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Toxoplasma gondii is an apicomplexan protozoan parasite with a complex life cycle

composed of multiple stages that infect mammals and birds. Tachyzoites rapidly replicate

within host cells to produce acute infection during which the parasite disseminates

to tissues and organs. Highly replicative cells are subject to Double Strand Breaks

(DSBs) by replication fork collapse and ATM, a member of the phosphatidylinositol

3-kinase (PI3K) family, is a key factor that initiates DNA repair and activates cell cycle

checkpoints. Here we demonstrate that the treatment of intracellular tachyzoites with

the PI3K inhibitor caffeine or ATM kinase-inhibitor KU-55933 affects parasite replication

rate in a dose-dependent manner. KU-55933 affects intracellular tachyzoite growth and

induces G1-phase arrest. Addition of KU-55933 to extracellular tachyzoites also leads to

a significant reduction of tachyzoite replication upon infection of host cells. ATM kinase

phosphorylates H2A.X (γH2AX) to promote DSB damage repair. The level of γH2AX

increases in tachyzoites treated with camptothecin (CPT), a drug that generates fork

collapse, but this increase was not observed when co-administered with KU-55933.

These findings support that KU-55933 is affecting the Toxoplasma ATM-like kinase

(TgATM). The combination of KU-55933 and other DNA damaging agents such asmethyl

methane sulfonate (MMS) and CPT produce a synergic effect, suggesting that TgATM

kinase inhibition sensitizes the parasite to damaged DNA. By contrast, hydroxyurea (HU)

did not further inhibit tachyzoite replication when combined with KU-55933.

Keywords: Toxoplasma gondii, DNA repair, cell cycle, fork collapse, antiparasitic drugs

INTRODUCTION

Toxoplasma gondii is a widespread protozoan parasite that infects humans and warm-blooded
animals. Although the course of toxoplasmic infection is usually asymptomatic, severe problems,
and even death can occur in immunocompromised individuals (e.g., AIDS, transplantation) or as a
result of congenital infection. In HIV patients, reactivation of the infection can cause neurological
defects, encephalitis, and chorioretinitis; congenital toxoplasmosis is responsible for neurological
defects, chorioretinitis, and in some cases abortion (Luft and Remington, 1992; Moncada and
Montoya, 2012). The life cycle of Toxoplasma includes the sexual stage (sporozoite), which occurs
only in the definitive host (felines), and asexual stages (tachyzoite and bradyzoite), both occurring
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in all mammals and birds (Dubey, 1994). It is generally accepted
that the highly replicative tachyzoites produce clinical symptoms
whereas the bradyzoites (which reside within intracellular tissue
cysts) cause the asymptomatic latent infection with the ability
to reconvert into tachyzoites. However, recent associations
have been made between chronic Toxoplasma infection and
neurological disorders, such as schizophrenia (Torrey et al., 2012;
Sutterland et al., 2015; Flegr and Horacek, 2017; Fuglewicz et al.,
2017; Yolken et al., 2017).

The frontline treatment for toxoplasmosis includes anti-folate
drugs, which are only effective against the tachyzoite stage and
produce serious adverse effects and allergic reactions (Luft and
Remington, 1992; Carlier et al., 2012). There is no effective
treatment for chronic toxoplasmosis as no drug is known to
eliminate tissue cysts. Newer, safer drugs effective in treating
toxoplasmosis are urgently needed.

Rapidly replicating cells such as tachyzoites must contend
with DNA damage. Toxoplasma tachyzoites cultured in vitro
show detectable basal levels of γH2A.X, a marker of DNA
damage, as revealed by Western blot and mass spectrometry
analysis (Dalmasso et al., 2009; Nardelli et al., 2013). Histone
H2AX is a H2A variant with a SQE C-terminal motif that can
be modified by a kinase, generating the phosphorylated form
γH2A.X. The spreading of γH2A.X at both sides of a double
strand break (DSB) is one of the earliest events involved in the
DNA damage response (DDR) to different genotoxic stresses
and occupies megabase chromatin domains (Rogakou et al.,
1998, 1999; Redon et al., 2002; Martin et al., 2003). H2A.X
phosphorylation is mediated by members of phosphatidyl-
inositol 3-kinase family (PI3K) such as Ataxia telangiectasia
mutated (ATM) kinase, ATM Rad-3-related (ATR), and DNA
dependent protein kinase (DNA-PK). ATM kinase and DNA-PK
are involved mainly in DSB repair whereas ATR is associated
with single strand DNA (ssDNA) and stalled replication forks
(Branzei and Foiani, 2008). ATM is the key kinase for H2A.X
phosphorylation after DSB, and also phosphorylates other cell
cycle and DDR proteins, allowing the γH2A.X foci generation
and DDR either by non-homologous end joining (NHEJ) or
homologous recombination repair (HRR) (Bakkenist and Kastan,
2003). DNA-PK is activated through its interaction with Ku
and is associated with the NHEJ pathway (Pannunzio et al.,
2017), however, DNA-PK and ATM kinase have overlapping
functions to phosphorylate H2A.X after ionizing radiation DNA
damage (Stiff et al., 2004; Wang et al., 2005). ATM kinase
also phosphorylates H2A.X and DNA-PK in response to DSB
produced by the topoisomerase I inhibitor camptothecin (CPT)
or topoisomerase II inhibitor mitoxantrone (Kurose et al., 2005;
Cristini et al., 2016). Various cellular mechanisms work to
ensure the integrity of the genome during DNA replication,
but sometimes fork stalling occurs and generates ssDNA. In
the event that the lesion cannot be repaired, the forks collapse,
generating one-end DSB that requires DDR. Among factors that
are recruited to one-end DSB are the Mre11-Rad50-Nbs1/Xrs2
complex and ATM kinase (Lee and Paull, 2005). DSBs produced
by fork collapse generated by topoisomerase I inhibitor topotecan
require ATM kinase for the completion of HRR (Kurose et al.,
2005; Tanaka et al., 2006; Kocher et al., 2013). γH2A.X can

also appear by chemical and environmental agents that do not
induce DSBs, such as benz[a]pyrene, which leads to formation of
covalent DNA adducts. In this case, H2A.X phosphorylation has
shown to be induced by ATM, ATR, or DNA-PK kinases (Yan
et al., 2011). Hyperthermia and heat shock can also cause ATM-
dependent γH2A.X induction (Hunt et al., 2007; Takahashi et al.,
2010). Among targets of ATM kinase is Hsp90a; phosphorylation
of Hsp90a at threonine 5 and 7 correlates with an increase in
γH2A.X (Elaimy et al., 2016).

The Toxoplasma ATM (TgATM) kinase (Vonlaufen et al.,
2010) seems to be essential as observed by a CRISPR-screen
assay (Sidik et al., 2016), along with other PI3Ks (Table 1). These
findings suggest an important biological role for such kinases
under normal growth conditions. There are several compounds
(caffeine, KU-55933 and derivatives) that have shown inhibitory
effects against PI3K kinases and were studied as promising
candidates for cancer therapy (Bode and Dong, 2007; Kuroda
et al., 2012; Batey et al., 2013; Teng et al., 2015). Caffeine is a
non-specific PI3K inhibitor whose targets include ATM kinase
at IC50 of 0.2mM, ATR kinase at IC50 of 1.1mM, DNA-PK at
IC50 between 0.2 and 0.6mM (Block et al., 2004), and other
targets (Bode and Dong, 2007). By contrast, KU-55933 is a potent
and selective ATP-competitor of ATM kinase at IC50 of 12.9 nM
(Hickson et al., 2004).

DNA replication and repair pathways are promising drug
targets for the development of novel antiparasitic. In the present
study, we analyzed the effect of the ATM kinase inhibitors
caffeine and KU-55399 on tachyzoites in vitro. We observed that
both inhibitors impair T. gondii replication. The presence of
KU-55933 also inhibits H2A.X phosphorylation in intracellular
tachyzoites cultured in presence of camptothecin (CPT), a
topoisomerase I venom (Hickson et al., 2004; Tomicic and Kaina,
2013; Botella and Rivero-Buceta, 2017). The combination of
KU-55933 and DNA damaging agents such as CPT or methyl
methane sulfonate (MMS) showed a synergic effect in slowing
parasite growth. The impact of our findings in light of the
discovery of future drug targets in toxoplasmosis is discussed.

MATERIALS AND METHODS

Parasite Culture
Wild-type RH strain parasites and RH RFP, which express red
fluorescent protein (van Dooren et al., 2008), were cultured
in standard tachyzoite conditions in vitro: human foreskin
fibroblast (HFF) monolayers were infected with tachyzoites
and incubated in Dulbecco’s modified Eagle medium (DMEM,
GIBCO) supplemented with 10% fetal bovine serum, penicillin
(100 UI/ml; GIBCO), and streptomycin (100µg/ml; GIBCO) at
37◦C and 5% CO2.

Chemicals and Antibodies
Camptothecin (CPT, Sigma-Aldrich Argentina, catalog number
C9911) was dissolved in DMSO at a concentration of 1mM
and stored at −20◦C as stock solution. Caffeine (Sigma-Aldrich
Argentina, catalog number C0750) was dissolved in water at a
concentration of 100mM and stored at −20◦C as stock solution.
KU-55933 (Calbiochem catalog number 118500) was dissolved in
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TABLE 1 | Domain structure of T. gondii phosphatidylinositol 3- and 4-kinase (PIKK) domain-containing proteins.

Gene ID (e.g., TGME49) NLS FAT PRD FATC MW (kDa) Blastp Phenotype Scorea

_248530 2 NO ND 1 246 HuATM −2.71

_266010 1 NO ND 1 964 DNA-PK −3.15

_268370 2 1 1 1 904 HuTRRAP −3.56

_283702 NO NO 1 1 647 HuATR −2.68

_316430 2 1 1 1 543 mTOR 0.21

These PI3,4K putative proteins were retrieved from www.toxodb.org based on Blast analysis by using Human ATM (AAB65827), ATR (CAA70298), and DNA-PK (AAB39925)

aminoacidic sequences. Domains and motifs were searched by using motifscan (http://hits.isb-sib.ch/cgi-bin/PFSCAN). FAT, FRAP (FKBP12-rapamycin-associated protein)-ATM-

TRRAP (Transformation/transcription domain-associated protein) domain; PRD, PIKK regulatory domain; FATC, FAT-C-terminal domain. HuTRRAP, transformation/transcription domain-

associated protein, isoform CRA_e (EAW76697). mTOR: mammalian Target Of Rapamycin (NP_004949). mRNA sequence is obtained by exon/intron prediction on genome sequence.

For this reason, the gene, ORF, and protein sequences are subjected to future modifications.

ND: not detected
a“Genome-wide loss of function screen (CRISPR) that measures each gene’s contribution to Toxoplasma gondii fitness during infection of human fibroblasts. Phenotype score = log2

(sgRNA of infected cultures/sgRNA composition of original library)” (www.toxodb.org). Negative score, fitness conferring; positive score, dispensable.

DMSO at a concentration of 10mM and stored at−20◦C as stock
solution. Hydroxyurea (HU, Sigma-Aldrich Argentina, catalog
number H8627-5G) was dissolved in water at a concentration
of 50 mg/ml as stock solution and disposed after use. Methyl
methane sulfonate (MMS, Sigma-Aldrich Argentina, catalog
number 129925-5G, liquid, 11,8M) was dissolved in DMEM
at the concentrations indicated for each assay and disposed
after use.

Anti-γH2AX antibody was obtained from Merck Argentina
(JBW301). Rabbit anti-Toxoplasma H2A.X and Hsp90 were
previously produced in our laboratory (Echeverria et al., 2005;
Dalmasso et al., 2009). Anti-actin antibody was kindly provided
by Jean F. Dubremetz (Université de Montpellier, Montpellier,
France). Murine anti-SAG1 antibody was kindly provided by
Marina Clemente (Albarracín et al., 2015). Mouse monoclonal
anti-H3 antibody was purchased from Abcam (10799). Alexa
fluor goat antibodies anti-mouse 594 (A-11032), anti-rabbit 594
(A-11037), anti-mouse 488 (A-11001), and anti-rabbit 488 (A-
11034) were purchased from Invitrogen.

Replication Assay
The replication rate was determined in infected monolayers,
treated or untreated with different doses of caffeine, KU-55933
or CPT. Coverslips with confluent HFFs were infected with 1
× 104 parasites (MOI: 0.1 Tachyzoites/host cell). After 1 h of
incubation, cells were washed three times with PBS and incubated
12–48 h in DMEM plus treatment, then cells were analyzed by
indirect immunofluorescence (IFA) to facilitate counting. Briefly,
they were fixed with 4% (v/v) paraformaldehyde and blocked
with 1% BSA. Primary antibodies anti-SAG1 diluted 1:100 with
0.5% BSA or anti-T. gondii Hsp90 1:2,000 were incubated at
room temperature for 1 h. After several washes with PBS, they
were incubated with secondary antibodies Alexa fluor goat anti-
mouse 594 or Alexa fluor goat anti-mouse 488 (Invitrogen).
Cover slips were washed three times andmounted in Fluoromont
G (Southern Biotechnology Associates) and viewed using a
Nikon Model Eclipse E600 (magnification 100X, numerical
aperture 1,40 at 24◦C). Green or red fluorescence were recorded
separately and the images were analyzed by Image-Pro Plus
version 5.1.0.20 and merged using Adobe Photoshop. Parasites

in 100 randomly chosen parasitophorous vacuoles (PV) were
counted in triplicate. Data are presented as the average number of
tachyzoites per PV. IC50 was obtained by GraphPad Prism 6: data
were normalized with 0 as the smallest value and transformed
to semi-logarithmic scale [x = log(x)]. After that, they were
analyzed as a nonlinear regression parameter-Dose-response
inhibition-log(inhibitor) vs. normalized response-variable slope.

RH RFP Fluorescence Assay
Fluorescence assay was carried out using an RH strain parasite
clone engineered to express Red Fluorescent Protein (RFP),
kindly provided by Silvia Moreno (University of Georgia,
Athens, Georgia). RH RFP tachyzoites were used to infect HFF
monolayer in a 96-well plate with or without the indicated
drugs. Fluorescence values were measured 4 days post-infection
and both excitation (544 nm) and emission (590 nm) were read
from the bottom of the plates in a microplate reader (Synergy
H1). Data were plotted and analyzed using GraphPad Prism
6 software.

Cell Cycle
HFF cells were grown to confluence in 6 well plates then infected
with 1 × 106 RH tachyzoites per well and treated with 60µM
pyrrolidine dithiocarbamate (PDTS) for 6 h in DMEM (Conde
de Felipe et al., 2008). Plates were then washed with PBS and
incubated with 5µM KU-55933, 4mM HU, or 0.1%v/v DMSO
for 7 h. Plates were washed with PBS and the cells were harvested
with trypsin, passed through different sizes of needles to lyse the
host cells and finally the parasites were filtered using a 3µmfilter.
Purified parasites were centrifuged at 2,000 RPM for 10min and
washed with PBS, then fixed with 70% ethanol, and incubated
24 h at−20◦C. Afterwards, samples were centrifuged and washed
with PBS supplemented at 2% with FBS. After centrifugation
again, they were resuspended in 1ml of supplemented PBS
+ 180 µg / ml RNAse and incubated for 10min at 37◦C.
Finally, they were incubated with Propidium Iodide (0.5mg
/ ml) for 10min before carrying out the measurement
in the BD FACS Calibur flow cytometer and analyzed by
FlowJo 7.6.
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Immunoblotting
Proteins from purified parasites were resolved by SDS-PAGE
and transferred onto a nitrocellulose membrane. Non-specific
binding sites were blocked with 5% non-fat-dried milk in
PBS containing 0.05% Tween-20 (PBS-T) and the membranes
were then incubated (1 h at room temperature) with primary
antibodies. The antibodies and dilutions used in this study were:
murine anti-γH2AX (1:1000) from Millipore (05–636), anti-
actin (1:500), anti-H3 (1:1,000), and antibodies produced by our
laboratory: rabbit anti-H2A.X (1:5,000) (Dalmasso et al., 2009).
The membranes were washed several times with TBS-T prior to
incubation with alkaline phosphatase–conjugated anti-rabbit or
anti-mouse secondary antibodies, diluted 1:10,000 (Santa Cruz
Biotechnology). Immunoreactive protein bands were visualized
by the NBT-BCIP method (Sigma-AldrichTM Argentina S.A).
Intensities of bands were quantified from scanned images using
ImageJ software.

RESULTS

Effect of Caffeine PI3K Inhibitor on
Tachyzoite Replication and Growth
The inhibition of PI3K kinases such as ATM and ATR can
block the correct DDR at DSB (Figure 1). There is evidence of
putative homologs of ATM, ATR, and DNA-PK PI3K kinases
in Toxoplasma [Table 1 and (Vonlaufen et al., 2010)]. Based on
human ATM domain organization (Stracker et al., 2013), the
most similar regions among ATM/Tel1 kinases involve the PI3K
domain (Figure S1). In order to test whether PI3K inhibitors
affect tachyzoite replication, infected monolayers were treated
with different doses of caffeine, which is a broad-spectrum kinase
inhibitor with known activity against ATM, and ATR kinases
(Sarkaria, 2003; Bode and Dong, 2007). Intracellular tachyzoites
were incubated with caffeine for 48 h and then the number of
parasites per parasitophorous vacuole (PV) was counted. Caffeine
significantly slowed the tachyzoite replication rate in a dose-
dependent manner with an IC50 = 370µM (Figure 2A). In
addition, the effect of caffeine on tachyzoite growth was also
determined. Figure 2B shows that doses higher than 200µM
significantly affect tachyzoite growth and completely abolished
it at 800µM. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide) assay did not evidence impact of caffeine
on HFF metabolism (Figure S2). In addition, caffeine did not
disturb neither shape nor “rosette” organization of tachyzoites
within PV (Figure 2C).

Effect of ATM Kinase Inhibitor KU-55933 in
Toxoplasma Cell Cycle and Growth
As caffeine likely has multiple PI3K targets that could adversely
affect parasite replication, we sought to test whether KU-55933,
an established and selective ATM kinase inhibitor, had an
effect on tachyzoite growth in vitro. Our findings show that
Toxoplasma replication was affected by KU-55933 in a dose
dependent manner with an IC50 = 2.15µM (Figure 3A).

In order to study how KU-55933 affects the tachyzoite
cell cycle, intracellular parasites were grown in presence of

PDTS to synchronize the tahcyzoites in G1. After releasing of
PDTS treatment intracellular tachyzoites were grown for 7 h
in the presence of DMSO, 5µM KU-55933, or 4mM HU.
Following treatment with KU-55933, parasites show a significant
enrichment in DNA content compatible with G1-phase in
comparison with the observed in the control and similar to
the observed with HU and tachyzoites arrested in G1 (DMEM
group) (Figure 3B).

To confirm the effect observed in tachyzoites treated with
KU-55933, RFP expressing tachyzoites were cultured in presence
of KU-55933 or DMSO, showing a significant reduction of
tachyzoite growth in a dose-dependent manner and with IC50 =

2.49µM (Figure 3C).
The presence of KU-55933 at these concentrations did not

induce alterations in uninfected HFF monolayer morphology
and MTT assay did not evidence impact of KU-55933 on HFF
metabolism (Figure S2). In addition, KU-55933 did not disturb
neither shape nor “rosette” organization of tachyzoites within
PV (Figure 3D).

These results indicate that KU-55933 has a detrimental effect
on intracellular tachyzoite replication. However, the indirect
effect of PI3K inhibitors on tachyzoite replication due to HFF
alterations, specifically at high doses, cannot be ruled out.
To investigate if KU-55933 can have an effect directly on
Toxoplasma, extracellular tachyzoites were incubated 4 h in
presence of different doses of KU-55933 at room temperature.
After that HFF monolayers were infected and incubated in
absence of the drug for 12 h. Figure 3E shows a significant
reduction in tachyzoite replication from 2.5µM, suggesting that
KU-55933 has a direct impact on Toxoplasma.

KU-55933 Inhibits Toxoplasma H2A.X
Phosphorylation at Serine 132 Under Fork
Collapse
During cell replication DNA is duplicated in the S-phase,
and replication forks remain stable until completion of DNA
duplication. However, replication forks are subject to a variety
of insults (dNTP depletion, DNA damage, DNA secondary
structures, among others) that lead to fork stalling. The presence
of several ssDNA and/or regressed forks (a structure also named
“chickenfoot” in which complementary daughter ssDNAs regress
and pair between them) promotes the collapse of forks and
DSB (Postow et al., 2001; Alexander and Orr-Weaver, 2016).
Camptothecin (CPT) is a topoisomerase I inhibitor that generates
fork collapse, producing DSB and therefore γH2A.X, and
induction of the HRR pathway (Chanoux et al., 2009; Xu et al.,
2015; Rybak et al., 2016). We used CPT to further analyze KU-
55933 activity, using the generation of γH2A.X in Toxoplasma as
a marker of DSB in genomic DNA of tachyzoites. As it is known,
ATM is able to phosphorylate SQ/TQ motif (Weber and Ryan,
2015) which is present in T. gondii H2A.X (SQEF) and detected
by commercial γH2A.X (Dalmasso et al., 2009; Vonlaufen et al.,
2010). Despite we purified T. gondii tachyzoites through 3µm
nitrocellulose filters before Western blot analysis, we tested the
possibility to detect any contamination of HFF host cell. As
observed in Figure S3, in our conditions anti-γH2A.X only
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FIGURE 1 | Model of DNA damage at fork during replication. ATR binds to ssDNA at a stalled fork to stabilize the fork. ATM kinase binds to one-ended DSB at

collapsed fork. DNA damage activates ATM and ATR to phosphorylate DNA damage response (DDR) proteins such as H2A.X and checkpoint kinases, the latter

blocking the cell cycle until DNA is repaired (or apoptosis commences). The collision of replication fork and transcription fork can also generate DSB and recruitment

of DDR factors including ATM kinase. CPT is a topoisomerase I (topo I) venom and can cause fork collapse and DSB during DNA replication. Caffeine inhibits ATM and

ATR kinase activity and KU-55933 inhibits ATM kinase.

FIGURE 2 | Effect of caffeine on Toxoplasma replication and growth. (A) Intracellular tachyzoites were grown in culture with DMSO or different doses of caffeine during

48 h. After that, they were fixed and stained with anti-tubulin. Tachyzoites per parasitophorous vacuole (Tz/PV) were counted in 100 randomly chosen vacuoles.

Statistical analysis was performed by one-way ANOVA and Tukey’s Multiple Comparison Test. Results are the mean of three replicates plus SD. Different letters

indicate statistically significant differences between columns (p ≤ 0.05), according to one-way ANOVA, and Tukey’s multiple comparison test. Details: p ≤ 0.001: a vs.

b, c, d, and e; p ≤ 0.001: b vs. c, d, and e; p ≤ 0.001: c vs. d and e; p ≤ 0.001: d vs. e. The graph is representative of three independent experiments with similar

results. (B) Intracellular tachyzoites from RH RFP strain were treated with Caffeine at different doses during 96 h and their growth analyzed at 544 nM. Results were

plotted by GraphPad Prism 6. Results are mean of three replicates plus SD. (C) Arrangement of tachyzoites inside PV is visualized at different doses of caffeine. In

presence of DMSO, or caffeine up to 1,000µM the typical rosette organization could be observed. PV with similar number of tachyzoites were selected to compare.
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FIGURE 3 | Effect of ATM kinase inhibitor KU-55933 on Toxoplasma replication and growth. Intracellular tachyzoites were grown in culture with DMSO or different

doses of KU-55933 during 48 h. After that, they were fixed and stained with anti-tubulin. (A) Tachyzoites per PV (Tz/PV) were counted in 100 PV. Statistical analysis

was performed by one-way ANOVA and Tukey’s Multiple Comparison Test. Results are mean of three replicates plus SD. Same letters above the column indicate no

significant differences; different letters indicate statistically significant differences between columns (p ≤ 0.05), according to one-way ANOVA, and Tukey’s multiple

comparison test. Details: p ≤ 0.0001: a vs. b, c, d, and e; p ≤ 0.0001: b vs. c, d, and e; p ≤ 0.0001: c vs. d and e; p ≤ 0.01: d vs. e. The graph is representative of

three independent experiments with similar results. (B) Tachyzoites were added to confluent HFF host cells during 16 h and treated with PDTS for 6 h. Plates were

then washed with PBS and incubated with 5µM KU-55933, 4mM HU or 0.1%v/v DMSO for 7 h and propidium iodide used to stain DNA. The tachyzoites were

analyzed by FACS and DNA content was determined (G1: 1N). Statistical analysis was performed with one-way ANOVA and Tukey’s multiple comparison test

(*p ≤ 0.05; **p ≤ 0.01, and ***p ≤ 0.001). (C) Intracellular tachyzoites (RH RFP strain) were cultured in presence of DMSO or different doses of µM KU-55933 in

96-well plates for 4 days and then read at 544 nm (bottom of the plate) in a microplate reader. Results are means of six replicates plus SD. The graph is representative

of three independent experiments with similar results. (D) Arrangement of tachyzoites inside PV is visualized at different doses of KU-55933. In presence of DMSO or

the drug the typical rosette organization could be observed. PV with similar number of tachyzoites were selected to compare. (E) Extracellular tachyzoites were

incubated for 4 h with DMSO or different doses of KU-55933. After that, they were added to HFF monolayers and incubated for 12 h in normal conditions. Replication

rate was analyzed as in (A). Statistical analysis was performed with one-way ANOVA and Tukey’s multiple comparison test (*p ≤ 0.05; **p ≤ 0.01). Results are mean

of three replicates plus SD.

detected a band in T. gondii lysate but not in HFF (Figure S3),
suggesting that the experiment avoids putative false results due to
the presence of HFF γH2A.X. The treatment with CPT increases
the presence of γH2A.X in Toxoplasma as analyzed by Western

blot (Figure 4A). The treatment of intracellular tachyzoites with
KU-55933 did not block basal levels of γH2A.X, but the presence
of KU-55933 in combination with CPT reduced γH2A.X levels
compared parasites treated with CPT (Figure 4A).
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FIGURE 4 | Camptothecin effect on H2A.X phosphorylation and tachyzoite replication. (A) Extracts of intracellular tachyzoite treated with 5µM CPT, 5µM KU-55933,

both or DMSO for 24 h were analyzed by Western blot with anti-γH2AX antibody (α-γH2AX) and anti-Toxoplasma H2A.X. Anti-actin (α-actin) antibody was used as

control of loaded protein. Band density was measured and relativized to DMSO (rOD). The graph is representative of three independent experiments with similar

results. (B) Tachyzoites per PV (Tz/PV) were counted in 100 PV. Statistical analysis was performed by one-way ANOVA and Tukey’s Multiple Comparison Test. Results

are mean of three replicates plus SD. Same letters above the column indicate no significant differences; different letters indicate statistically significant differences

between columns (p ≤ 0.05), according to one-way ANOVA and Tukey’s multiple comparison test. Details: p ≤ 0.0001: a vs. b, c, d, e, and f; p ≤ 0.001: b vs. d;

p ≤ 0.0001: b vs. e and f; p ≤ 0.01: c vs. d; p ≤ 0.0001: c vs. e and f; p ≤ 0.001: d vs. f; p ≤ 0.05: e vs. f. The graph is representative of three independent

experiments with similar results. (C) Intracellular tachyzoites (RH RFP strain) were cultured in presence of DMSO or different doses of CPT in 96-well plates for 4 days

and then read at 544 nm (bottom of the plate) in a microplate reader. Results are means of six replicates plus SD. (D) Arrangement of tachyzoites inside PV is visualized

at 5µM CPT. In presence of DMSO or the drug the typical rosette organization could be observed. PV with similar number of tachyzoites were selected to compare.

CPT treatment of infected HFF showed an inhibition of
parasite replication rate and growth in a dose-dependent manner
with IC50 = 4.9 and 5.02µM, respectively, (Figures 4B,C).
CPT at these concentrations did not induce morphological
alterations in uninfected HFF monolayers but a strong reduction
of HFF metabolism was observed by MTT assay from 2.5µM
(Figure S2). However, the addition of 5µM CPT did not disturb
neither shape nor “rosette” organization of tachyzoites within
PV (Figure 4D).

Our findings show that CPT generates DSB in the Toxoplasma
genome, as evidenced by the increase in γH2A.X. The fact that
this phosphorylation event could be abolished by the inhibitor

KU-55933 during DNA damage suggests that it is mediated by
TgATM kinase.

Effect of CPT, Methyl Methane Sulfonate
(MMS) and Hydroxyurea (HU) in
Combination With KU-55933 on
Tachyzoites
In order to test the effect of other DNA damaging agents on
Toxoplasma replication, we analyzed methyl methane sulfonate
(MMS) and hydroxyurea (HU) (de Melo et al., 2000; Vonlaufen
et al., 2010) using Toxoplasma RFP parasites, treated alone or
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FIGURE 5 | Effect on Toxoplasma ATM kinase with different DNA damaging agents. Intracellular tachyzoites (RH RFP strain) were treated with 2.5µM CPT, 50µM

MMS, or 50µM HU alone or in combination with KU-55933 at different doses during 96 h and their growth analyzed at 544 nM. As control DMSO (CPT) or PBS (MMS

and HU) were used. Results were plotted by GraphPad Prism 6 (left panels). Combination of 5µM KU-55933 and 2.5µM CPT, 50µM MMS, and 50µM HU, and

controls, were plotted as bar graphs (right panels). Statistical analysis was performed by one-way ANOVA and Tukey’s Multiple Comparison Test. Results are mean of

three replicates plus SD. There were not significant differences between DMSO and CPT, normal and MMS or normal and HU. Only differences between KU-55933

and combination is shown. **p ≤ 0.01; ***p ≤ 0.001, according to one-way ANOVA and Tukey’s multiple comparison test. The graph is representative of three

independent experiments with similar results.

in combination with KU-55933. A dose of 2.5µM CPT in
combination with KU-55933 was also analyzed. HU and MMS
both block tachyzoite replication at concentrations higher than
50µM (Figure S4). KU-55933 treatment administered with CPT
or MMS increased the inhibitory effect of KU-55933 whereas
HU in combination with KU-55933 presented no synergistic
effect (Figure 5).

DISCUSSION

In this study, we demonstrated that PI3K inhibitors such as
caffeine and KU-55933 are able to block Toxoplasma tachyzoite

replication. A previous study has shown that caffeine, as
an agonist of ryanodine-responsive calcium-release channels,
increased the level of intracellular Ca2+ in Toxoplasma (Chini
et al., 2005). In our study, we found that caffeine also produces
a strong effect on intracellular tachyzoite replication. CGK
733, an ATM/ATR kinases inhibitor, has been shown to block
Toxoplasma tachyzoite growth in a recent small molecule screen
(Dittmar et al., 2016). These collective studies suggest that PI3
kinases, including ATM/ATR kinases, are important modulators
for parasite growth and replication, and thus serve as attractive
drug targets.

Whereas, caffeine targets a broad range of kinases and
phosphatases (Velic et al., 2015), KU-55933 is specific for human

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 February 2019 | Volume 9 | Article 26

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Munera López et al. KU-55933 as Drug Against Toxoplasma gondii

ATM kinase (IC50 = 12.9 nM) being able to inhibit DNA-PK and
ATR at IC50 = 2.5 and 16.6µM, respectively (Hickson et al.,
2004). KU-55933 blocks tachyzoite replication and generates
G1-phase arrest, suggesting that TgATM kinase may have a
role along Toxoplasma cell cycle. ATM kinase has a large
number of substrates associated with the DDR, especially those
involved in DSB repair (Matsuoka et al., 2007). Interestingly,
the effect of KU-55933 on tachyzoite replication and growth
was observed without any exogenous DNA damage treatment,
suggesting that ATM kinase is required during tachyzoite cell
cycle. Since ATM kinase is a key kinase that triggers the
DDR during checkpoints when DSBs are present in DNA, it
is possible that the demands of rapid tachyzoite replication
create DNA replication stress and fork collapse generating one-
ended DSB, similar to what is observed in cancer cells (Hickson
et al., 2004; Alexander and Orr-Weaver, 2016; Zhang et al.,
2016). Recently, it was observed that DDR associated with
ATM kinase and histone ubiquitination is required for proper
DNA replication in cells without S-phase perturbation (Schmid
et al., 2018). The presence of basal γH2A.X is consistent with
this conclusion.

When studying the effects of drugs on intracellular parasites,
it is hard to rule out their potential effect on the host
cells. One way to address this issue is to treat extracellular
parasites with the drugs prior to infecting host cells. For
example, the treatment of human retinal pigment epithelial
cells, ARPE-19 with different PI3K inhibitors such as LY294002,
wortmannin, GDC-0941, and ZSTK474, during 1 h prior to
T. gondii infection blocked tachyzoite replication by reducing
activation of host AKT (Zhou et al., 2013). We found that
pre-incubation of extracellular tachyzoite with KU-55933 led
to a significant reduction of tachyzoite replication following
infection of HFFs. This result suggests KU-55933 can act directly
on TgATM kinase and impede its ability to function during
infection. Since extracellular tachyzoite is not a replicative
stage, the effect of KU-55933 at this stage is intriguing. One
explanation could be that KU-55933 is affecting the fitness of
extracellular tachyzoites that need to recover after invasion.
In this sense, ATM kinase has also been described to have a
role in peroxisomes activating some proteins in response to
reactive oxygen species (ROS), among them TORC1 (Alexander
et al., 2010; Ditch and Paull, 2012; Zhang et al., 2015). Another
explanation may be that treated tachyzoites contains residual
traces of KU-55933 after host cell entry, requiring a time for
ATM kinase recovery, and its participation in DNA replication
process. Further analysis should be done to shed light on
this question.

Recently, Dittmar et al. (2016) screened 1,120 compounds
for an effect against Toxoplasma growth; in their study, KU-
55933 at 5µM showed no inhibitory effect, contrasting with
our results. We found that the IC50 for KU-55933 against
Toxoplasma was 2.15µM, a concentration below the usual dose
(10µM) that produces an effect on mammalian cells (Teng et al.,
2015; Tian et al., 2015). As ATM kinase is a known target of
KU-55933, our results are in agreement with a genome-wide
CRISPR screen suggesting that TgATM kinase is essential for
tachyzoite viability (Sidik et al., 2016). Importantly, treatment

of tachyzoites with KU-55933 impairs H2A.X phosphorylation,
indicating that TgATM kinase is sensitive to KU-55933
during DDR.

Our observations indicate that CPT is able to generate DSB
damage on parasite DNA, probably during tachyzoite replication,
since it induces an increase of γH2A.X. Our findings lend support
to the idea that DNA topoisomerases may also be promising
drug targets in Apicomplexan and trypanosomatid parasites
(Garcia-Estrada et al., 2010; D’Annessa et al., 2015). However,
in our conditions CPT induced a decay in HFF metabolism
as measured by MTT assay, suggesting certain toxic effect on
host cell. Interestingly, this toxicity did not impair tachyzoite
replication inside the host cell, but could affect our interpretation
of data relative to blocking T. gondii replication. Recently, a
novel plasmodial topoisomerase I venom was designed on CPT
derivative topotecan structure (Cortopassi et al., 2014). They
demonstrated that a compound named LQB223 has a high
selectivity for P. falciparum topoisomerase I in comparison with
human counterpart and reduced Plasmodium berghei parasitemia
in mice. In the future, a selective T. gondii topoisomerase
I venom should be analyzed to confirm the value of this
therapeutic strategy.

Interestingly, here we demonstrate in a first approach that KU-
55933 could have a synergic effect when used in combination
with DNA damaging agents such as MMS and CPT, even at
low doses. This could be due to the effect of these compounds
generating DSB combined with the inhibition of DSB repair
by KU-55933. This strategy, opens the possibility to investigate
the value of druggable HRR and DNA replication factors. As
mentioned above, in the future, a similar strategy could be used
but using a Toxoplasma specific topoisomerase I venom, possibly
LQB223, which could be used in combination with KU-55933,
analogs or HRR inhibitors (e.g., Mre11 targets) that are being
tested in human.

HU is known to generate fork stalling and activate DDR via
ATR kinase rather than ATM kinase (Abraham, 2001), which
may explain lack of synergy when combining it with KU-55933.
In fact, it was observed that at low doses (50µM), HU cannot
present synergic effect with KU-55933 as observed at high doses
(e.g., 1mM) in mammal cells, in which a ATM-associated G1/S-
phase arrest is occurring (Snyder et al., 2009).

In summary, we identified drugs effective in producing DSB
in the parasite, and others that affect the mechanisms of DDR.
Our findings imply that the mechanisms of DSB repair, for
example the HRR pathway that repairs DSBs during DNA
replication, could be replete with novel therapeutic targets to
combat toxoplasmosis.
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