and Dd2 of P. falciparum Strains
Previous studies have shown that polyamine analogs with a
backbone of repeating N-butyl subunits, such as pentamines,
oligoamines or bis-(aryl)-substituted 3-7-3 analogs (Figure 1A),
sterilized Encephalitozoon cuniculi-infected monolayer cells and
cured two murine model infections (Bacchi et al., 2002). The
IC50 of SL-11158 and SL-11144 against microsporidia was 8.2
and 0.62µM (Bacchi et al., 2002). In order to examine the
antimalarial activity of polyamine analogs, we have tested the
effect of increasing concentrations of these compounds on
the intraerythrocytic life cycle of P. falciparum in culture, by
following the incorporation of radiolabeled hypoxanthine into
parasite nucleic acids. We then determined the 50% inhibitory
concentration (IC50) that blocks the replication of P. falciparum
inside the red cells. The study was performed with two strains of
P. falciparum (3D7 and Dd2) with different levels of sensitivity to
the antimalarial drugs pyrimethamine and chloroquine (Figure 2
and Table 1). As a control, we confirmed the IC50 of chloroquine
in the two strains. As expected, the strain 3D7 was sensitive to
chloroquine with IC50 of 5± 0.2 nM andDd2was highly resistant
to chloroquine (IC50 300± 21 nM) (Supplementary Figure 1).

As shown in Table 1 and Supplementary Figure 1, RHW
exhibited antimalarial activity, with an IC50 of 2.6µM against
3D7 and 0.2µM against Dd2 parasite strains. This prompted
the testing of a variety of polyamine analogs for antiparasitic
effects. We tested 17 compounds belonging to three different
classes, namely ureas, thioureas, and amidines (Figures 1C–E).
The polyamines of the thiourea group were found to be the most
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FIGURE 1 | Structures of (A) various oligoamine and tetraamine analogs of

polyamines, (B) N1, N7-bis (3-(cyclohexylmethylamino) propyl)

heptane-1,7-diamine tetrabromide (RHW), (C) Urea, (D) Thiourea, (E) Amidine.

FIGURE 2 | In vivo study of the effect on P. yoelii-infected mice (n = 3 animals

per group) of polyamine analogs administered ip at 35 mg/kg/day as indicated

in Methods. Pyrimethamine was administered ip as a positive control at

10 mg/kg/day. A control untreated group received PBS. Activity was

determined by percentage of parasitemia at day 6-post infection relative to

untreated control. The results are shown as the means of three independent

experiments ± standard deviation. Significant differences relative to untreated

control are determined by student’s t-test.

potent in inhibiting parasite growth, with IC50 ranging from
160 to 3,200 nM for 3D7 strain and 150 to 3,600 nM for Dd2
strain (Table 1). Compound 13 was found to be more effective
in inhibiting parasitic growth of both 3D7 and Dd2 strains with
IC50 values of 160 nM and 150 nM, respectively. Both 3D7 and
Dd2 parasite strains exhibited varied sensitivity toward the urea
class of polyamine analogs, with compound 2 exhibiting the
strongest growth inhibition of the class, with an IC50 of 370 nM
for 3D7 and 440 nM for Dd2 strains (Table 1). The amidine class
of analogs showed the least effect on growth of both strains of P.
falciparum with an IC50 > 100µM (Table 1). To further confirm
the inhibitory effects of these classes of polyamine analogs on
P. falciparum growth, we employed the pLDH colorimetric
assay (data not shown), which measures parasite-specific
lactate dehydrogenase activity (Makler and Hinrichs, 1993;
Makler et al., 1993).

Efficacies of Polyamine Analogs in vivo
We tested the efficacy of the most potent compounds on the
growth inhibitory potential of Plasmodium employing a murine
model. We infected mice with P. yoelii, as described in materials
and methods, and the infected mice were treated with RHW
and compound 13, the compounds with the most efficacy in
vitro. PBS infected mice served as control and pyrimethamine
drug treated animals were used as a positive control group. As
shown in Figure 2, treatment of animals with RHW resulted
in a significant (p < 0.05) decrease in parasitemia compared
to the untreated control. Even though compound 13 decreased
parasitemia in vivo, the level of inhibition was not significantly
different (p > 0.05) to the PBS control group (Figure 2 and
Supplementary Figure 2). In conclusion, these in vivo results
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TABLE 1 | Structure of various analogs of polyamines and their affect on the

growth of 3D7 and Dd2 strains of P. falciparum under in vitro conditions.

Compounds No. IC50 (nM)*

3D7 strains Dd2 strains

SL-11144 >250,000 >250,000

SL-11158 >250,000 >250,000

SL-11091 >250,000 >250,000

SL-11093 >250,000 >250,000

RHW 2,600 ± 135 200 ± 12

Urea 1 1,700 ± 95 800 ± 23

Urea 2 370 ± 4.8 440 ± 3.2

Urea 3 530 ± 7.2 630 ± 11

Urea 4 2,900 ± 37 700 ± 21

Thiourea 5 3,200 ± 19 3,600 ± 7.9

Thiourea 6 590 ± 53 510 ± 4.8

Thiourea 7 220 ± 2 350 ± 6.1

Thiourea 8 170 ± 10.5 160 ± 8

Thiourea 9 560 ± 2.3 690 ± 1.9

Thiourea 10 570 ± 6.0 850 ± 10.5

Thiourea 11 650 ± 29 1,950 ± 18

Thiourea 12 240 ± 6.8 460 ± 3.7

Thiourea 13 160 ± 10.4 150 ± 24

Thiourea 14 1,200 ± 8 1,720 ± 125

Amidine 15 >100,000 >100,000

Amidine 16 >100,000 >100,000

Amidine 17 >100,000 >100,000

*IC50: The half maximal inhibitory concentration. IC50 values are calculated from the

sigmoidal inhibition curves using Prism. IC50 values are an average of three independent

experiments, each carried out in triplicate with ± standard deviations.

show the efficacy of RHW on the inhibition of parasitemia in the
murine model.

Polyamine Quantification
We examined the effects of polyamine analogs on overall uptake
of arginine and putrescine, and production of spermidine and
spermine. Table 2 shows the results of polyamine contents
in red blood cells [experiment was performed twice, each in
five replicate experiments, where the polyamine content of
Plasmodium infected red blood cells was compared to treated
cells with RHW, compound 13, and ornithine decarboxylase
inhibitor difluoromethylornithine (DFMO) as a control]. We
monitored the intracellular content of arginine, putrescine,
spermidine, and spermine. Data show that DFMO substantially
decreases the amount of spermidine. However, spermine levels
were similar for both untreated and DFMO treated. These results
were in concordance with previous data that show the same
effect of DFMO (Sugiura et al., 1984). In contrast, infected red
blood cells treated with RHW showed a significant decrease
in spermidine (p < 0.05) and spermine levels (p < 0.01).
These data suggest an effect of RHW on polyamine metabolism
in Plasmodium, including an effect on enzymes involved on
spermidine and spermine synthesis. In addition, when RHW or
compound 13 was assayed in combination with DFMO in both

TABLE 2 | Effect of treatment of RHW and compound 13 on the polyamine

contents of Plasmodium falciparum.

Sample Amount (nmoles/ml)

Arginine Putrescine Spermidine Spermine

Infected

untreated RBC

11.5 ± 3.9 8.0 ± 1.1 52.5 ± 1.9 13.0 ± 3.1

DFMO 32.5 ± 11 11.0 ± 2.4 32.0 ± 0.9 15.0 ± 2.9

Compound 13 12.0 ± 1.2 5.9 ± 1.7 50 ± 2.8 14.5 ± 1.7

RHW 41.0 ± 12.9 6.0 ± 2.1 41 ± 1.3 2.0 ± 0.8

Plasmodium falciparumDd2 strain infected red blood cells were treated in the late schizont

stage with 1µM of RHW (IC50 = 200 nM), 750 nM of compound 13 (IC50 = 150 nM),

and with 5mM DFMO (IC50 = 1mM, as a positive control). The treated parasites were

then extracted and monitored for intracellular polyamine levels. The results are presented

as mean ± SD for 2 separate experiments, each performed in 5 replicates. Significant

differences relative to untreated control are determined by student’s t-test.

Dd2 and 3D7 strains, the two drugs were found not to have
synergistic antimalarial activity (Figure 3).

Molecular Modeling of Compound RHW
In order to understand the putative binding conformations
of RHW to P. falciparum spermidine synthase (Pf SpdS) and
the observed biological activity, we utilized in silico molecular
modeling. Sprenger et al. proposed three areas of the active
site: the distal aminopropyl cavity, the putrescine site and the
larger dcAdoMet site (composed of the central aminopropyl
cavity and the MTA cavity) within Pf SpdS (Sprenger et al.,
2016). Because RHW showed potent activity in vitro and in vivo,
all our molecular modeling was performed with this inhibitor.
RHW is a long linear molecule consisting of 20 rotatable bonds
(Figure 1B). Attempts to dock and predict the binding mode
of RHW using Schrodinger Glide XP mode were unsuccessful.
Instead, we modified an existing ligand (5-(1H-benzimidazol-2-
yl) pentan-1-amine) within the Pf SpdS active site of PBD ID:
4CWA (Sprenger et al., 2015), and subjected it to MacroModel
minimization using force-field OPLS_2005, keeping the protein
backbone rigid (locked) and allowing the side chains to move
and generate a lower energy ligand:protein complex (Figure 4).
RHW is predicted to bind across all three areas of the active
site (Figure 4A), and when overlaid with inhibitor AdoDATO
from crystal structure 2I7C (Dufe et al., 2007), RHW showed
a similar mode of binding (Figure 4B). Some movement of
the amino acid side chains (W234, C266, I235, H236, E231,
M50, W51, and D178) was observed to accommodate the
terminal cyclohexylmethyl groups. Of these, only H236 and
D178 displayed significant movement (2.0 Å) of their side
chain positions.

DISCUSSION

Multiple polyamine analogs in this study have demonstrated
potent antimalarial properties, with IC50 at the nanomolar
range for P. falciparum strains, both sensitive and resistant
to chloroquine. Drug-resistance continues to present
challenges in treating P. falciparum infection, and medications
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FIGURE 3 | Inhibition of Dd2 and 3D7 strains by different concentrations of compound 13 (A,B) and RHW (C,D) in the absence of DFMO (closed squares), or in

presence of 500mM (open triangles), 1mM (open circles), and 3mM (closed triangles) of DFMO.

FIGURE 4 | (A) Putative binding conformation of RHW (pink) in PfSpdS (green) traversing the three areas of the active site. (B) Overlay of RHW modeled conformation

(pink) with 217C (wheat) and it’s co-crystal inhibitor AdoDATO (sky blue).

previously useful for treating drug-resistant isolates are
increasingly inadequate, as illustrated by the emergence of
artemisinin-resistance.

The utilization of polyamine analogs to treat infection has
been previously demonstrated in experimental murine models
of microsporidiosis, with several of the analogs demonstrating
significant efficacy (Bacchi et al., 2004). The compounds with the
most efficacies were shown to be tetraamines and oligoamines.
These tetraamine compounds, which are structural homologs of
spermine, have been studied extensively, and have been shown to

interrupt and modify DNA conformational structure, inducing
bends and kinks in the double helix (Hsieh et al., 1994). The
oligoamine compounds have been demonstrated previously to
contribute to the collapse of DNA, promoting condensation
of DNA. These compounds have also documented anti-tumor
activity (Frydman et al., 2003; Huang et al., 2003).

Given the importance of polyamine metabolism for
transcriptional activity and cellular replication microsporidia
and Plasmodium, testing analogs effective against microsporidia
formed the basis of our initial approach toward P. falciparum.
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Surprisingly, these compounds showed no or minimal
antimalarial activity. The lack of effect of the tetraamine
compounds on P. falciparum prompted further synthetic efforts.

The addition of cyclohexylmethyl side groups to the
tetraamine backbone resulted in the compound abbreviated
as RHW. This compound showed substantial promise, with
efficacy at the nanomolar range against chloroquine-resistant
P. falciparum, and further medicinal chemistry allowed for
additional modifications to these compounds. Some of these
modifications proved beneficial, enhancing antimalarial activity,
such as the urea and thiourea examples, while others were
detrimental (amidine analogs). It has also been noted previously
(Verlinden et al., 2011) that the compounds with aromatic rings
demonstrated enhanced efficacy when compared to matched-
pair compounds without these groups. The length of the carbon
chain between the two central amines appears to also be
important (see compounds 1–3). While the exact, mechanistic
underpinning of this difference requires further exploration, this
observation should inform any medicinal chemistry efforts with
these polyamine analogs. We present a putative model of RHW
bound to P. falciparum spermidine synthase (Pf SpdS) (Figure 4).

The observed differences in responsiveness to these
compounds between microsporidia and P. falciparum highlight
differences in the metabolic handling of polyamines by these
two pathogens. It has been noted previously that microsporidia,
including E. cuniculi, have an operative polyamine synthesis
and interconversion pathway, the latter of which is lacking in
Plasmodium (Müller et al., 2001). This difference in capacity
could, in part, explain the differences observed in response
to the tetraamine compounds. An alternative explanation
could be structural differences in particular enzymes targeted
by these compounds. The data presented here demonstrate
decreased levels of spermine in infected cells and argue in
favor of the polyamine analogs inhibiting spermidine synthase.
While functional studies demonstrating this relationship
are still needed, this seems a probable hypothesis for the
mechanism by which the action of these compounds is exerted.
Another potential target to inhibit polyamine synthesis is
through blocking the transport of these molecules. Polyamine

transporters have not yet been identified in the P. falciparum
genome, but a drug combination selectively inhibiting both
polyamine biosynthesis and transport may provide a promising
anti-malarial strategy (van Brummelen et al., 2009).

The polyamine analogs investigated in this study have been
demonstrated to hold promise as antimalarial agents and should
be further characterized with respect to kinetics and impact on
spermidine synthase. Moreover, following optimization, future
studies with respect to efficacy, toxicity, and delivery to infected
patients will be of value. Malaria is an enormous threat to
the health of populations globally, responsible for millions of
deaths annually. Novel therapeutic strategies are desperately
needed in the continued fight against Plasmodium, and these
polyamine analogs have the potential to represent one of these
strategies, with the goal of more effectively treating infections
and preventing the severe morbidity and mortality caused by this
parasite worldwide.
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