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Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded

animal via ingestion of infective stages, either contained in tissue cysts or oocysts

released into the environment. While immune responses during infection are

well-studied, there is still limited knowledge about the very early infection events in

the gut tissue after infection via the oral route. Here we briefly discuss differences in

host-specific responses following infection with oocyst-derived sporozoites vs. tissue

cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms

and early immune cell events that precede T. gondii’s dissemination in the host. We

propose stem cell-derived intestinal organoids as a model to study early events of natural

host-pathogen interaction. These offer several advantages such as live cell imaging and

transcriptomic profiling of the earliest invasion processes. We additionally highlight the

necessity of an appropriate large animal model reflecting human infection more closely

than conventional infection models, to study the roles of dendritic cells and macrophages

during early infection.

Keywords: intestinal organoids, Apicomplexa, intestinal epithelial barrier, innate response, Toxoplasma gondii,

Paneth cells

INTRODUCTION

Infection by the intracellular apicomplexan parasiteToxoplasma gondii affects an estimated 25–30%
of humans worldwide (Montoya and Liesenfeld, 2004), making this zoonotic parasite one of the
most widespread human pathogens in the world. Infected felids excrete up to several hundred
million environmentally resistant oocysts with their feces, which can infect any warm-blooded
animal upon ingestion. There, T. gondii reproduces asexually via two distinct life cycle stages,
the fast growing tachyzoite and the slower reproducing bradyzoite stage. The latter forms
cysts in various host tissues, which may be consumed by carnivores or omnivores. Following
ingestion, bradyzoites are released from cysts, reverting to the tachyzoite stage, replicating, and
invading surrounding tissues before eventually disseminating throughout the body to other
organs (Blader et al., 2015).

Different Outcomes Are Observed Following Experimental
Infection With Different Parasite Stages and in Different Host
Species
WhileT. gondii can be transmitted via any of the above-mentioned paths, it is known that infections
with different forms of the parasite have different effects in different hosts. Sporozoites differ
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biochemically and cell biologically from tachyzoites and
bradyzoites (Speer et al., 1995; Dubey et al., 1998; Jerome
et al., 1998; Fritz et al., 2012). Understanding innate immune
mechanisms will therefore require comparisons of infections
with oocyst-derived sporozoites and bradyzoites, as well
as consideration of naturally occurring species-specific
transmission pathways.

The natural predator-prey interaction of cats and rodents
serves as a convincing argument for studying rats and mice as
natural hosts for T. gondii. Experimental data (Dubey, 2001,
2006) support the hypothesis that T. gondii has primarily evolved
for transmission by carnivory in cats and via the fecal-oral
route in herbivores (Dubey, 2006). Mus musculus is almost
entirely an herbivorous organism, with occasional insectivorism
(Butet and Delettre, 2011). Maternal cannibalism, as seen under
lab conditions, is rather a stress-related behavior (Weber and
Olsson, 2008; Weber et al., 2013) and is presumably much less
often observed in nature. Consequently, the common use of
oral T. gondii infection with bradyzoites in mice as a research
model is problematic, particularly if we wish to gain insights
relevant to human infection (Ehret et al., 2017; Sher et al., 2017).
Notably, islands free of felids exhibited a low seroprevalence of
T. gondii in wild pigs and humans, likely resulting from a lack of
oocysts in the environment (Dubey et al., 1997a; de Wit et al.,
2019). This underlines the important role that oocysts play in
parasite dissemination, even for omnivorous species such as pigs
or humans.

The Early Events of Intestinal Entry of
T. gondii
Very little is known in any organism about the very early
phase of infection with either bradyzoites or sporozoites
regarding mechanisms employed by the parasite to pass through
the intestinal epithelial barrier (IEB). Early in vivo studies
reported that excysted sporozoites were observed in enterocytes
30min post-infection, with few cytopathological lesions such
as villi enlargement detected at the ultrastructural level (Dubey
et al., 1997b; Speer and Dubey, 1998). Sporozoites could pass
through enterocytes and goblet cells of the ileal epithelium 2 h
post-infection and enter the lamina propria where parasites
differentiated. However, recent reports have concluded that
parasites are only reliably detectable by in vivo imaging 3–5 days
post-infection (Coombes et al., 2013; Gregg et al., 2013).

There is therefore a clear need for cellular systems which
mimic the in vivo situation and allow live cell imaging and
transcriptomic profiling of the earliest invasion processes. Great
advances in generation, cultivation and cell-type characterization
of intestinal organoids (IOs) offer unique opportunities to
observe these early events in different hosts with different
T. gondii stages (Klotz et al., 2012; Derricott et al., 2019).

Intestinal Organoid Models to Study
T. gondii Infections
IOs can serve as an unlimited source for primary intestinal
epithelial tissues. They reflect the cellular content and
functionality of the in vivo organ (Figure 1A) including the

unique properties of the IEB, like composition of tight junctions
(Chiba et al., 2008; Kozuka et al., 2017). By manipulating culture
conditions IOs can display the different cell populations that vary
throughout both small and large intestine. A major advantage
of IOs is their long-term survival in vitro (in contrast to ex vivo
organ cultures) and the savings on animal experiments once
IOs have been established. They are also genetically tractable
(Schwank et al., 2013). However, IOs also have drawbacks, like
issues with reproducibility and comparability of results between
labs due to non-standardized culture conditions and/or different
donors for organoid preparations (Bartfeld, 2016; Yu et al.,
2017). Moreover, although IOs provide a good representation of
the complexity of the intestinal tissue, terminally differentiated
IOs with all cell populations, in particular the less frequent
Tuft- and M-cells, are difficult to obtain. Other aspects that are
missing in IOs compared to whole animals or ex vivo short-term
organ cultures are immune cells and the microbiota. However,
recent technological advances allow these “missing” components
to be gradually incorporated into the system to consecutively
reproduce the in vivo situation (Bartfeld, 2016; Hill et al., 2017;
Noel et al., 2017; Williamson et al., 2018). Another hurdle, in
particular for infection studies, is the inverted topology of the
IOs, i.e., the apical side of the epithelial cells faces the lumen of
the organoid (Figures 1C,D). This requires the pathogens to be
introduced via microinjection (Bartfeld and Clevers, 2015; Hill
et al., 2017; Heo et al., 2018; Williamson et al., 2018). However,
in the case of T. gondii infection of IOs is efficiently occurring
(Figures 1B–D) when its lumen becomes accessible by physically
breaking it open via simple pipetting. From this short discussion
it is evident that for studying T. gondii biology, depending on the
research question, three-dimensional IOs are superior to 2D- or
even 3D-cultures of cell lines (Barrila et al., 2018; Danielson et al.,
2018) but that they cannot yet fully replace mouse experiments.

Intestinal epithelial cells (IECs) are constantly renewed every
3–4 days (Clevers and Bevins, 2013). The main absorptive cell
type, enterocytes, are characterized by a columnar architecture
and microvilli at the apical surface. Goblet cells secrete mucins,
which form a thick mucus layer along the epithelial surface,
limiting access and promoting removal of potential invading
pathogens (Johansson andHansson, 2016). Enteroendocrine cells
release hormones at the basolateral site, mediating paracrine
effects to neighboring cells (Allaire et al., 2018). Tuft cells
are thought to serve as luminal chemosensors, but their
main function is largely unknown (Gerbe and Jay, 2016).
Paneth cells are located in the crypt base and play a pivotal
role in innate immune defense in the intestine by secreting
antimicrobial molecules, such as defensins/cryptidins, lysozyme
and phospholipases (Cheng and Leblond, 1974; Clevers and
Bevins, 2013). The release of these granules is highly dependent
on several stimuli such as cholinergic agonists (Satoh et al.,
1995; Clevers and Bevins, 2013). Paneth cell-specific autophagy
has been shown recently as essential for protection against
interferon-γ (IFN-γ) dependent intestinal inflammation and
crypt integrity, also in the context of a T. gondii infection (Raetz
et al., 2013; Burger et al., 2018). Another important role of Paneth
cells is the maintenance of the stem cell niche in the small
intestine (Sato et al., 2011; Clevers and Bevins, 2013).
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FIGURE 1 | (A) Simplified scheme of the intestinal mucosa with its different cell populations and its derived organoids, and its infection with T. gondii bradyzoites or

sporozoites. Center: After oral uptake of oocysts or tissue cysts into the small intestine sporozoites or bradyzoites leave the cyst and enter the intestinal epithelium to

reach the lamina propria. The principle strategies used by the parasite to cross this barrier are either via invasion of the intestinal epithelial cells (a) or by transepithelial

migration (b). Left: Infected murine DC. T. gondii ROP5 and ROP18 phosphorylate host IRGs, thus protecting the PV from degradation. Extracellular profilin is

recognized by the cell via TLRs 11 and 12, inducing the release of IL-12 and TNF-α. Right: Extracellular matrix-embedded crypt (generated via physical disruption of

the intestine) leads under appropriate culture conditions to the initial formation of a crypt-derived organoid which then can differentiate into a more complex “mature”

intestinal organoid. (B–D) Microscopic images of a mouse small intestine-derived organoid infected with T. gondii RH strain tachyzoites. (B) Representative bright-field

confocal image of a mouse IO after 7 days in culture. Scale bar 50µm. (C) Projection of a confocal z-stack of the IO shown in C, stained with FITC-phalloidin for

apical F-actin (green), TRITC-labeled UEA-1 lectin for Paneth cell granules (red) and DAPI for nuclei (blue). Note that due to the projection of the stack fluorescent

signals might appear mis-localized within the organoid compared to the single plane shown in (D). Scale bar 50µm. (D) Enlarged view of an organoid villus-like

structure (white square in C) of a single plane. Parasites (identifiable by their GFP-tagged green tubular mitochondrion (Thomsen-Zieger et al., 2003; black arrow) had

replicated in IECs for 48 h. Paneth cells, identifiable by their multiple granules (white arrow) can be detected in the villus-like structure. Due to its granular appearance

the red arrow indicates a possible Paneth cell containing replicating parasites. The IO’s lumen is filled with cell debris from apoptotic cells, constantly shed as part of

the high turnover rate of IECs. The red structures in the lumen marked with white arrow heads might indicate Paneth cell degranulation, as previously described by

Farin et al. (2014). Scale bar 20µm.

IOs allow the real-time study of early infection event dynamics
in specific gut epithelial cell types upon T. gondii infection.
This includes the ability to study IOs derived from a range
of host species, including rodents, pigs and humans (Klotz
et al., 2012; Derricott et al., 2019). They can therefore serve
to highlight differences in these processes in different species
under comparable experimental conditions, due to the absence
of the immune system and microbiota. In the past, infection
studies were performed using either the murine in vivo model,
or small intestinal cell lines derived from immortalized or

cancer cells. It will therefore be crucial to compare results to
T. gondii-infected IOs.

Innate Defense Mechanisms of Intestinal
Epithelial Cells to T. gondii Infection
Studies in mice have provided a comprehensive picture of
innate immune responses in the lamina propria and beyond
(Yarovinsky, 2014; Cohen and Denkers, 2015; Dunay and
Diefenbach, 2018) upon T. gondii infection, as well as the role
of the microbiota (Cohen and Denkers, 2014; Leung et al.,
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2018). However, much less is known about how parasites are
able to overcome the IEB or their fate in the individual cells of
it (Jones et al., 2017).

The intestinal mucosa is protected by physical barriers that
include the mucus layer, the glycocalyx of enterocytes and the
tight junctions between intestinal epithelial cells (Pelaseyed et al.,
2014; Okumura and Takeda, 2017). It shields the mucosa from
invasion by the microbiota. Although T. gondii is apparently able
to penetrate this barrier the efficiency of this process and how the
hurdles are overcome is unknown.

Few studies have addressed the role of glycocalyx and mucus
during T. gondii infection. However, one described an increase in
mucus-producing goblet cells in rats upon infection with oocysts
(Trevizan et al., 2016). Conflicting results were reported for the
role that trefoil factor family (TFF) peptides, major constituents
of intestinal mucus, play in a T. gondii infection. While one
study in mice showed a protective effect of TFF2 against
immunopathology (McBerry et al., 2012), another reported the
opposite effect for TFF3 (Fu et al., 2015).

Different pathways have been proposed to be used by T. gondii
for transmigration into the intestinal epithelial tissue (Jones et al.,
2017) (Figure 1A). The first one is paracellular transmigration, in
which the parasites, aided by their gliding motility, move through
the intercellular junctions without altering the barrier integrity.
In vitro studies using intestinal polarized monolayers showed
that tachyzoites of type I strains exhibited a higher migratory
capacity compared to type II and type III strains. This might
contribute to the higher virulence of type I strains seen in labmice
(Barragan and Sibley, 2002). It was later shown that parasites
rapidly cluster between the cellular junctions upon entry (Weight
and Carding, 2012; Briceño et al., 2016; Jones et al., 2017), and
the tight junction protein occludin was identified as a specific
target of tachyzoites during passage through the paracellular
pathway (Weight et al., 2015). T. gondiimight use it to efficiently
cross the monolayers by the interaction of intracellular adhesion
molecule-1 with the parasite adhesion molecule MIC2, without
affecting barrier permeability (Barragan et al., 2005). However,
contradictory results were reported in an experimental set-up
with Caco-2 cells (Briceño et al., 2016) where it was shown
that intestinal barrier function was disturbed. These examples
highlight the need to evaluate these crucial events in a cellular
system like IOs that closely resemble the in vivo IEB.

The second reported entry pathway is by penetration of the
apical cell membrane and passing through the basolateral side in
order to reach the underlying lamina propria where leukocytes
reside (Barragan et al., 2005; Lambert and Barragan, 2010).
Several authors have proposed a third pathway, which involves a
Trojan-horse-like model (Gregg et al., 2013; Jones et al., 2017).
Upon infection of IECs neutrophils are rapidly recruited to
the site of infection and subsequently infected by the parasite.
These are then capable of migrating through the epithelial cell
layer and crossing the lumen, thereby facilitating parasite spread
not only in the intestine but also to other tissues (Coombes
et al., 2013). However, most of these data were generated in the
above-mentioned traditional model systems. Therefore, it will be
interesting to see how IOs compare to these models and which
reflect best the in vivo situation.

Besides the physical barrier discussed above an independent
biochemical barrier exists, composed mainly of antimicrobial
peptides and proteins (e.g., cryptidins, defensins, lysozyme). The
vulnerability of T. gondii bradyzoites or sporozoites toward these
molecules is largely unknown. A differential effect of oocysts of
different genetic backgrounds on Paneth cell-derived lysozyme
expression following infection of BALB/c mice was reported (Lu
et al., 2018). Likewise, only a single study provided some indirect
evidence for an effect of the antimicrobial activity of cryptidins
on bradyzoites in the lumen of mice prior to invasion of the
epithelial layer (Foureau et al., 2010). Evidently, there is still more
to learn in this area.

Upon parasite exposure IECs (and immune cells, see below)
recognize the parasite through pattern recognition receptors
on the cell surface, such as Toll-like receptors (TLRs), which
activate secretion of pro-inflammatory cytokines that induce
a subsequent Th1 response (Gopal et al., 2008). Among
these, Paneth cell-resident TLR9 has been shown to modulate
recognition of external pathogens and to induce the immune
response through mechanisms such as defensin release (Rumio
et al., 2004; Buzoni-Gatel et al., 2006; Foureau et al., 2010).
Surprisingly, a recent transcriptomic study with rat intestinal
IEC-18 cells did not find evidence of pathogen-associated
molecular patterns being induced upon infection with oocyst-
derived T. gondii sporozoites (Guiton et al., 2017).

Early Interaction of T. gondii With Host
Immune Cells
The lamina propria and Peyer’s patches are rich in dendritic
cells (DCs) and macrophages (M8s). Once the intestinal barrier
is overcome by T. gondii, these are the first immune cells to
recognize parasite infection and to initiate the mounting of the
host immune response. This recognition can occur via at least
three distinct routes. (1) DCs and M8s directly phagocytose
free, opsonized parasites upon crossing the epithelial barrier.
(2) Both cell types also phagocytose infected apoptotic IECs
(Buzoni-Gatel and Werts, 2006). (3) DCs are able to elongate
through the tight junctions of the epithelium, and in mice
recognize the soluble T. gondii antigen profilin in the lumen
via TLR 11 and 12 (Yarovinsky et al., 2005; Koblansky et al.,
2013). DCs and M8s exhibit directly toxoplasmacidal effects to
phagocytosed parasites. However, once stimulated they also begin
to secrete interleukin (IL) 12 and tumor necrosis factor α (TNF-
α) (Buzoni-Gatel and Werts, 2006). IL-12 and TNF-α induce the
differentiation of CD4+ T cells into Th1 cells, which secrete IFN-
γ. In parallel, IL-12, along with IL-15 secreted by infected IECs,
stimulate natural killer (NK) cells and CD8+ T cells to begin
secreting IFN-γ, the primary mediator of resistance to T. gondii
(Suzuki et al., 1988). This leads to containment of the parasite and
its conversion into the bradyzoite form, thereby hiding from the
immune system (Hunter and Sibley, 2012; Ahmed et al., 2017).

Role of T. gondii Rhoptry Proteins in Early
Immune Cell Modification
One mechanism by which IFN-γ mediates parasite destruction
in mice is through upregulation of immunity-related GTPases
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(IRGs) (Gazzinelli et al., 2014; Müller and Howard, 2016). IRGs
are intracellular host proteins, some of which localize to the
PV membrane in an infected cell causing membrane rupture,
parasite release into the host cell cytosol and its subsequent
degradation. In order to avoid destruction, T. gondii has evolved
a means to subvert this host defense mechanism (Buzoni-Gatel
and Werts, 2006; Gazzinelli et al., 2014). It is dependent on
several parasite proteins which are derived from unique secretory
organelles (rhoptries and dense granules) and transported into
the infected cell. ROP18 is able to phosphorylate host IRGs
such as Irga6 while ROP5 modulates this activity, all eventually
resulting in PVmembrane destruction (Reese et al., 2011; Behnke
et al., 2012; Fleckenstein et al., 2012; Niedelman et al., 2012;
Etheridge et al., 2014). However, depending on the genetic
background of the mouse, this virulence mechanism of the
parasite can be overcome by a highly polymorphic IRG protein
(Irgb2-b1). Some of its variants can act as decoys for ROP5/18
binding, enabling other IRGs to degrade the PV (Lilue et al.,
2013). Surprisingly, it is unknown if or to what extent this IRG
response plays a role in the intestine. Mouse IOs could be very
useful to shed light on this immediate obstacle the parasite has to
overcome in order to proliferate and disseminate.

Phenotypic Changes of DCs Utilized as
“Trojan Horse” Vehicles for Dissemination
of T. gondii
After infection T. gondii is able to rapidly disseminate throughout
the body. Within hours it is found in the spleen and it
is also able to cross the blood-brain barrier, the placental
barrier in pregnant hosts, and enter immune privileged sites
such as the eyes (Lambert and Barragan, 2010; Harker et al.,
2015). This is achieved through invasion and utilization of
migratory leukocytes as “Trojan horses.” There is evidence
suggesting that several cell types may be used for this purpose,
including DCs, M8s, neutrophils, NK cells, and T cells
(Courret et al., 2006). However, extracellular tachyzoites released
from infected endothelial cells in the brain vasculature have

also recently been implicated in overcoming the blood-brain
barrier (Konradt et al., 2016).

Mostly DCs, inherently able to become migratory, have been
implicated in early dissemination (Weidner and Barragan, 2014;
Kanatani et al., 2015; Brasil et al., 2017; Ólafsson et al., 2018).
Following activation by an antigen they undergo a series of
phenotypic changes required for its efficient presentation. This
includes comprehensive remodeling of the actin cytoskeleton
and the loss of actin-rich structures called podosomes. These
changes are essential for switching from a strongly adhesive
to a migratory phenotype, allowing cells to reach the lymph
nodes. Using lipopolysaccharide to activate DCs indicated that
remodeling was dependent on TLR4 signaling and prostaglandin
E2 (PGE2) secretion (van Helden et al., 2010; Weidner et al.,
2013). In contrast, following infection with T. gondii tachyzoites,
phenotypic changes occurred <10min post-invasion and were
not reliant on TLR4 or PGE2. This was shown experimentally
to require active manipulation by live T. gondii (Weidner et al.,
2013). Recent studies indicated that T. gondii infection results in
a marked reduction in pericellular proteolytic activity by DCs,
mediated via the release of tissue inhibitor of metalloproteinase
1. This suggests a compensatory mechanism for an upregulation
of matrix metalloproteinases, which have been demonstrated
to perform diverse catalytic and non-catalytic functions in
amoeboid migration (Orgaz et al., 2014; Ólafsson et al., 2018).

Differences in the Macrophage/DC
Responses of Mice and Humans to
T. gondii: the Pig as Human-Relevant
Model
As discussed, murine DCs are able to undergo maturation in
response to the detection of the soluble T. gondii antigen profilin
via TLR11 and TLR12. However, in humans TLR12 is entirely
absent, and TLR11 is apparently a non-functional pseudogene
(Zhang et al., 2004; Roach et al., 2005; Ishii et al., 2008).
Consequently, profilin does not elicit an immune response in
humans; instead it relies on phagocytosis of tachyzoites (Tosh

TABLE 1 | Markers of monocyte and DC subsets in mice, humans, and pigs (Fairbairn et al., 2013; Summerfield et al., 2015; Sher et al., 2017).

Monocytes Dendritic cells

Mouse Human Pig Mouse Human Pig

Classical/Inflammatory CD11b+

CD115+

Ly6C high

HLA-DR+

CD14+

CD16−

CD172a+

CD14 high

CD16 low

CD163 low

cDC1 CD11c+

MHC II+

CD8a−

CD11b+

CD11c+

HLA-DR+

CD1c+

CD141−

CD135+

wCD11R1+

CD1a+

CD172a+

Intermediate HLA-DR+

CD14+

CD16+

CD172a+

CD14 low

CD16 high

CD163 high

cDC2 CD11c+

MHC II+

CD8a+

CD11b−

CD11c+

HLA-DR+

CD1c−

CD141+

CD135+

wCD11R1+

CD1a−

CD172a−/low

Non-

Classical/Patrolling

CD11b+

CD115+

Ly6C low

HLA-DR+

CD14 low

CD16+

Murine and human subsets highlighted in yellow produce IL-12 in response to stimulation with T. gondii tachyzoites in vitro (Sher et al., 2017). The porcine subsets which respond to

T. gondii exposure are currently unknown.
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et al., 2016; Sher et al., 2017). Although the pattern recognition
receptors responsible for the recognition of T. gondii in humans
have not been definitively identified, human PBMCs produce
pro-inflammatory cytokines following stimulation with T. gondii
RNA or DNA. This implicates the involvement of TLRs 7, 8,
and 9 which are responsible for the recognition of nucleic acids
from pathogens (Forsbach et al., 2008; Andrade et al., 2013;
Jennes et al., 2017). The specific subsets of monocytes and DCs
secreting IL-12 in response to T. gondii also differ between mice
and humans. In mice, inflammatory monocytes and CD8α+ DCs
respond, whereas the human analogs—classical monocytes and
the cDC2 subset—do not. In contrast, human non-classical and
intermediate monocytes and the cDC1 subset produce IL-12,
which are analogous to murine patrolling monocytes and CD8α−

DCs (Tosh et al., 2016; Sher et al., 2017).
There is a clear need for an immunologically more human-like

large animal model to understand the mechanisms underlying
T. gondii infection and immunity in humans (Ahmed et al.,
2017; Sher et al., 2017). The pig is one such candidate that could
be utilized for this purpose. Genomic studies have indicated
that 80% of porcine immune response genes resemble human
equivalents, whereas for mice <10% are similar (Meurens et al.,
2012; Mair et al., 2014) (Table 1). Of particular note is that like
humans, pigs lack TLRs 11 and 12 (Uenishi and Shinkai, 2009;
Mair et al., 2014) and so are presumably also unable to respond
to profilin. They do however exhibit TLRs 7, 8, and 9, and so
are likely able to recognize T. gondii via the same mechanism
as humans (Uenishi et al., 2012; Jennes et al., 2017). Thus, the
initial porcine DC andM8 responses to T. gondii deserve further
examination regarding their similarity to the human response.

There are also clinical similarities between the human and
porcine responses to T. gondii, which further suggest the pig
may be an appropriate model for human infection. For example,
postnatal infection with T. gondii is usually asymptomatic
or mild in humans and pigs, whereas infections with some
parasite strains can be fatal in mice (Dubey, 1986; Nau et al.,
2017). During pregnancy in humans and pigs parasites can
often cross the placental barrier and result in abortion or
congenital toxoplasmosis (Jungersen et al., 2001), whereas fetal
infections are rare in immunocompetent mice (Shiono et al.,
2007; Nau et al., 2017). Furthermore, as omnivorous mammals
pigs, like humans, are naturally at risk of exposure to both
T. gondii tissue cysts and oocysts in their diet (Meurens
et al., 2012). This makes them a more natural host for
research into the early stages of infection with both bradyzoites
and sporozoites.

Although fewer immunological reagents are currently
available for swine in comparison to mice and humans, this
is an area undergoing rapid progress, not the least because of
the increased interest in pig organs for xenotransplantation

(Meier et al., 2018). After mice and primates, the porcine
immune system is perhaps the next most thoroughly
characterized, with pigs being firmly established as a model
organism for infection research. This includes their use as a
model for infection with other human-relevant, orally-acquired
pathogens such as Helicobacter pylori and human rotavirus,
as well as the protozoan parasite Cryptosporidium parvum
(Meurens et al., 2012). In recent years the body of literature on
the porcine cellular immune response specifically to T. gondii
also increased (e.g., Miranda et al., 2015; Jennes et al., 2017;
Nau et al., 2017). Notably, porcine IOs have also been described
recently (Derricott et al., 2019).

CONCLUDING REMARKS

IOs closely resemble the in vivo intestinal barrier and represent
a source of species-specific IECs. To mechanistically study
interactions of pathogens with such a complex organ it is
advantageous to examine the contribution of individual epithelial
cells in the absence of immune cells and microbiota. However,
several reports have illustrated that IOs can be co-cultured with
DCs, M8s, IELS (Nozaki et al., 2016; Noel et al., 2017; Ihara et al.,
2018; Nakamura, 2018) and also with bacteria (Hill et al., 2017;
Williamson et al., 2018), thereby complementing this system
as required.

The pig allows for tissue-specific translational research since
the immune parameters depicted so far closely resemble humans.
Future studies will show whether porcine intestinal innate and
adaptive parameters better reflect human early infection events
in comparison to mice.
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