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In biology, models are experimental systems meant to recreate aspects of diseases

or human tissue with the goal of generating inferences and approximations that

can contribute to the resolution of specific biological problems. Although there are

many models for studying intracellular parasites, their data have produced critical

contradictions, especially in immunological assays. Peripheral blood mononuclear cells

(PBMCs) represent an attractive tissue source in pharmacogenomics and in molecular

and immunologic studies, as these cells are easily collected from patients and can serve

as sentinel tissue for monitoring physiological perturbations due to disease. However,

these cells are a very sensitive model due to variables such as temperature, type of

stimulus and time of collection as part of posterior processes. PBMCs have been used

to study Toxoplasma gondii and other apicomplexan parasites. For instance, this model

is frequently used in new therapies or vaccines that use peptides or recombinant proteins

derived from the parasite. The immune response to T. gondii is highly variable, so it

may be necessary to refine this cellular model. This mini review highlights the major

approaches in which PBMCs are used as a model of study for T. gondii and other

apicomplexan parasites. The variables related to this model have significant implications

for data interpretation and conclusions related to host-parasite interaction.

Keywords: PBMCs (peripheral blood mononuclear cells), immunologic research, toxoplasma gondii, model of

study, apicomplexa

INTRODUCTION

The phylum Apicomplexa consists of approximately 6,000 species of intracellular protozoan
parasites, including various important human and animal pathogens such as Plasmodium, the
causative agent of malaria; Cryptosporidium, the causative agent of cryptosporidiosis; Theileria,
Babesia and Eimeria, which are important pathogens in cattle and fowl; and T. gondii, which
is responsible for toxoplasmosis in birds, marsupials and mammals including humans (Tenter
et al., 2000; Dubey, 2010). T. gondii has emerged as a model system for the study of intracellular
parasitism; it is one of the most studied parasites due to its medical and veterinary importance,
its wide range of distribution and its suitability as a model of study in pharmacogenomics, cell
biology, molecular genetics and immunology. T. gondii infections are generally subclinical in
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healthy individuals but can be major problems for
immunosuppressed adults and fetuses (Dubey, 2008). The
severity of such infections can vary greatly, perhaps based on
the status of the host immune system (Lahmar et al., 2009),
the genotype of the infective parasite strain (Ferreira et al.,
2011) and the host’s genetic background (Sullivan and Jeffers,
2012). There has been significant progress, but no vaccine is
currently available that will prevent T. gondii infection; indeed,
very few drugs effectively reduce T. gondii’s presence in infected
individuals (Zhou et al., 2016a). Researchers frequently select
models for studying T. gondii based on their similarity to humans
in terms of genetics, anatomy, and physiology; this includes the
cellular models that have been used to study T. gondii (Szabo
and Finney, 2017). However, many studies make use of mouse
models (Alfonzo et al., 2002; Martens et al., 2005; Tanaka et al.,
2013; Unno et al., 2013; Dzitko et al., 2015; He et al., 2015). There
have been highly controversial results associated with some of
these models because they do not completely mimic human
toxoplasmosis (Hunter and Sibley, 2012; Niedelman et al., 2012;
Seok et al., 2013). In fact, some scientists have argued that new
approaches must be explored; some have even proposed new
models for studying T. gondii (Cornelissen et al., 2014; Tanaka
et al., 2016; Nau et al., 2017).

The PBMC cellular model includes T and B cells (∼80%),
natural killer cells (∼10%) and monocytes (∼10%) (Autissier
et al., 2010). These blood cells play an important role in
the immune response that is meant to preserve the host’s
homeostasis and defend it against parasite infection (Zhou
et al., 2016a). Researchers have used PBMC to study T. gondii
with various goals, but especially to improve diagnostic, drug-
screening and immunogenetic approaches (Vendrell et al., 1992;
Dzitko et al., 2015). Although PBMCs do not completely mimic
an infection in vivo, they can be taken directly from affected
individuals and can generate certain qualities that when added
to the recommendations (Figure 1) discussed below can improve
the quality of the experimental data regarding toxoplasmosis.
Therefore, understanding and improving models is imperative
to the appropriate interpretation and translation of this work
into clinical setting (Szabo and Finney, 2017). In this review,
we present a summary of how PBMCs have been used to
study T. gondii and other apicomplexan parasites, discuss some
controversies related to this cellular model and then describe
possible improvements to the related protocols.

IMMUNE RESPONSE IN PBMCs
STIMULATED WITH T. GONDII

PBMCs have mainly been used to model T. gondii as part
of the evaluation of potential new vaccines or drugs, as well
as to understand the relationships between the host’s immune
system and the parasite (see Table 1). The studies using these
models have shown that cytokine levels can vary according
to the evaluated clinical condition, the type of strain and the
culture conditions which can include the type of media culture
supplement; the time of data collection; and the temperature
variations during storage, shipping and handling (Weinberg

et al., 2010). In chronic asymptomatic individuals, the PBMCs’
immune responses against total lysate antigen and against
peptides derived from T. gondii are predominantly characterized
by high levels of interferon gamma (IFN-γ) (Prigione et al.,
2006; Bayram Delibaş et al., 2009; Cong et al., 2011; Cardona
et al., 2015; Meira et al., 2015); in ocular toxoplasmosis and
Toxoplasma-seronegative individuals, however, the level of this
cytokine is much lower (Alfonzo et al., 2005; Meira et al., 2014;
Maia et al., 2017). PBMCs have also been useful in studying the
immune response of HIV-infected individuals and of pregnant
women with toxoplasmosis. In one study on HIV patients
who had been coinfected with T. gondii, researchers measured
the IFN-γ expression of stimulated total lysate antigen using
PBMCs, both before and after treatment with antiparasitic drugs
(sulfadiazine, pyrimethamine, folinic acid, trimethoprim-sulfa-
methoxazole, and corticosteroids); the infection’s evolution was
correlated with the restoration of the IFN-γ response and with
decreased inflammation (Meira et al., 2015). In another study,
researchers showed that, during pregnancy, tumor necrosis
factor alpha (TNF-α) and interleukin (IL)-12 had decreased
expression when cells were stimulated with live tachyzoites
(Rezende-Oliveira et al., 2012). Interestingly, the addition of
the prolactin hormone to the cells seemed to restrict the
parasite’s proliferation (Dzitko et al., 2012). In similar works,
researchers have shown the importance of IFN-γ production in
the congenital transmission of T. gondii through the upregulation
of intercellular adhesion molecular 1 (ICAM-1) (Pfaff et al.,
2005). Stimulating PBMCs with complete or partial antigens
of T. gondii seems to reveal important aspects of the host’s
immune response. However, T. gondii and other apicomplexans
secrete proteins in a highly regulated manner that is involved
in the parasite’s immune evasion mechanisms (Tosh et al.,
2016). These processes are not seen when parasite antigens are
used, so we recommend the use of live parasites to stimulate
PBMCs (Figure 1).

On the other hand, the vaccine candidates for T. gondii are
typically parasite proteins or the peptides that elicit protective
immune responses in mice. However, vaccine candidates that
are effective in mice are not necessarily effective in humans.
PBMCs are potentially very useful tools for identifying and
characterizing novel vaccine candidates for T. gondii. Cells from
individuals with varied genetic and immunological backgrounds
can be easily isolated and stimulated with the antigens of interest,
thus allowing measurement of the desired cytokine profile or
cell response. However, to our knowledge, few researchers have
used this strategy (Tan et al., 2010; Cong et al., 2012; Cardona
et al., 2015). The studies mentioned above have identified novel
parasite derived peptides that induce strong production of IFN-γ
in people who express one of the most common human leukocyte
antigen (HLA) supertypes (HLA-A02, HLA-B07, and HLA-A11),
making those peptides attractive vaccine candidates. PBMCs have
also been used to evaluate the efficacy of two phytoecdysteroids
(α-ecdysone and 20-hydroxyecdysone) in controlling T. gondii
infections. These drugs are effective against Babesia gibsoni but
have no effect on T. gondii’s proliferation and do not elicit a
Th1 protective immune response against the parasite (Dzitko
et al., 2015). Thus, all these studies show that PBMCs may

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 February 2019 | Volume 9 | Article 24

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Acosta Davila and Hernandez De Los Rios An Overview of PBMCs as a Model for Apicomplexan Parasites

FIGURE 1 | Workflow and aspects to keep in mind to work with PBMCs and Toxoplasma gondii.

represent an important and undervalued model for vaccine and
drug development.

TECHNICAL ASPECTS TO CONSIDER
BEFORE WORKING WITH PBMCs AND
T. GONDII

To obtain scientifically valid data, the experimental conditions
and the study’s model must be closely controlled. PBMCs are
one of the best sources for assessing the differences or changes
associated with diseases or with drug responses and therapies;
in addition, these cells are relatively easy to obtain from whole
blood through isolation (Burczynski and Dorner, 2006). A major
challenge in the monitoring of PBMCs’ quality is establishing
protocols that define the proper isolation, shipping and storage
methods so that they can be tested without changes in cellular
functionality. For researchers who work with PBMCs, it is
very important to note that many variables affect these cells.
This model can be used to study Toxoplasma under clinical
or non-clinical conditions; however, the whole procedure—
from blood withdrawal to experimentation—must be highly
standardized. PBMCs are perishable living cells, and some
of them begin to die immediately after their isolation from
whole blood. Scientists have compared isolation techniques,
but they have found no differences with respect to the
generally used methods, which include Ficoll-Paque density-
gradient centrifugation and BDVacutainer cell-preparation tubes
(Corkum et al., 2015).

However, after isolation of PBMC, early apoptotic events are
present in both in vitro and ex vivo experiments; as a result,
it is very important to determine apoptosis before using these
cells in the experiments (Wunsch et al., 2015). Various methods

have been used to measure apoptosis, including the YO-PRO-
1/7-AAD method, which has been proposed as a good, low-cost
alternative for sensitive detection of early apoptosis in PBMCs
and >80% of viability is recommended before starting to work
(Glisic-Milosavljevic et al., 2005). Working with freshly isolated
PBMCs is not always possible; thus, the cells are generally frozen
and thawed for processing at later times (see Table 1); this allows
for the batched thawing of samples and for direct comparability
in assays, thus reducing inter-assay variability and allowing for
future analysis of later-emerging issues (Riedhammer et al.,
2016). As a consequence, both apoptosis and necrosis happen;
this phenomenon has been well documented to occur during
cryopreservation (Fowke et al., 2000; Baust, 2002; Cosentino
et al., 2007; Mallone et al., 2011). For example, in a recent study
on how storage temperature affects PBMCs and cryopreservs
PBMCs’ viability, recovery and gene expression patterns were
all affected, as compared to those of freshly isolated PBMCs
(Yang et al., 2016). In a cell infected with Toxoplasma, each
hour represents a specific differential gene-expression profile (He
et al., 2015; Zhou et al., 2016b), which indicates that the best
possible method for handling missing data is to prevent the
problem by properly planning each study and by collecting the
data carefully (Wisniewski et al., 2006). The goal is to eventually
have studies with comparable data. Along the same order of
ideas, the time variable is important to consider when working
with PBMCs, as it can lead to missing data. The problem of
missing data is relatively common in most fields of research,
and it can significantly affect the conclusions drawn from the
data (Little et al., 2012). Accordingly, some medical researchers
have focused on handling missing data and related problems
using methods that prevent or minimize missing data (O’Neill
and Temple, 2012). One of the main problems with using the
PBMC model for T. gondii is that the majority of studies are
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TABLE 1 | Characteristics and use of PBMC as a study model for T. gondii and other Apicomplexan parasites during the last 10 years.

Organism Technical observations PBMC culture (number of cells/final

volume/culture plates)

Main findings References

Human PBMC

and Toxoplasma

gondii

Stimulus: RH strain (TLA, 1µg/mL)

Technic: RT-qPCR

Process time: 48 h after collection

Cryopreserved: No

Supplemented: 10% FCS

1 × 106/500 µL/48-well High levels of TGF-β, IL-6, IL-10

in OT individuals

Maia et al., 2017

Stimulus: RH strain (TLA, 1µg/mL)

Technic: RT-qPCR

Process time: 48 h after collection

Cryopreserved: No

Supplemented: 10% FBS

1 × 106/500 µL/48-well TATA box-binding protein (TBP)

and ubiquitin C (UBC) are the

most stable genes for mRNA

analysis in PBMCs

Meira-Strejevitch

et al., 2017

Stimulus: ND

Technic: Radioactivity

Process time: 168 h in incubation

Cryopreserved: No

Supplemented: 5% human AB serum

ND Despite high proliferation,

lymphocytes from meth users

had a lower proliferative capacity

Massanella et al.,

2015

Stimulus: Peptides from P30 and ROP 18

(10µg/mL)

Technic: ELISPOT

Process time: 24 h in incubation

Cryopreserved: Yes

Supplemented: No

2 × 105/100 µL/96-well Four peptides induced IFN-γ

expression

Cardona et al.,

2015

Stimulus: RH strain (TLA, 1µg/mL)

Technic: ELISA

Process time: 48 h in incubation

Cryopreserved: No

Supplemented: 10% FBS

1 × 106/500 µL/48-well Restoration of IFN-γ response

and a decrease of the

inflammatory cytokines TNF-α

and IL-10

Meira et al., 2015

Stimulus: RH strain (Live)

Technic: Radioactivity

Process time: ND

Cryopreserved: ND

Supplemented: ND

2.5 × 105/100 µL/96-well Phytoecdysteroids did not inhibit

Toxoplasma and did not affect

the cytokine response (IFN-γ.

IL-12, IL-10)

Dzitko et al., 2015

Stimulus: TLA (ND)

Technic: ELISPOT

Process time: 120 h in incubation

Cryopreserved: No

Supplemented: No

3 × 105/200 µL/ND No association was observed

when PBMCs were stimulated

with TLA or mitogen

Nogueira et al.,

2014

Stimulus: BK strain (Live)

Technic: ELISA

Process time: 48 h in incubation

Cryopreserved: No

Supplemented: 0.1% BSA

2.5 × 106/ND/ND Correlation between Prolactine

and the level of IL-10, but not

with IFN-γ

Dzitko et al., 2012

Stimulus: RH and ME49 strains (Live)

Technic: ELISA

Process time: 48 h in incubation

Cryopreserved: No

Supplemented: No

2 × 106/ND/24-well T. gondii-seronegative

non-pregnant women produced

significantly higher levels of

TNF-a and IL-12

Rezende-Oliveira

et al., 2012

Stimulus: T. gondii peptides

Technic: ELISPOT

Process time: ND

Cryopreserved: Yes

Supplemented: No

2 × 105/100 µL/96-well Peptides induced significant

IFN-γ production by PBMCs

from 4 HLA-A*0201 persons

infected with T. gondii

Cong et al., 2011

Stimulus: TRRH strain (TLA, 5 mg/mL)

Technic: ELISA

Process time: 72 h in incubation

Cryopreserved: No

Supplemented: 10% FBS

1 × 106/200 µL/96-well IL-5 was higher than IFN-γ in the

initial phase of the infection; as

the IgG started to rise, IFN-γ

increased and suppressed the

synthesis of IL-5

Bayram Delibaş

et al., 2009

(Continued)
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TABLE 1 | Continued

Organism Technical observations PBMC culture (number of cells/final

volume/culture plates)

Main findings References

Pigs PBMC and

Toxoplasma

gondii

Stimulus: IPB-G/LR strain (TLA, 10µg/mL)

Technic: Flow cytometry

Process time: 72 h in incubation

Cryopreserved: No

Supplemented: 10% FBS

1 × 106/ND/ND High levels of IFN-γ
Jennes et al., 2017

Stimulus: RH strain (TLA)

Technic: RNAseq

Process time: 8, 24, 48 h in incubation

Cryopreserved: No

Supplemented: 10% FBS

ND More than 2,400 differentially

expressed genes Zhou et al., 2016a

Human PBMC

and Plasmodium

sp.

Stimulus: P. falciparum crude lysate (50mg)

Technic: Flow cytometry and RT-qPCR

Process time: 168 h in incubation

Cryopreserved: No

Supplemented: 10% FCS

1 × 106/ND/ND Crude antigens exhibited strong

heterogeneity in the cytokine

production

Kijogi et al., 2018

Stimulus: P. falciparum crude lysate (50mg)

Technic: Flow cytometry and RT-qPCR

Process time: 10 h in incubation

Cryopreserved: No

Supplemented: 2% FCS

ND Decreased parasite growth and

expression of PD-1 and IL-10

genes using L-citrulline

supplemented media

Awasthi et al.,

2017

Stimulus: Peptide Pooling Scheme

Technic: ELISPOT

Process time: 18 h in incubation

Cryopreserved: ND

Supplemented: 10% FCS

1 × 106/ND/96-well Highest immunogenicity was

identified at 7 days after boosting

with 932 SFC compared with 57

SFC among control vaccinees

Mensah et al.,

2016

Stimulus: Recombinant RAMA protein

Technic: ELISA

Process time: ND

Cryopreserved: ND

Supplemented: ND

ND High levels of interferon (IFN)-γ

and interleukin (IL)-10 cytokines

were detected

Changrob et al.,

2016

Stimulus: Peptides from CSP and AMA1

protein (10µg/ml)

Technic: ELISPOT

Process time: 36 h in incubation

Cryopreserved: No

Supplemented: No

1 × 106/100 µL/96-well CSP and AMA1 peptides

recalled IFN-γ responses from

naturally exposed individuals

Ganeshan et al.,

2016

Stimulus: TLR1/2 ligand PAM3CSK4 (20 ng)

Technic: ND

Process time: 72 h in incubation

Cryopreserved: Yes

Supplemented: ND

2 × 105/100 µL/96-well IL-1β and TNF-α were

significantly higher in severe

malaria cases compared with

healthy controls

Manning et al.,

2016

Stimulus: CelTOS (10 ng) or other single

(1.25µg/ml) peptide pools

Technic: ELISPOT

Process time: 36 h in incubation

Cryopreserved: No

Supplemented: No

4 × 105/100 µL/96-well Natural malaria transmission

induces CelTOS-specific ex vivo

IFN-γ

Anum et al., 2015

Calves PBMC

and

Cryptosporidium

parvum

Stimulus: Recombinant C. parvum p23

vaccine antigen

Technic: Flow Cytometry

Process time: ND

Cryopreserved: ND

Supplemented: ND

ND Recombinant p23 vaccine

antigen can stimulate a

Type-1-like immune response

Wyatt et al., 2005

Human PBMC

and Eimeria sp.

Stimulus: Recombinant Eimeria Antigen (rEA)

Technic: Flow Cytometry

Process time: 72 h in incubation

Cryopreserved: ND

Supplemented: 5%FCS

25 × 106/ND/6-well rEA stimulates human NK cell

effector functions including

increasing levels of IFN-γ and

Granzyme B

Aylsworth et al.,

2013

(Continued)
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TABLE 1 | Continued

Organism Technical observations PBMC culture (number of cells/final

volume/culture plates)

Main findings References

Sheep PBMC

and Babesia sp.

Stimulus: BdE or BQ1E (10 µg/well)

Technic: ELISA

Process time: 120 h in incubation

Cryopreserved: No

Supplemented: 10% autologous plasma

2 × 105/ND/96-well Production of IFN-γ and IL10

have key roles in the course of

infection by Babesia sp.

Guan et al., 2010

Bovines PBMC

and Theileria sp.

Stimulus: Sporozoites in homogenized

infected tick

Technic: RT-qPCR

Process time: 48 h in incubation

Cryopreserved: No

Supplemented: 40% FBS

4 × 106/ND/6-well MHC-DQ, SIRPA, PRNP, TLR10,

cMAF and MAFB genes showed

no change in mRNA expression

after T. annulata infection

Panigrahi et al.,

2016

Stimulus: Sporozoites in homogenized

infected tick

Technic: RT-qPCR

Process time: 48 h in incubation

Cryopreserved: No

Supplemented: 40% FBS

2 × 106/ND/6-well Up-regulation in SIRPA, PRNP

and MHC DQα genes and

down-regulation in TLR10, cMAF

and MAFB genes in crossbreds

as compared to indigenous

cattle was observed

Dewangan et al.,

2015

Stimulus: MPSP Peptides

Technic: ELISPOT

Process time: 42 h in incubation

Cryopreserved: Yes

Supplemented: No

1 × 106/100 µL/96-well IFN-γ and IL-10 were detected in

infected Holsteins but weak

responses were exhibited by

infected Angus and Japanese

Black cattle

Yamaguchi et al.,

2010

TLA, T. gondii Lysate Antigen; ND, Not determine; OT, Ocular Toxoplasmosis; NC, Negative Control; FCS, Fetal Calf Serum; MPSP, Major piroplasm surface protein; RAMA,

Rhoptry-associated membrane antigen; SFC, Spot Forming Cells (SFC)/106; CSP, Plasmodium falciparum circum- sporozoite protein; AMA-1, Apical membrane antigen-1.

not comparable, as researchers do not usually consider the time
aspect when obtaining data. Most studies have shown that the
time spent collecting data from cells after a stimulus varies; for
example, no one has argued that a supernatant for cytokine
measurement should be performed in an exact period of time. In
the bulk of the studies, there are differences in the time accorded
to the PBMC culture (varying from 48 h to 7 days) and even
in the collection of supernatant for the measurement of IFN-γ
after 12, 24 or 48 h (see Table 1). In this sense, the time between
the making of the culture and the collection of data should be
methodologically explained.

PBMCs IN OTHER APICOMPLEXAN
PARASITES

Although apicomplexans comprise a large phylum of parasitic
organisms (with more than 5,000 species), only a few have
been studied in detail. Most of these studies focus on parasites
that produce disease in humans such as T. gondii, Plasmodium
spp. and Cryptosporidium. There are fewer studies on parasites
that do not affect humans directly (e.g., Eimeria, Babesia, and
Theileria). One of the most studied apicomplexan parasites is
Plasmodium, the pathogen that causes malaria, one of the most
important public health problems worldwide. Nearly all studies
regarding this parasite that have used PBMCs have focused on
the development of vaccine candidates, particularly those using
the peptide polling scheme (Anum et al., 2015; Ganeshan et al.,
2016; Mensah et al., 2016) or recombinant proteins (Garraud

et al., 2002; Garg et al., 2008; Gitau et al., 2014; Changrob
et al., 2016). These studies have shown that, when PBMCs
are challenged with molecules derived from Plasmodium, the
immune response is characterized by Th1 cytokines such as IFN-
γ, IL-1β, and TNF-α. The nuclear transcription factor kappa
B (NF-kB) is what mainly regulates these proinflammatory
cytokines. However, patients with complications of malaria
have much lower levels of NF-kB than healthy controls do;
as a consequence, these low levels limit the Th1 cell response
(Punsawad et al., 2012).

Similarly, low levels of IL-1β and TNF-α have been
found in patients with severe malaria. In one study,
researchers analyzed 29 single-nucleotide polymorphism
(SNPs) in the PBMCs of patients with various clinical
conditions and found that only the “toll-like receptor-1”
variant could contribute to this reduced cellular phenotype
(Manning et al., 2016). Although this and other studies
have shown that malaria infections inhibit the immune
response, in one recent study, PBMCs from asymptomatic
school children showed a strong heterogeneity of cytokine
production, which suggests suppress immune responses
could be related only with active infections (Kijogi et al.,
2018). The donors’ immunological histories could influence
this strong heterogeneous response because these PBMCs

could present cross-reactivity with other infections such
as schistosomiasis, leishmaniosis, toxoplasmosis, and
Chagas disease. For this reason, other authors have
proposed alternatives to the use of PBMCs in studying
the primary immune response; one such alternative are
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hematopoietic stem cells (naïve cells), which would reduce
the discrepancies in mononuclear cell quality between studies
(Chitsanoor et al., 2017).

In a study of Cryptosporidium parvum in calves recovering
from cryptosporidiosis, scientists used PBMCs to evaluate the
immunogenic potential of a specific protein (p23) as a vaccine
antigen; in the first step, the researchers infected the calves with
the parasite’s oocysts, and in the next step, the PBMCs from the
calves were stimulated with recombinant p23, showing that this
antigen can stimulate a Type-1-like immune response among T
cells (Wyatt et al., 2005). A similar response occurred in HIV-
positive people infected withCryptosporidium; their PBMCs were
used to evaluate the cytokine profile after stimulation with the
parasite crude extract, and this showed that INF-γ is one of
the most important cytokines in the immune response against
this parasite (Gomez Morales et al., 1999). With the help of
IL-15, INF-γ eliminates this intracellular parasite by activating
natural killer cells (Dann et al., 2005). In the case of Eimeria,
PBMCs have been used to evaluate the parasite’s proteins as
adjuvants for vaccines or for immunostimulatory therapeutic
agents in the treatment of human cancer (Aylsworth et al., 2013).
For Babesia, PBMCs have been utilized to evaluate the cytokine
profile response in cattle vaccination (East et al., 1997) and
to identify the immune mechanisms involved in this parasite’s
pathogenicity (Guan et al., 2010).

With respect to Theileria, researchers have evaluated the
mRNA levels of six immunological markers in PBMCs from
crossbred, Tharparkar and Buffalo cattle after a parasite
challenge. The markers included MHC class II DQ-α (BoLA-
DQ), signal-regulatory protein alpha, prion protein, toll-
like receptor 10, c-musculoaponeurotic fibrosarcoma oncogene
homolog and V-maf avian musculoaponeurotic fibrosarcoma
oncogene homolog B. For crossbred and Tharparkar cattle,
significant differences occurred in the expression of genes in
infected and uninfected cells (Dewangan et al., 2015), whereas
the genes in Buffalo cattle did not show significant differences,
suggesting that those genes had little effect in the progression of
tropical theileriosis in the Buffalo species (Panigrahi et al., 2016).
These results indicate that, although PBMCs are a good model
for studying immunological phenomena, using them to make
inferences or generalize results across species is not advisable,
regardless of how evolutionarily close those species are.

The evidence suggests that PBMCs could be a good model for
studying the immune response in apicomplexan parasites and for
evaluating the efficiency of vaccine candidates, therapeutic agents
and immunomodulatory molecules. However, these cells are
not the most appropriate model for studying primo-infections
(Chitsanoor et al., 2017). Therefore, despite all the benefits
of the PBMC model, precautions should be taken related
to its limitations and the type of immune response that is
being evaluated.

PBMCs, OMICS, AND TOXOPLASMA

Omics techniques are powerful tools in modern biology, as they
enable high-throughput measurements of many genes, proteins
and metabolites in samples. A limited number of studies with

Toxoplasma have employed PBMCs in global transcriptional
profiling, with only one using PBMCs from pigs (Zhou et al.,
2016a; see Table 1). Some other studies have applied omics
in research on Toxoplasma and cortical neurons, astrocytes,
skeletal muscle cells, fibroblasts, and other cells; almost all of
these were derived from murine models (Tanaka et al., 2013;
Pittman et al., 2014; He et al., 2016; Zhou et al., 2016b). All
these studies show that gene expression—and consequently,
protein and metabolite levels—can undergo changes based on
physiological conditions. The results of other studies suggest
that the gene expression patterns in PBMCs greatly depend on
temporal and interindividual variations and also show strong
evidence that these cells’ gene-expression profiles are very
sensitive to long incubation periods (Baechler et al., 2004)
in addition to being dramatically affected by cryopreservation
(Yang et al., 2016). As yet, no reports in the literature exist
regarding the analysis of global transcriptional profiling using
human PBMCs stimulated with T. gondii. Therefore, omics
techniques, including dual RNAseq (Westermann et al., 2017)
in PBMCs from healthy individuals and toxoplasmosis sufferers,
could provide excellent opportunities to obtain important and
relevant data on this infectious disease. Given the number of
methodological differences among studies, ex vivo assays can
be considered a suitable model for the analysis of what occurs
during infection with Toxoplasma in humans. These assays
emerge as a good alternative for these main reasons: (i) an ex
vivo experiment should usually be done within a 24 h period
in order to minimize the effect that stress generates on the
cells; (ii) PBMCs’ characteristics are very interesting because they
are primary cells, are not immortalized and have the genetic
backgrounds of real patients; and (iii) ex vivo experiments have
the advantage of being analyzable very shortly after sampling,
which is particularly critical in studies of gene expression, where
data can be altered dramatically with the time factor.

CONCLUSION

PBMCs allow for the study of the immune-system response
to infections with apicomplexan parasites, the evaluation of
vaccine candidates and the development of immunotherapeutic
strategies. To obtain reproducible and comparable results,
several variables must be optimized when working with
this model. The evaluated response of human PBMCs in
apicomplexans has also been restricted to a few cytokines,
so it is highly advisable to include additional immunological
techniques that can comprehensively reflect the host’s response to
the pathogen.
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