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Antimicrobial resistance constitutes one of the major challenges facing humanity in the

Twenty-First century. The spread of resistant pathogens has been such that the possibility

of returning to a pre-antibiotic era is real. In this scenario, innovative therapeutic strategies

must be employed to restrict resistance. Among the innovative proposed strategies,

anti-virulence therapy has been envisioned as a promising alternative for effective control

of the emergence and spread of resistant pathogens. This review presents some of

the anti-virulence strategies that are currently being developed, it will cover strategies

focused on quench pathogen quorum sensing (QS) systems, disassemble of bacterial

functional membrane microdomains (FMMs), disruption of biofilm formation and bacterial

toxin neutralization.

Keywords: anti-virulence therapy, antibiotic resistance, bacterial membrane microdomains, quorum sensing,

biofilms, bacterial toxins

INTRODUCTION

Antimicrobial resistance has turned a serious concern to the human health, because in addition to
the death caused by drug-resistant pathogens (∼700,000 death annually and it is estimated ∼10
million for the year 2050), important medical procedures such as organ transplantation, cancer
chemotherapy and surgery are also compromised (O’Neill, 2016). Antimicrobial resistance is a
multifactorial phenomenon. Therefore, to circumvent it, a range of actions are needed (WHO,
2018). According that, the innovative antimicrobial compounds development that operate under
different principles to those of conventional antibiotics constitutes an important element in the
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battle against resistance (Munguia and Nizet, 2017). Among the
new therapeutic strategies, anti-virulence therapy has emerged as
a promising alternative since instead of killing the pathogens; it
tries to deprive them from their virulence factors. Accordingly,
the selective pressure exerted over pathogens should be lower
than that exerted by conventional antibiotics and the emergence
and spread of resistant mutants could be less frequent (Sully
et al., 2014; Daly et al., 2015; Quave et al., 2015; Vale et al., 2016;
Munguia and Nizet, 2017). However, Pseudomonas aeruginosa
has developed resistance to anti-virulence drugs (Maeda et al.,
2012; García-Contreras et al., 2013, 2015).

Virulence factors are microbial components (biomolecules
and structures) used by pathogens to colonize, invade and
persist in a susceptible host (Peterson, 1996; Defoirdt, 2017).
The production of these factors is under the control of
regulatory mechanisms; therefore, in principle interference
with these regulatory mechanisms could affect the production
of several virulence factors (Defoirdt, 2017). In this regard,
quorum-sensing systems (QS) are involved in the regulation of
the production of several virulence factors and consequently
constitute one of the most exploited targets for the development
of anti-virulence drugs (Defoirdt, 2017; Schütz and Empting,
2018). Moreover, the proper folding and/or oligomerization
of virulence factors are pivotal for their biological activities.
Therefore, the bacterial machinery involved in the virulence
factors assembly is also a suitable target for disturbing pathogen
virulence via anti-virulence drugs (Heras et al., 2015; Kahler et al.,
2018). Recently, it has been described that bacterial functional
membrane microdomains (FMMs) play a significant role in the
assembly of several virulence factors, hence turning FMMs in an
attractive target for drug development (García-Fernández et al.,
2017; Koch et al., 2017; Mielich-Süss et al., 2017). In addition
to disrupting the production and assembly of virulence factors;
anti-virulence drugs have also been focused on interfering with
the virulence factor functions (Mühlen and Dersch, 2016; Dickey
et al., 2017). In that view, toxin neutralization constitutes a useful
strategy to diminish the virulence of pathogens, as secretion of
toxins is used by pathogens to colonize the host as well as to
evade host immune system response (Heras et al., 2015; Kong
et al., 2016; Rudkin et al., 2017). In addition, biofilm growing
is a strategy used by pathogens to overcome the host immune
system response (Gunn et al., 2016; Watters et al., 2016). Several
anti-virulence strategies have been directed to disturb biofilm
via interference with bacterial adhesion, extracellular matrix
production or disintegration of existing biofilm (Feng et al., 2018;
Liu et al., 2018; Puga et al., 2018).

Given the significance attributed to anti-virulence therapy in
the scientific community, and especially regarding antimicrobial
resistance, this review is directed toward some recent findings
in this area. It will uncover innovative strategies that are being
implemented to quench pathogen quorum sensing (QS) systems,
disassemble functional membrane microdomains (FMMs),
disrupt biofilm formation and neutralize toxins (Figure 1 and
Table 1). Some of the challenges that anti-virulence therapy faces
as an emerging treatment in overcoming multidrug resistant
pathogens will also be highlighted.

DISMANTLING BACTERIAL
MEMBRANE MICRODOMAINS

To develop new therapeutic strategies againstmultidrug-resistant
pathogens, a suitable approach could be designing antimicrobial
compounds that target bacterial structures other than the targets
of themajor conventional antibiotics. In this respect, the bacterial
cytoplasmic membrane constitutes an attractive target as it
functions as a barrier that maintains favorable intracellular
physicochemical conditions for the correct development of
bacterial metabolism. In addition, the cytoplasmic membrane
regulates the exchange of information and substances with
the extracellular medium (Poolman et al., 2004; Strahl and
Errington, 2017). Structural changes in membranes to resist
antimicrobial compounds could involve an elevate fitness
cost and consequently could be less likely to occur (Zasloff,
2002). However, it has been reported membrane modifications
linked to resistance toward antimicrobial compounds (Nuri
et al., 2015; Joo et al., 2016). Therefore, compounds that
interfere with structural organization and/or functions associated
with membranes without affecting bacterial growth could
be desirable.

In particular, bacterial membranes contain FMMs which are
eukaryotic lipid-raft–like domains that enclose a characteristic
lipid and protein composition. Specifically, they appear be
rich in polyisoprenoid lipids like hopanoids and carotenoids,
conferring compact, rigid, and hydrophobic features that could
limit the diffusion of FMM-associated proteins away from
them (Bramkamp and Lopez, 2015). As regards FMM-associated
protein composition, bacterial protein flotillins are essential
FMM components. These proteins are closely associated with
microdomains and are involved in the membrane fluidity
regulation as well as promoting and stabilizing the assembly
of specific protein complexes via their scaffold activity (Lopez
and Koch, 2017). Other FMM-associated proteins are involved
in signaling networks (e.g., sensor kinase KinC), protein
secretion machinery (e.g., Sec Y and Sec A) and proteolytic
complexes (e.g., FtsH protease complex) (Bramkamp and Lopez,
2015; Lopez and Koch, 2017). Most of these FMM-associated
proteins are functionally active when they form multimeric
complexes. Therefore, FMMs could be seen as protein complexes
assembly platforms with punctuating distribution along bacterial
cytoplasmic membrane, where the recruited proteins undergo
efficient oligomerization and consequently become functionally
active (Bramkamp and Lopez, 2015; Lopez and Koch, 2017).

Experimental evidence has shown that mutant strains in
genes involved in the production of FMM structural components
could be hampered in establishing virulence determinants. A
Bacillus subtilis mutant in the yisP gene was ineffective in
biofilm formation. The gene yisP encodes for phosphatase
YisP, which produces farnesol from farnesyl diphosphate (López
and Kolter, 2010; Feng et al., 2014). Moreover, B. subtilis
double mutant (1floT 1yqfA) in genes that encode for the
flotillin-like proteins FloT and YqfA (FloA) was defective in
the formation of biofilms and sporulation (López and Kolter,
2010; Yepes et al., 2012). Bacillus subtilis mutants 1 yisP, 1
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FIGURE 1 | Schematic representation of anti-virulence strategies covered in this review. Membrane microdomains: The functional membrane microdomains (FMMs)

are targeted by small molecules (statins, zaragozic acid) that inhibit the biosynthesis of their major constituent lipids (hopanoids, carotenoids). Anti-biofilm agents: This

strategy focused on the use of agents that block the initial bacterial attachment to surface during biofilm formation and agents that destroy preformed biofilm.

Quorum-sensing: The anti-virulence strategy that seeks modulate the production of virulence factors through interference with the quorum-sensing networks. Toxin

neutralization: A strategy focused on block the action of toxins on host target cells. HMG-CoA (3-hydroxy-3-methylglutaryl-CoA), MVA (mevalonic acid), MVPP

(5-diphosphomevalonate), GAP (D-glyceraldehyde-3-phosphate), HMBPP (4-hydroxy-3-methylbut-2-enyl-diphosphate), IPP (isopentenyl diphosphate), QS (quorum

sensing), AMPs (antimicrobial peptides).

yuaG, 1 yqfA, and 1 yuaG 1 yqfA showed diminished Sec-
dependent secretion efficiency (Bach and Bramkamp, 2013).
Furthermore, a Campylobacter jejuni mutant in the gene
cj0268c displayed reduced adherence to Caco2 cells. The
gene cj0268c encodes for a protein that contains a SPFH
domain, which is typical for flotillin-like proteins (Tareen
et al., 2013). In addition, gnotobiotic IL-10−/− mice infected
with C. jejuni cj0268c mutant developed reduced intestinal
immunopathology in comparison with ones infected with
parental strain and complemented strain (Heimesaat et al.,
2014). Recently, it was observed that lack of the gene floA
in Staphylococcus aureus may impact the function of the type
VII secretion system (T7SS). Consequently, the 1floA mutant
exhibited a reduced virulence in a murine model (Mielich-
Süss et al., 2017). Similarly, another study showed that the S.
aureus 1floA mutant exhibited diminished virulence in both
an invertebrate infection model (Galleria mellonella) and a

murine infection model. Specifically, a perturbed degradosome
activity was observed; probably by the defective FloA-assisted
oligomerization of RNase Rny in the 1floA mutant (Koch
et al., 2017). All these experimental items of evidence suggest
that FMMs could be an attractive target to develop anti-
virulence therapy.

In accordance with the above described experimental
evidence, several studies have demonstrated that small
molecules, which interfere with polyisoprenoid lipid biosynthesis
metabolic pathways and with FMM′ physicochemical properties,
attenuated the virulence of pathogens in vitro and in vivo
(Table 1) (García-Fernández et al., 2017; Koch et al., 2017;
Mielich-Süss et al., 2017). Isoprenoids are organic molecules
that involve significant diversity of chemical structures and
functions; however, they all derive from isopentyl diphosphate
(IPP) or its isomer dimethylallyl diphosphate (DMAPP)
(Heuston et al., 2012; Pérez-Gil and Rodríguez-Concepción,
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2013). These precursor molecules are synthesized in bacteria
through two metabolic pathways including the mevalonate
pathway and the 2C-methyl-D-erythritol 4-phosphate (MEP)
pathway. The MEP pathway is used by most bacteria.
However, the mevalonate pathway is used exclusively by
pathogens like Borrelia burgdorferi, S. aureus, Streptococcus
pneumoniae, Enterococcus faecalis, and is also present in
animals (Wilding et al., 2000a; Pérez-Gil and Rodríguez-
Concepción, 2013). Moreover, Listeria monocytogenes and
some Streptomyces strains contain both pathways. Bacteria
such as Rickettsia and Mycoplasma do not contain genes that
encode for the enzymes involved in the mevalonate and MEP
pathways, and therefore they lack both isoprenoid pathways
(Pérez-Gil and Rodríguez-Concepción, 2013).

Because the mevalonate pathway is shared between humans
and bacteria, in principle, hypercholesterolemia-treating drugs
in humans could exert an inhibitory effect on the bacterial
mevalonate pathway (Bramkamp and Lopez, 2015). Statins are
a class of drugs that target the enzyme class I HMG-CoA
reductase (3-hydroxy-3-methylglutaryl-Coenzyme A reductase),
which catalyzes the conversion of 3-hydroxy-3-methylglutaryl-
CoenzymeA (HMG-CoA) to coenzymeA (CoA) andmevalonate
via reductive deacylation, in the human mevalonate pathway
(Istvan and Deisenhofer, 2001; Tobert, 2003). Statins bind to the
class I HMG-CoA reductase active site, affecting the binding of
biological substrate HMG-CoA, and therefore act as competitive
inhibitors (Istvan and Deisenhofer, 2001). Similarly, as takes
place for human HMG-CoA reductase, statins are also class II
HMG-CoA reductase (bacteria and archaea) inhibitors. However,
statins exert a diminished inhibitory activity toward class II
HMG-CoA reductases [inhibition constant (Ki) in the micro and
millimolar range] than class I (Ki in the nanomolar range), which
appear to be associated with structural differences between these
enzyme classes (Alberts et al., 1980; Kim et al., 2000; Wilding
et al., 2000b; Tabernero et al., 2003; Hedl and Rodwell, 2004;
Haines et al., 2013). It is important to highlight that some statins
with antibacterial activity against Gram-positive and Gram-
negative bacteria have been reported. Such capability matched to
their wide clinical use, potentially favoring the statins resistance
emergence (Ko et al., 2017).

In addition to statins, another inhibitors of bacterial HMG-
CoA reductase are the plant-derived compounds annonaceous
acetogenins. Feng et al. (2011) showed that squamostating A,
squamostating B, squamocin C, and asimicin A were more
potent S. pneumoniae HMG-CoA reductase inhibitors than
lovastatin (Feng et al., 2011). Moreover, Li et al. (2012) using a
structure-based screening approach identified several potential S.
pneumoniae HMG-CoA reductase inhibitors with IC50 values in
the µM range (Li et al., 2012).

Other enzymes that have been targeted to disrupt the
production of polyisoprenoids are the bacterial “head-to-
head” terpene synthases. This class of enzymes catalyzes the
formation of a cyclopropylcarbinyl diphosphate intermediate
(e.g., presqualene diphosphate) via C1′-2, 3 condensation of two
isoprenoid diphosphate molecules (e.g., farnesyl diphosphate)
(Lin et al., 2010). Subsequently, the presqualene diphosphate
undergoes rearrangement that involves ring opening catalyzed

by the same “head-to-head” terpene synthase [e.g., S. aureus
dehydrosqualene synthase (CrtM)] or by partner enzymes
(e.g., Zymomonas mobilis HpnC) rendering dehydrosqualene or
hydroxysqualene (Lin et al., 2010; Pan et al., 2015a; Schwalen
et al., 2017). Because the “head-to-head” terpene synthases
act on IPP synthesis downstream, inhibitors as zaragozic acid
family compounds, which are potent inhibitors of “head-
to-head” terpene synthases, could hinder the production of
polyisoprenoid lipids in many bacterial species and, therefore,
disturb the structural assembly and function of the FMMs
(Bramkamp and Lopez, 2015).

Supporting the potential use of these sterol synthesis
inhibitory drugs as effective anti-FMM drugs, García-Fernández
et al. (2017) showed that the penicillin-binding protein PBP2a,
which mediates resistance to β-lactam antibiotics in the
pathogen methicillin-resistant Staphylococcus aureus (MRSA),
was associated with FMMs. The treatment of the MRSA culture
with 50µM of zaragozic acid did not affect the bacterial growth
but affected FMMs formation with the consequent disturbance
of PBP2a oligomerization, which could imply a non-optimal
functionality of PBP2a. In support of this, zaragozic acid-treated
MRSA showed a β-lactam-sensitive phenotype in comparison
with the non-treated MRSA. Likewise, MRSA treatment with
simvastatin, lovastatin, mevastatin and pravastatin enhanced the
antimicrobial activity of oxacillin toward the resistant pathogen.
Moreover, oxacillin-treated MRSA-infected mice showed a
significantly lower survival rate than oxacillin/zaragozic acid-
treated MRSA-infected mice. Mice infected with a MRSA strain
isolated from a pneumonia patient and treated with oxacillin
exhibited a significantly higher bacterial load in lungs than
oxacillin/zaragozic acid-treated mice (García-Fernández et al.,
2017). This study show the potential of anti-FMM drugs
to revert an antibiotic-resistant phenotype into an antibiotic-
sensitive phenotype. Besides, it has been demonstrated that
treatment of S. aureus with zaragozic acid, miltefosine and
5-doxyl-stearic acid (5-DSA) (miltefosine and 5-DSA alter
physicochemical properties of lipid-rafts) disturbed FMMs
assembly and consequently inhibited FloA oligomerization and
scaffold activity. Impaired functional FloA could yield non-
proper oligomerization of the RNase Rny, therefore affecting the
S. aureus degradosome machinery, which is important for the
regulation of virulence factors-coding genes expression (Koch
et al., 2017). Using a murine infection model it was observed that
S. aureus- infected mice treated with zaragozic acid, miltefosine,
or 5-DSA displayed a significantly higher survival rate than
non-treated infected mice. Additionally, in another infection
experiment, it was demonstrated that in the treated animals’
lungs, small RNAs rsaA and sau63 had significantly higher
expression in comparison to untreated controls. This suggested
defective degradosome function mediated by the inhibition of
FloA oligomerization in vivo (Koch et al., 2017). Other evidence
of anti-FMM drugs’ potential in anti-virulence therapy was
recently revealed. It was observed that S. aureus treatment with
zaragozic acid, simvastatin, or 5-DSA disturbed the correct
assembly of T7SS and consequently affected the secretion of
T7SS-associated virulence factors. It was suggested that this effect
of the anti-FMM compounds on T7SS functionality could involve
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TABLE 1 | Inhibitors of functional membrane microdomains assembly, quorum-sensing systems, biofilm formation, and toxin production and function.

Inhibitor Inhibitory activity Bacteria Virulence factors affected References

Zaragozic acid Anti-FMM S. aureus • PBP2a oligomerization

• Rny oligomerization

• T7SS system assembly

García-Fernández

et al., 2017; Koch

et al., 2017;

Mielich-Süss et al.,

2017

Miltefosine Anti-FMM S. aureus • Rny oligomerization Koch et al., 2017

5-DSA Anti-FMM S. aureus • Rny oligomerization

• T7SS system assembly

Koch et al., 2017;

Mielich-Süss et al.,

2017

Simvastatin Anti-FMM S. aureus • T7SS system assembly Mielich-Süss et al.,

2017

CRISPR-Cas9 Anti-QS

Anti-biofilm

E. coli SE15 • Reduced biofilm formation

• Down-regulation of mqsR, pgaB, pgaC,

csgE, and csgF

Kang et al., 2017

CRISPR interference Anti-QS

Anti-biofilm

E. coli AK-117 • Reduced biofilm formation Zuberi et al., 2017

2-(methylsulfonyl)-4-(1H-tetrazol-

1-yl)pyrimidine

Anti-QS

Anti-biofilm

P. aeruginosa • Reduced biofilm formation

• Reduced production of pyocyanin

and pyoverdine

Thomann et al.,

2016

(z)-5-octylidenethiazolidine-2,

4-dione (TZD-C8)

Anti-QS

Anti-biofilm

P. aeruginosa • Reduced biofilm formation

• Reduced swarming motility

Lidor et al., 2015

Diketopiperazine Anti-QS

Anti-biofilm

Burkholderia cenocepacia • Reduced biofilm formation

• Reduced protease and

siderophore production

Scoffone et al.,

2016

ω-Hydroxyemodin Anti-QS

Anti-toxin

S. aureus • Reduced RNAIII, psmα and

hla transcription

Daly et al., 2015

Biaryl hydroxyketones Anti-QS

Anti-toxin

S. aureus • Reduced RNAIII, psmα and

hla transcription

Greenberg et al.,

2018

(KFF)3K peptide-conjugated

locked nucleic acids

Anti- QS

Anti-toxin

S. aureus • Reduced expression of RNAIII, psmα,

psmβ, hla, and pvl

Da et al., 2017

3-(2,4-dichlorophenyl)-1-(1H-

pyrrol-2-yl)-2-propen-1-one

Anti-QS

Anti-biofilm

V. harveyi • Reduced biofilm production

• Biofilm disintegration

• Swimming and swarming

motility reduction.

Rajamanikandan

et al., 2017a

Zingerone Anti-QS

Anti-biofilm

P. aeruginosa PAO1

P. aeruginosa clinical

isolates.

• Reduced biofilm, pyocyanin, hemolysin,

elastase, proteases, rhamnolipid

production

• Reduced swarming, swimming, and

twitching motility

Kumar et al., 2015

AHL-nitric oxide hybrids Anti-QS P. aeruginosa PA14

P. aeruginosa PAO1

• Reduced pyocyanin and

elastase production

Kutty et al., 2015

Flavonoids Anti-QS P. aeruginosa PA14 • Reduced pyocyanin production and

swarming motility

• rhlA transcription inhibition

Paczkowski et al.,

2017

Terrein Anti-QS

Anti-biofilm

P. aeruginosa PAO1 • Reduced elastase, pyocyanin, rhamnolipid,

and biofilm production

• Attenuated in vivo virulence of P.

aeruginosa PAO1 toward C. elegans

and mice

Kim et al., 2018

Parthenolide Anti-QS

Anti-biofilm

P. aeruginosa PAO1 • Reduced pyocyanin, proteases, and

biofilm production

• Reduced swarming motility

Kalia et al., 2018

N-(4-{fluoroanilno}-butanoyl)-L-

homoserine lactone

N-(4-{chlororoanilno}

butanoyl)-L-homoserine lactone

Anti-QS

Anti-biofilm

P. aeruginosa PA330

P. aeruginosa PA282

• Reduced biofilm production Kalaiarasan et al.,

2017

(Continued)
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TABLE 1 | Continued

Inhibitor Inhibitory activity Bacteria Virulence factors affected References

Pyrone analogs Anti-QS

Anti-biofilm

P. aeruginosa • Down–regulation of lasA, lasB, rhlA, rhlB

phzC1, and phzE1

• Reduced biofilm production

Park et al., 2015

Pyridoxal lactohydrazone Anti-QS

Anti-biofilm

P. aeruginosa PAO1 • Reduced biofilm, alginate and pyocyanin

production

• Reduced swarming and twitching motility

Heidari et al., 2017

1,5-dihydropyrrol-2-ones

analogs

Anti-QS E. coli JB357 gfp reporter

strain

• QS inhibition Goh et al., 2015

Triaryl derivatives Anti-QS E. coli BL21 DE3 Gold

reporter strain

Capilato et al.,

2017

Triphenyl scaffold-based hybrid

compounds

Anti-QS E. coli JLD 271 reporter

strain

O’Reilly and

Blackwell, 2015

Non-native AHL Anti-QS E. coli JLD 271 and P.

aeruginosa PAO-JP2

reporter strains

Eibergen et al.,

2015

Fluoro-substituted

Isothiocyanates

Anti-QS P. aeruginosa • Reduced pyocyanin production

• Reduced swarming motility

• Attenuated in vivo virulence of P.

aeruginosa PAO1-UW toward C. elegans

• Attenuated P. aeruginosa PA14 virulence in

an ex-vivo human skin burn wound model

Amara et al., 2016

Zeaxanthin Anti-QS

Anti-biofilm

P. aeruginosa PAO1 • Reduced biofilm formation

• Downregulated rhlA and lasB expression

Gökalsin et al.,

2017

Phenyllactic acid Anti-QS

Anti-biofilm

Anti-toxin

P.aeruginosa PAO1 and

clinical isolates

• Reduced pyocyanin, proteases,

rhamnolipid, and hemolysin production

• Reduced swarming motility

• Reduced biofilm production

Chatterjee et al.,

2017

Metformin Anti-QS

Anti-biofilm

Anti-toxin

P. aeruginosa PAO1 • Reduced biofilm, pyocyanin, proteases,

hemolysin and elastase production

• Reduced swimming and twitching motility

Abbas et al., 2017

Glyceryl trinitrate Anti-QS

Anti-biofilm

P. aeruginosa PAO1 and

clinical isolates

• Reduced biofilm, pyocyanin and

proteases production

Abbas and

Shaldam, 2016

4-amino-quinolone-based

compounds

Anti-QS

Anti-biofilm

P. aeruginosa PAO1-L

P. aeruginosa PA14

• Reduced biofilm and pyocyanin production Soukarieh et al.,

2018

Lactam-bridged AIP analogs Anti-QS S. aureus reporter strains Tal-Gan et al.,

2016

Solonamides analogs Anti-QS

Anti-toxin

S. aureus • Reduced RNAIII and hla expression

• Marginally enhanced biofilm formation

Baldry et al., 2016

AIP-II peptidomimetics Anti-QS S. aureus reporter strains Vasquez et al.,

2017

Lactam hybrids of solonamide B

and AIP

Anti-QS S. aureus RN10829 reporter

strain

Hansen et al.,

2018

Truncated AIP Anti-QS S. lugdunensis AH4031

reporter strain

Gordon et al.,

2016

AIP analogs Anti-QS

Anti-biofilm

S. epidermidis RP62A • Reduced biofilm formation (using

non-native agonist of AgrC-type I)

Yang et al., 2016

Linear peptidomimetics Anti-QS

Anti-toxin

S. aureus 8325-4

S. aureus reporter strains

• Reduced expression of RNAIII

• Reduced hla expression

Karathanasi et al.,

2018

Bicyclo [2.2.1]

hept-5-ene-2,3-dicarboxylic acid

2,6-dimethylpyridine 1-oxide

Anti-QS

Anti-biofilm

V. harveyi • Reduced biofilm production

• Disintegrated mature biofilm

• Reduced swarming and swimming

Rajamanikandan

et al., 2017b

(Continued)
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TABLE 1 | Continued

Inhibitor Inhibitory activity Bacteria Virulence factors affected References

Coumarin Anti-QS

Anti-biofilm

P. aeruginosa PAO1 and

clinical isolates

• Reduced biofilm production

• Down-regulation of lasI, rhlI,rhlR,pqsB,

pqsC, pqsH, ambBCDE

• Reduced protease and pyocyanin

production

• Reduced expression of T3SS secretion

system-associated genes

Zhang et al., 2018

T315 compound Anti-biofilm S. enterica serovar

Typhimurium

S. enterica serovar Typhi

A. baumannii

• Reduced biofilm production Moshiri et al., 2018

2-aminobenzimidazole

derivatives

Anti-biofilm S. enterica serovar

Typhimurium

• Reduced biofilm production Huggins et al.,

2018

[3-(2-furylmethyl)-2-[[(5-hydroxy-

1H-pyrazol-3-yl)methyl]thio]-

3,5,6,7-tetrahydro-4H-

cyclopenta

[4,5]thieno[2,3-d]pyrimidin-4-on]

Anti-biofilm S. enterica serovar Typhi

S. enterica serovar

Typhimurium

A. baumannii

• Reduced biofilm production Koopman et al.,

2015

3F1 compound Anti-biofilm S. mutans • Biofilm dispersion Garcia et al., 2017

2-amino-imidazole/triazole

conjugate

Anti-biofilm S. mutans • Reduced biofilm production Pan et al., 2015b

Peptidomimetic compounds Anti-biofilm Porphyromonas gingivalis • Three-species biofilm inhibition Tan et al., 2018

1,2,3-triazole-based

peptidomimetics

Anti-biofilm P. gingivalis • Reduced two-species biofilm formation

(inhibition of adherence of P. gingivalis to

S. gordonii)

Patil et al., 2016

Kaempferol Anti-biofilm S. aureus • Reduced biofilm production (inhibition of

initial attachment)

• Inhibition of sortase A activity

• Downregulation of clfA, clfB, fnbA and

fnbB expression

Ming et al., 2017

5-benzylidene-4-oxazolidinones Anti-biofilm S. aureus • Reduced biofilm production

• Biofilm dispersion

Edwards et al.,

2017

p-tolyl(3-phenylpropyl)carbamate Anti-biofilm S. aureus • Reduced biofilm production Stephens et al.,

2016

Antibiofilm compound 1 (ABC-1) Anti-biofilm S. aureus • Reduced biofilm production

• Reduced polysaccharide intercellular

adhesin (PIA) production and eDNA release

• Downregulation of spa expression

Shrestha et al.,

2016

Zosteric acid derivatives Anti-biofilm E. coli • Reduced biofilm production Cattò et al., 2015

Pyrimidinedione Anti-biofilm S. pneumoniae

S. aureus

S. epidermidis

• Reduced biofilm production Yadav et al., 2015

Resveratrol Anti-toxin

Anti-QS

S. aureus • Downregulation of hla, RNAIII and saeRS

expression

• Reduced α-hemolysin production

Duan et al., 2018;

Tang et al., 2018

Lysionotin Anti-toxin

Anti-QS

S. aureus • Downregulation of hla, and agr expression

• Reduced α-hemolysin production

Teng et al., 2017

Eriodictyol Anti-toxin

Anti-QS

S. aureus • Downregulation of hla and RNAIII

expression

• Reduced α-hemolysin production

• Reduced hemolysis

Xuewen et al.,

2018

Chalcone Anti-toxin

Anti-QS

Anti-biofilm

S. aureus • Downregulation of hla and agrA expression

• Reduced α-hemolysin production

• Inhibition of Sortase A activity

• Reduced adherence to fibronectin

• Reduced hemolysis

• Reduced biofilm formation

Zhang et al.,

2017a

(Continued)
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TABLE 1 | Continued

Inhibitor Inhibitory activity Bacteria Virulence factors affected References

Prim-O-Glucosylcimifugin Anti-toxin

Anti-QS

S. aureus • Reduced α-hemolysin production

• Downregulation of hla and RNAIII

expression

• Reduced hemolysis

Ping et al., 2018

Dracorhodin perochlorate Anti-toxin

Anti-QS

S. aureus • Reduced α-hemolysin production

• Downregulation of hla and RNAIII

expression

• Reduced hemolysis

Liu et al., 2017

Sclareol Anti-toxin

Anti-QS

S. aureus • Reduced α-hemolysin production

• Downregulation of hla and RNAIII

expression

• Reduced hemolysis

Ping et al., 2017

2-aminoimidazole derivatives Anti-toxin Clostridium difficile • Reduced toxin activity Thanissery et al.,

2018

Peptides Anti-toxin Aggregatibacter

actynomycetemcomitans

• Inhibition of LtxA-mediated cytotoxicity Krueger et al.,

2018

Galloylated catechins Anti-toxin A. actynomycetemcomitans • Inhibition of LtxA-mediated cytotoxicity Chang et al., 2019

impaired FloA scaffold activity, since FloA interacted with the
component EssB of T7SS and assisted in the complex assembly.
Additionally, it was verified that in BALB/c mice infected with
S. aureus and treated with zaragozic acid the levels of IgM
antibodies against T7SS substrates such as Esx A Esx B, Esx
C, and Esx D were inferior to those in non-treated controls
(Mielich-Süss et al., 2017).

MANIPULATING BACTERIAL QUORUM
SENSING SYSTEMS

For the establishment of successful host infection by pathogenic
bacteria it is necessary to have coordinated actions among
the population members of the infecting pathogen. These
synchronized actions may be achieved through communication
systems between bacteria. Therefore, bacterial communication
systems are important players in the establishment of a successful
host-infection process and consequently are attractive targets for
developing anti-virulence therapeutic strategies (Defoirdt, 2017;
Munguia and Nizet, 2017). One of the bacterial communication
systems that is most studied and distributed among bacteria
is the quorum-sensing (QS) network. Independently of the
diversity of bacterial QS systems’ architecture and functional
components, these communication systems are commonly based
on a sequence of events that consist of the production of chemical
signaling molecules (autoinducers), which are secreted to the
external medium and accumulate until reaching a threshold
of concentration that is detected by bacteria. Subsequently, a
change in the gene-expression patterns take place in response
to the detected signaling molecules (Waters and Bassler, 2005;
Papenfort and Bassler, 2016). The strategies for disturbing and
manipulating QS networks aim to interfere with these basic
events (Table 1).

However, these quorum quenching strategies have to face
several challenges to become feasible therapeutic options. The

expression of certain virulence factor could be subjected to
the control of several regulatory mechanisms other than the
targeted QS system (Arya and Princy, 2016). Depending on
the environment factors find by the pathogen; some of these
regulatory mechanisms could influence the virulence factor
expression more predominantly than others (Goerke et al., 2001;
Xiong et al., 2006; Zurek et al., 2014; Liu et al., 2016). Another
element that could represent a challenge is the diversity of QS
systems that could be present in a pathogen; and that these could
form complex interconnected networks (Lee and Zhang, 2015;
Koul et al., 2016). Furthermore, in some cases, the interference
with the QS systems could promote the virulence instead of
attenuated it (Köhler et al., 2010; García-Contreras, 2016). In
addition, interference with QS systems could affect the pathogen
growth, which could exert selective pressure and facilitate
the emergence of resistant pathogens (García-Contreras, 2016).
Moreover, in a polymicrobial infection, because the interaction
between pathogens could be mediate by QS-controlled factors,
the interference with QS systems in a pathogen potentially could
facilitate the pathogenicity and antibiotic resistance of the co-
infecting pathogens (O’brien and Fothergill, 2017; Radlinski
et al., 2017). Also, it is important to have diagnostic tools sensitive
enough that allow the detection of the infecting pathogen at low
cellular densities; so that quorum quenching strategies could be
implemented before the pathogen reach the quorum necessary to
trigger their pathogenic potential (Kalia et al., 2019).

Interference With Quorum-Sensing
Signal Biosynthesis
One of the approaches to disrupting QS systems is based on
the interference in signal production. This strategy is centered
on inhibiting the activity of the autoinducer-producing enzymes
via small inhibitory molecules, which are mainly substrate
structural analogs or transition state analogs and do not affect
bacterial growth (LaSarre and Federle, 2013). The advantages
of this strategy are that enzymes involved in the production
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of autoinducers are not present in mammalian cells and are
encoded in the genome of several bacterial species (LaSarre
and Federle, 2013; Pereira et al., 2013). Moreover, it is possible
that an effect on the activity of a particular enzyme [e.g.,
5′-methylthioadenosine/S adenosylhomocysteine nucleosidase
(MTAN nucleosidase)] could in turn affect the production
of more than one type of autoinducer (Gutierrez et al.,
2009). However, the fact that target enzymes have intracellular
localization raises several challenges for the implementation
of this strategy. Primarily, the inhibitory compounds should
overcome the diffusion barriers imposed by bacterial surface
structures, particularly difficult in Gram-negative bacteria, which
contain a double membrane system. Furthermore, once inside
the cell, the inhibitors could be expelled to extracellular space
by efflux pumps. In addition, the inhibitor compounds could
inhibit enzymes involved in important metabolic processes,
compromising the cellular viability, and therefore creating
selective pressure on the bacteria (Hinsberger et al., 2014; Sahner
et al., 2015; Ji et al., 2016).

Despite all these possible limitations, several studies using in
cellulo and in vivo approaches suggested the feasibility of the
use of autoinducer-producing enzyme inhibitors. Gutierrez et al.
(2009) showed that transition state analogs of the enzymeMTAN
nucleosidase suppressed the production of autoinducers by
Vibrio cholerae and enterohemorrhagic Escherichia coliO157:H7.
Specifically, the inhibitors 5′-methylthio-DADMe-Immucillin-A,
5′-ethylthio-DADMe-Immucillin-A, and 5′-butylthio-DADMe-
Immucillin-A inhibited the MTAN activity in a dose-dependent
fashion, and consequently the production of autoinducers,
without disturbing bacterial growth inV. choleraeN1696 culture.
Similar behavior was observed in Escherichia coli O157:H7
culture, where 5′-methylthio-DADMe-Immucillin-A and 5′-
butylthio-DADMe-Immucillin-A inhibited the production of
AI-2 in a dose-dependent mode, without affecting bacterial
growth. Importantly, both bacterial strains maintained the
5′-butylthio-DADMe-Immucillin-A sensitive phenotype after
growth for several generations when challenged with the
inhibitor, suggesting that there was no emergence of resistance.
In agreement with the reduction of AI-2 production, reduced
biofilm-forming capacity was observed in both bacterial
species when they were treated with the 5′-butylthio-DADMe-
Immucillin-A inhibitor (Gutierrez et al., 2009).

Another bacterial pathogen for which QS signal-producing
enzyme inhibitors have been developed is Pseudomonas
aeruginosa. This pathogen contains a particular QS system
[Pseudomonas quinolone system (pqs)] which uses PQS (3,4-
dihydroxy-2-heptylquinoline, Pseudomonas quinolone signal)
and HHQ (2-heptyl-4-hydroxyquinoline) as QS signal molecules
(LaSarre and Federle, 2013; Papenfort and Bassler, 2016).
The production of HHQ and PQS starts with activity of the
enzyme anthranilyl-CoA ligase (PqsA) which catalyzes the
activation of anthranilate to anthraniloyl-coenzyme A via an
anthranilyl-AMP reaction intermediate. Sulfonyladenosine
compounds (anthranilyl-MAS and anthranilyl-AMSN)
that mimic the anthranilyl-AMP intermediate were PqsA
inhibitors that reduced the production of HHQ and PQS
by P. aeruginosa PA14 strain (Ji et al., 2016). In addition

to intermediate-mimic compounds, other PqsA inhibitors
are substrate structural analogs. P. aeruginosa PAO1strain
challenged with the anthranilate analog methyl-anthranilate
reduced in a dose-dependent fashion PQS production as
well as elastase activity. Elastase is a virulence factor that is
under the control of the pqs QS system (Calfee et al., 2001).
However, in other study, the effect of methyl-anthranilate
in reducing P. aeruginosa PA14-produced PQS and HHQ
levels was less potent, and the most powerful compounds
were halogenated anthranilate analogs. In addition, some
of these halogenated analogs showed effectivity in vivo in
reducing the virulence and limiting P. aeruginosa systemic
dissemination in infected mice (Lesic et al., 2007). In addition
to PqsA, another enzyme linked to the PQS biosynthesis
pathway that has been targeted is PqsD. This enzyme catalyzes
the formation of the 2-aminobenzoylacetyl-CoA by the
condensation of anthraniloyl-CoA with malonyl-CoA via a
tetrahedral transition state. The treatment of P. aeruginosa
PA14 with the potent PqsD inhibitor (2-nitrophenyl) phenyl
methanol disturbed the production of HHQ and PQS as well
as reducing the biofilm volume (Storz et al., 2012). Moreover,
some catechol-derivative compounds that act as PqsD inhibitors
by blocking the access of the natural substrate to the active
site of PqsD reduced the production of HHQ by P. aeruginosa
(Allegretta et al., 2015).

Furthermore, the enzyme PqsBC, which catalyzes the
condensation of octanoyl-CoA and 2-aminobenzoylacetate
rendering HHQ is also a QS inhibitor target. In this regard,
it was observed that the PqsBC competitive inhibitor 2-
aminoacetophenone (2-AA) affected HHQ production by the
recombinant P. putida KT2440 strain (Drees et al., 2016).
However, strategies focused on PqsBC inhibition could carry
unwanted effects. The PqsBC substrate 2-aminobenzoylacetate
could transform in 2-AA or 2,4-dihydroxyquinoline (DHQ)
(Dulcey et al., 2013). The 2-AA promoted the emergence of
persister cells in pathogens as P. aeruginosa, A. baumannii and
Burkholderia thailandensis, whereas DHQ has been linked to
P. aeruginosa pathogenicity (Que et al., 2013; Gruber et al.,
2016). In principle, the inhibition PqsBC could provoke the
accumulation of 2-aminobenzoylacetate, favoring the formation
of 2-AA and DHQ, which could promote the emergence of
antibiotic tolerant pathogens and/or increase in the pathogenicity
(Allegretta et al., 2017; Maura et al., 2017). In this regard, it has
been demonstrated that the treatment of a P. aeruginosa mvfR
mutant (constitutively expressed the pqs ABCDE operon) with
some benzamide-benzimidazole compounds (PqsBC inhibitors)
may provoked the accumulation of 2-AA and DHQ (Maura et al.,
2017). In addition, in the P. aeruginosa PA14 parental strain,
the treatment with some of these PqsBC inhibitors (specifically
those also contain a low anti-MvfR (PqsR) activity) did affect
only partially the production of 2-AA and DHQ and did not
inhibit the tolerance to meropenem (Maura et al., 2017). In
another study performed by Allegretta et al. (2017), the treatment
of P. aeruginosa PA14 and a PA 14 pqsH mutant with PqsBC
inhibitors, produced an increase at 2-AA and DHQ levels. One of
these PqsBC inhibitors increased the subpopulation of persister
P. aeruginosa PA14 cells to levels similar to a pqsBCmutant strain
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(Allegretta et al., 2017). Interestingly, in this study it was observed
that treatment with PqsBC inhibitors increased the 4-hydroxy-2-
heptylquinoline-N-oxide (HQNO) levels. This molecular specie
has been also linked to the emergence of antibiotic tolerance in
P. aeruginosa (Hazan et al., 2016; Allegretta et al., 2017). HQNO
appears to boost bacterial autolysis with the subsequent DNA
release, which facilitates biofilm formation making the pathogen
more tolerant to antibiotics (Hazan et al., 2016). Moreover,
the HQNO produced by P. aeruginosa also influence the S.
aureus susceptibility to antibiotics (Orazi and O’Toole, 2017;
Radlinski et al., 2017). In another study, it was shown that P.
aeruginosa 1pqsB and 1pqsC mutants that only produce DHQ,
were more virulent in C. elegans than a quinolone-null mutant
1pqsAB. An increased colonization capacity of C. elegans was
observed for the 1pqsBmutant in comparison with the 1pqsAB
mutant (Gruber et al., 2016).

Additional support for the feasibility of using QS signal
biosynthesis inhibitors in vivo was demonstrated by the use of
ambuic acid as an anti-virulence compound in a murine model
of intradermal MRSA challenge. The treatment with ambuic
acid impaired the virulence exerted by S. aureus in the infected
animals, as it attenuated skin ulcer formation and the signs of
infection-induced morbidity. The anti-virulence effect of ambuic
acid was mediated by inhibition of the agr quorum sensing
system (Todd et al., 2017).

Inactivation of Quorum-Sensing Signal
Among the quorum quenching strategies one of the most
exploited is the inactivation of QS signals (LaSarre and Federle,
2013). This is a strategy that exists in the natural interactions
between microbial populations, and it has been extrapolated as
an approach to modulating the virulence of bacterial pathogens.
This virulence modulation through interference with QS signal
is centered mainly on the use of QS signal-degrading enzymes
(LaSarre and Federle, 2013; Fetzner, 2015). The advantage of
this strategy is that it targets the QS signal after it is secreted to
extracellular medium. Therefore, there is greater access to the
target and challenges associated with penetrating bacterial cells
are avoided. Moreover, as an extracellular factor is targeted, the
emergence and spread of resistance could be less probable, but
potential resistance mechanisms have been envisioned (Defoirdt
et al., 2010; Fetzner, 2015; Vale et al., 2016).

The most thoroughly characterized quorum quenching
enzymes are acyl-homoserine lactone (acyl-HSL) lactonases,
acyl-HSL acylases, and acyl-HSL oxidoreductases, which
target the QS signal acyl-homoserine lactones (acyl-HSLs)
(Fetzner, 2015). The acyl-HSL lactonases and acyl-HSL
acylases destroy acyl-HSL molecules via homoserine lactone
ring hydrolysis (specifically the ester bond) or amide bond
hydrolysis between the acyl tail and the homoserine lactone
ring, respectively. Otherwise, the acyl-HSL oxidoreductases
modify acyl-HSLs molecules chemically via oxidation or
reduction of the acyl chain instead of degrading them (LaSarre
and Federle, 2013; Fetzner, 2015). Other types of quorum
quenching enzymes that have been characterized include
E. coli LsrK kinase that targets the AI-2, and dioxygenases
Hod from Arthrobacter sp. Rue61a, AqdC1 and AqdC2 from

Mycobacterium abscessus subsp abscessus and Rhodococcus
erythropolis BG43 that target alkylquinolone-type molecules
(Pustelny et al., 2009; Roy et al., 2010; Müller et al., 2015;
Birmes et al., 2017). LsrK catalyzes the phosphorylation of
AI-2 molecules, rendering phospho-AI-2, whereas dioxygenases
mediate a dioxygenolytic cleavage of PQS, rendering N-
octanoylanthranilic acid and carbon monoxide (Pustelny et al.,
2009; Roy et al., 2010).

The potential for using quorum quenching enzymes in
clinical infection treatment is supported by several studies.
Recently, Utari et al. (2018) used mouse models of pulmonary
P. aeruginosa infection and showed the efficacy of intranasally
administered PvdQ acylase in hindering P. aeruginosa virulence.
In a lethal infection model, PvdQ-treated animals presented
a 5-fold lower bacterial load than non-treated animals, as
well as a longer survival time. Moreover, PvdQ-treated mice
showed lower lung inflammation, CXCL2 and TNF-α levels
than non-treated animals in a sub-lethal infection model. It
is noteworthy that intranasally supplied PvdQ acylase was
shown to be safe as it was well tolerated by animals (Utari
et al., 2018). Previously, using a Caenorhabditis elegans infection
model, the potential of PvdQ acylase as an anti-virulence
agent had been shown (Papaioannou et al., 2009). Penicillin V
acylases PaPVA and AtPVA from the Gram-negative bacteria
Pectobacterium atrosepticum and Agrobacterium tumefaciens
also exerted quorum quenching activity on P. aeruginosa.
The supplementation of these two acylases to P. aeruginosa
PAO1 provoked a reduction in 3-oxo-C12-HSL levels, elastase
activity, pyocyanin and biofilm production. In addition, the
survival rates of G. mellonella infected with P. aeruginosa
PAO1 pre-treated with acylases were higher than G. mellonella
larvae infected with P. aeruginosa PAO1 without acylases
pre-treatment (Sunder et al., 2017).

Another quorum quenching enzyme that has been tested
in vivo is the engineered lactonase SsoPox-W263I. Using an
acute lethal model of P. aeruginosa pneumonia in rats, Hraiech
et al. (2014) demonstrated that intra-tracheally delivered SsoPox-
W263I immediately after infection with P. aeruginosa PAO1
significantly reduced the mortality rate and the lung damage.
SsoPox-W263I was well tolerated by rats (Hraiech et al.,
2014). Recently, SsoPox-W263I showed anti-virulence activity
against clinical P. aeruginosa isolates. Interestingly, SsoPox-
W263I immobilization did not affect the anti-virulence activity
against P. aeruginosa PAO1 (Guendouze et al., 2017). Moreover,
AiiM lactonase attenuated P. aeruginosa PAO1 virulence in an
acute pneumonia murine model. Mice infected via intratracheal
with an AiiM-expressing P. aeruginosa PAO1 strain showed
less lung injury, lower pro-inflammatory cytokines levels,
and lower mortality than animals infected with an AiiM-
nonexpressing P. aeruginosa PAO1 strain. In addition, in AiiM-
expressing P. aeruginosa PAO1 infected mice there was a
reduced systemic dissemination of the infection in comparison
with the AiiM-nonexpressing P. aeruginosa PAO1 infected ones
(Migiyama et al., 2013). Based on a C. elegans infection model
it was demonstrated that lactonase MomL from Muricauda
olearia increased the survival of P. aeruginosa PAO1-infected
nematodes without showing toxic effects. However, a protective
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effect was not observed in A. baumannii-infected nematodes
(Tang et al., 2015; Zhang et al., 2017b).

Furthermore, recently discovered quorum-quenching
enzymes show potential as anti-virulence agents. Lactonases AaL
isolated from Alicyclobacillus acidoterrestris, AiiK from Kurthia
huakui LAM0618T and Aii810 from Mao-tofu metagenome,
inhibited virulence factors production and biofilm formation
by A. baumannii and P. aeruginosa PAO1 without affecting
bacterial growth (Fan et al., 2017; Bergonzi et al., 2018; Dong
et al., 2018). Another newly described quorum-quenching
enzyme is AidA, which was identified in A. baumannii clinical
isolates (López et al., 2017).

In addition to quorum-quenching enzymes, QS signal
inactivation is also reached by the action of anti-QS signal
antibodies and synthetic polymers that sequester it (Piletska et al.,
2010; LaSarre and Federle, 2013). The use of antibodies with
therapeutic aims offers desirable effects, such as high specificity
to the target coupled with low off-target cytotoxicity (Palliyil
et al., 2014). However, developing anti-QS signal antibodies
is a challenging task, because these signals are small size
molecules and generally not structurally complex, making them
poor antigens (Palliyil et al., 2014). Despite this, several studies
support the potential of antibodies in disturbing quorum-sensing
networks. Recently, centered on the agr type I quorum-sensing
system of S. aureus, a virus-like particle (VLP)-based agr type I
vaccine was developed using a P. aeruginosa RNA bacteriophage
PP7 coat protein inserted with a S. aureus sequence-modified
autoinducer peptide-1 (AIP1S, cysteine was substituted by serine,
YSTSDFIM). In this vaccinal candidate (PP7-AIP1S) the AIP1S
peptide was exposed on the surface of the VLP, and immunized
mice with PP7-AIP1S developed antibodies that specifically
recognized the original S. aureus AIP1 in vitro. In addition,
using a murine model of S. aureus SSTI (skin and soft tissue
infection), it was observed that after a challenge with a virulent
S. aureus USA300 isolate LAC (agr-type I), in PP7-AIP1S
immunized mice reduced agr-type I-mediated pathogenesis was
developed, compared to the non-immunized animals. Reduced
alpha-hemolysin levels, as well as RNAIII transcription at the
infection site in the immunized animals, together with the in
vitro antibodies binding (from immunized animals) to AIP1
suggested the occurrence of immune suppression of agr-signaling
during the infection (Daly et al., 2017). Using a peptide library
displayed on VLP, O’Rourke et al. (2014) identified eight peptides
(VLP-peptides) that bind specifically to the antigen-binding
site of the monoclonal antibody AP4-24H11. This monoclonal
antibody specifically bound and neutralized the autoinducer
peptide-4 (AIP4) from S. aureus and protected animals from
S. aureus pathogenicity, as was shown previously by Park
et al. (2007). From the eight AP4-24H11-bonding VLP-peptides,
two of them, when administered alone, apparently induced
a protective response (reduced abscess and dermonecrosis)
against S. aureus agr-type IV isolate AH1872 infection in
immunized mice. Additionally, the immunization of mice with
a combination of these two VLP-peptides protected those from
S. aureus AH1872 infection via inhibition of agr-signaling
(O’Rourke et al., 2014). Furthermore, it was observed that
sheep-mouse chimeric monoclonal antibodies with affinity in the

nanomolar range against HSL molecules protected C. elegans
nematodes and mice infected with P. aeruginosa PA058. In
infected mice, this protection appears to be associated with the
antibody-mediated scavenging of HSL molecules and not by
effects on the bacterial load (Palliyil et al., 2014). Moreover,
immunized mice with 3-oxo- dodecanoyl homoserine lactone
conjugated to BSA (3-oxo-c12-HSL-BSA) developed specific
antibodies against the HSL and intermediate protection was
observed after intranasal infection with P. aeruginosa PAO1.
Interestingly, the lung bacterial burden was not affected in the
immunized mice, and the levels of TNF-α (lung) and 3-oxo-
c12-HSL (lung and serum) were lower than in non-immunized
animals (Miyairi et al., 2006).

In addition to interference with QS signaling, monoclonal
antibodies against QS signal molecules also protect from
cytotoxic effects exerted by these molecules on host cells.
Kaufmann et al. (2008) observed in vitro that the monoclonal
antibody RS2-1G9 protected murine bone marrow-derived
macrophages in a concentration-dependent fashion from the
cytotoxicity associated with 3-oxo-C12-HSL (Kaufmann et al.,
2008). Previously, it was demonstrated that serum from
immunized animals with 3-oxo-C12-HSL-BSA inhibited the
autoinducer-dependent apoptosis of the macrophage cell line
P388D1 (Miyairi et al., 2006).

Synthetic polymers constitute another alternative for
interference with QS signal. These polymers bind and sequester
the QS signal without affecting bacterial growth; therefore,
they should not exert selective pressure. A pioneering work
by Piletska et al. (2010) demonstrated that signal-sequestering
polymers interfered with the Vibrio fischeri QS network-based
on 3-oxo-C6-HSL. The sequestering of 3-oxo-C6-HSL by the
polymers impaired the bioluminescence production as well
as biofilm formation (Piletska et al., 2010). In a subsequent
work by this group, it was showed that an itaconic acid
(IA)-based-molecular imprinted polymer (MIP) impaired
P. aeruginosa biofilm formation by sequestering the 3-oxo-
C12-HSL QS signal (Piletska et al., 2011). Moreover, linear
polymers (IA-based polymers and methacrylic acid-based
polymers) reduced V. fischeri bioluminescence and Aeromonas
hydrophila biofilm production through lactones sequestering.
The IA-based polymers were more effective than methacrylic
acid-based polymers regarding the quorum-quenching activity.
Importantly, the polymers did not show cytotoxic effects on
mammalian cells and did not affect bacterial growth (Cavaleiro
et al., 2015). Recently, it was observed that 2-hydroxyethyl
methacrylate (HEMA)-based MIPs suppressed the biofilm
formation by P. aeruginosa; however, IA-based MIPs were not
effective in the biofilm attenuation (Ma et al., 2018).

Interference With Quorum Sensing
Signal Detection
Interference with signal detection is another of the most
exploited strategies for disrupting QS systems. Some of these
QS signal detection inhibitors are signal structural analogs that
compete with the signal molecule by binding at the ligand-
binding site in the receptor (Stevens et al., 2010). Moreover,
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other inhibitors could act in a non-competitive fashion (e.g.,
halogenate furanones, isothiocyanate-based covalent inhibitors,
and flavonoids) (Koch et al., 2005; Amara et al., 2016; Paczkowski
et al., 2017). The inhibitors binding to the receptors directly
affect the signaling cascade by different pathways, including
block signal binding, structural destabilization of the receptor,
impaired receptor dimerization, impaired DNA binding, or
impaired interaction with RNA polymerase (Stevens et al.,
2010; Paczkowski et al., 2017; Suneby et al., 2017). Moreover,
it has been shown that agonists of the QS signal can also
exert inhibitory activity on QS systems. Some QS circuits
are arranged in hierarchically cross-regulated networks, e.g.,
in P. aeruginosa the las-QS system positively regulates rhl-
and pqs-QS systems, in addition the activated pqs-QS system
also positively regulates the rhl-QS system, whereas this exerts
negative regulation on the pqs-QS system (Lee and Zhang, 2015).
Therefore, by modulating the activity of one QS system, it is
possible to influence the activity of the other QS systems. In this
respect, Welsh et al. (2015) observed that some agonists of RhlR
attenuated the expression of virulence factors controlled by the
pqs-QS system in P. aeruginosa. Disruption of cross-regulation
of rhl-pqs systems was proposed as a novel mechanism of QS
inhibition (Welsh et al., 2015).

The use of small molecules to disturb QS signal detection
has to face several challenges. In this respect, structural stability
of the inhibitors is a very important issue; some structural
analogs of HSLs and AIPs are prone to hydrolysis, depending
on the characteristics of the media (Glansdorp et al., 2004;
Vasquez et al., 2017). In addition, inhibitors could be potentially
degraded by enzymes as well as targeted by efflux pumps (Maeda
et al., 2012; Grandclément et al., 2015). Moreover, the inhibitory
effect observed could be strain-dependent, and it is therefore
important to include several strains in the studies (García-
Contreras et al., 2015). Despite the challenges, the feasibility of
QS signal detection inhibition as a quorum-quenching strategy is
supported by several in vivo studies.

Meta-bromo-thiolactone (mBTL) is a partial agonist/ partial
antagonist of both RhlR and LasR receptors in the HSL-guided
QS systems of P. aeruginosa, and RhlR inhibition is its main
mechanism of action in vivo. This compound potently inhibited
P. aeruginosa PA14 pyocyanin and biofilm production without
affecting bacterial growth. In addition, the treatment of P.
aeruginosa PA14 with mBTL down-regulated the expression of
several LasR- and RhlR-controlled virulence factor genes. The
treatment of wild-type and P. aeruginosa PA14 lasR mutant
strains with mBTL reduced the pathogenesis exerted by these
strains in C. elegans and human lung carcinoma cell line A549
(O’Loughlin et al., 2013). Another inhibitor of P. aeruginosa
HSL-based QS systems that has been tested in vivo is the fungal
metabolite terrein. The treatment of P. aeruginosa PAO1 with
terrein provoked a reduction in a dose-dependent manner in
the production of virulence factors elastase, pyocyanin, and
rhamnolipid as well as in biofilm formation without affecting
bacterial growth. In addition, terrein showed to be more stable
than the QS inhibitor furanone C-30 and enhanced the anti-
biofilm activity of ciprofloxacin when used in combination.
Importantly, terrein mediated protection of C. elegans and

mice against P. aeruginosa PAO1infection in a fast killing
infection assay and murine airway infection model, respectively.
Interestingly, it was observed that the QS system and c-di-
GMP signaling pathway could be interconnected, and that terrein
could act as a dual inhibitor of these systems (Kim et al.,
2018). Moreover, HSL analogs that act as covalent inhibitors
of LasR receptor were seen to be promising in vivo tests.
Specifically, the isothiocyanate- and fluoroisothiocyanate-based
covalent inhibitors (ITC-12 and ITC-F, respectively) attenuated
the virulence of P. aeruginosa PAO1-UW and consequently
increased the survival of C. elegans worms during an infection
assay with this pathogen. The ITC-F treated group showed a
significant survival rate in comparison with the control group.
Moreover, using an ex-vivo human skin burn wound model it
was observed that ITC-F and ITC-12 treatment impaired the
establishment of infection by P. aeruginosa PA14 (Amara et al.,
2016). In addition to HSL-based QS systems in P. aeruginosa,
the PQS-based QS system is also involved in the regulation of
virulence factor production. In this regard, maybe inhibitors
that could affect these two QS system types would be desirable.
Among them, 3-Phenyllactic acid (PLA) is an organic compound
produced by Lactobacillus spp that acts as a QS sensing inhibitor
that potentially could bind to RhlR and PqsR receptors with high
affinity (Chatterjee et al., 2017). Recently, Chatterjee et al. (2017)
showed that PLA impaired the attachment of P. aeruginosa
PAO1 on a catheter tube, using a Medaka fish intraperitoneal
catheter-associated infection models (Chatterjee et al., 2017).

Furthermore, agr-QS system inhibition has been shown
to be an achievable strategy for controlling the virulence of
pathogens like S. aureus. In this regard, atopic dermatitis is
a chronic inflammatory skin disease where S. aureus triggers
an immunopathology response through mast cell degranulation.
This mast cell degranulation could be induced by the bacterial δ-
toxin, which is encoded by the hld gene that is under control of
the agr-QS system (Baldry et al., 2018; Geoghegan et al., 2018).
Recently, the effectiveness of the agr-QS inhibitor solonamide
B in suppressing the S. aureus δ-toxin-induced-inflammatory
response was tested using a modified epicutaneous colonization
mouse model. Animals infected with S. aureus and treated with
solonamide B showed a reduced skin inflammatory cell infiltrate,
less skin damage, reduced RNAIII expression and production
of pro-inflammatory cytokines in comparison to non-treated
animals, suggesting that agr-QS inhibitors could effectively
attenuate S. aureus pathogenesis in vivo (Baldry et al., 2018).

Innovative Quorum Quenching Strategies
In addition to the use of quorum quenching enzymes
and quorum sensing inhibitors, some innovative therapeutic
strategies to interfere with quorum sensing networks are being
developed. One of the challenges in disrupting quorum sensing
networks is the fact that a pathogen may possess several QS
systems of the same class, for example P. aeruginosa contains
the AHL-based systems LasRI and RhlRI (Lee and Zhang, 2015).
Therefore, acquiring complete inhibition of the QS systems using
quorum-quenching enzymes or quorum-quenching inhibitors
in a monotherapy-based scheme could be difficult (Fong et al.,
2018). Based on this challenge, Fong et al. (2018) tested the
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capacity of a combinatory therapy using the quorum-quenching
enzyme AiiA and the quorum-sensing inhibitor G1 (LuxR-type
receptor inhibitor) to suppress the QS systems in P. aeruginosa. It
was observed that combinatory therapy inhibited the expression
of lasB-gfp, pqsA-gfp, and rhlA-gfp in P. aeruginosa PAO1
bioreporter strains more potently than single treatments. The
rhlA gene is involved in the biosynthesis of rhamnolipid and is
under RhlR-transcriptional regulation. In accordance with this,
the inhibitory effect on rhamnolipid biosynthesis was verified in
a P. aeruginosa PAO1 strain. The level of synthetized rhamnolipid
in the combinatory therapy-treated bacteria was nearly to the
rhamnolipid level in a 1lasI1rhlI mutant strain (Fong et al.,
2018). All this evidence suggests that using combinatory therapy
with different types of quorum-quenching agents it is possible to
disturb diverse quorum-sensing systems existing in pathogens.

In the combinatory therapy described above, a multi-target
effect is achieved by joining two therapeutic agents that
target different components in the QS networks. However,
it is possible to get the same multi-target effect using a
single compound (Thomann et al., 2016; Maura et al., 2017).
Recently a drug with dual inhibitory activity toward the
PqsR and PqsD components of the P. aeruginosa pqs QS
system was developed. This dual inhibitor [2-(methylsulfonyl)-
4-(1H-tetrazol-1-yl)pyrimidine] was developed from a common
molecular scaffold existing in single PqsR- antagonist and PqsD-
inhibitor. In vitro analysis showed that the dual inhibitor
disturbed the production of the virulence factors pyocyanin and
pyoverdine as well as the biofilm production by P. aeruginosa
PA14. In addition, the dual inhibitory compound increased
the survival rate of G. mellonella larvae infected with P.
aeruginosa PA14 (Thomann et al., 2016). Moreover, Maura
et al. (2017) observed that some benzamide-benzimidazole-based
compounds also act as dual inhibitors of the pqs-QS system
in P. aeruginosa. These dual inhibitory compounds targeted
the proteins PqsR (MvfR) and PqsBC and could be grouped
depending on their inhibition patterns in: PqsR-PqsBC dual
inhibitors with high anti-PqsR and high anti-PqsBC activity
or PqsR-PqsBC dual inhibitors with low anti-PqsR activity
and high anti-PqsBC activity. The treatment with some of
these dual inhibitors increased the survival rate of human
lung epithelial cells and RAW264.7 macrophages when infected
with P. aeruginosa PA14 (Maura et al., 2017). Among the
dual inhibitors, those exert a high anti-PqsR activity constitute
an attractive therapeutic option because interfere with the
production of 2-AA and consequently limit the emergence of
antibiotic-tolerant bacteria as was previously discussed.

Recently it has been demonstrated that it is possible to
manipulate the AI-2 levels through “controller cells” (Quan
et al., 2017). These “controller cells” are based on a subset of
“consumer cells” and another of “supplier cells.” The “consumer
cells” were engineered to overexpress genes involved in the
uptake and processing of AI-2 in E. coli (e.g., lsrACDBK
and lsrACDBFGK) while the “supplier cells” in genes involved
in the biosynthesis of AI-2 (luxS and mtn). Because these
“controller cells” influence the environmental AI-2 levels they
will have a direct impact on biofilm formation. In line with
this, it was observed that “consumer cells” decreased biofilm

formation by E. coli reporter strain, whereas “supplier cells”
enhanced biofilm formation (Quan et al., 2017). This suggests a
route toward future therapeutic strategies based on engineered
cells that act as “controller cells.” In addition, it is possible
to modulate microbial behavior through AI-2 levels via a
synthetic mammalian cell-based microbial-control device, as
was demonstrated by Sedlmayer et al. (2018). This microbial-
control device consisted of engineered mammalian cells with
a formyl peptide sensor module coupled to AI-2 production
and release module. Essentially, the engineered mammalian cells
detect formyl peptides released by pathogens (peptides produced
by a broad range of bacterial species) and trigger the production
and release of AI-2. It was showed that biofilm formation by
Candida albicans was reduced when this pathogen was co-
cultured with microbial-control-engineered cells. This system
appears to be a promising anti-virulence strategy, as ubiquitous
pathogen signals are detected with high sensitivity (nM range),
and robust production of the autoinducer takes place (without
being toxic for the host) influencing bacterial communication
without exerting selective pressure. In addition, the fact that
autoinducer production is coupled to signal detection allows a
synchronized response in accordance with the infection dynamic
(Sedlmayer et al., 2018).Moreover, it possible to engineer bacteria
that will sense the presence of pathogenic bacteria via the quorum
sensing system and, once detected, will release anti-pathogens
agents. Hwang et al. (2017) engineered a probiotic E. coli Nissle
1917 strain for sense 3-oxo-C12 HSL from P. aeruginosa and
respond by autolysing itself via lysin E7 with the consequent
release of the bacteriocin pyocin S5 and the anti-biofilm enzyme
DspB, which exerted an anti-P. aeruginosa activity. The feasibility
of this approach was demonstrated in vivo using C. elegans and
murine infection models, where the engineered strain showed
prophylactic and therapeutic effects (Hwang et al., 2017).

Although the strategy of interference with autoinducer
biosynthesis has been based on the discovery and design of
small molecules that inhibit the enzymatic activity, it has
been envisioned that engineered bacterial strains could be an
alternative. Recently, it was showed that it is possible to disrupt
biofilm production in clinical isolates through the manipulation
of the expression levels of the enzyme LuxS. Specifically, using
the Clustered Regularly Interspaced Short Palindromic Repeats-
Cas 9 interference (CRISPRi) system, the expression of LuxS
enzyme was suppressed in clinical E. coli isolates. It was suggested
that CRISPRi edited cells could be an alternative strategy for
controlling biofilm production in nosocomial settings through
CRISPRi system delivery via nucleic acid conjugation (Zuberi
et al., 2017). However, delivery of CRISPRi system in nosocomial
setting via nucleic acid conjugation could be a very challenging
task. Given the fact that nucleic acid conjugation could occur
between different bacterial species (Musovic et al., 2006; Goren
et al., 2010; Crémet et al., 2012; Van Meervenne et al., 2012);
could be possible the transfer of the CRISPRi system from the
edited cells to co-existing bacteria other than target bacteria. In
this regard, maybe the utilization of narrow host range plasmids
as vectors for CRISPRi delivery could limit such potential off-
target effect. In addition, the nucleic acid conjugation effectivity
in established biofilms could be compromised (Merkey et al.,
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2011; Stalder and Top, 2016). This could limit the use of
CRISPRi edited cells for the treatment of formed biofilms. In
this sense, maybe the utilization of engineered phages as vehicles
for CRISPRi system delivery could be an attractive alternative.
Phages have shown be a CRISPR delivery system with specificity
to pathogenic bacteria as well as with capacity to removing
established biofilms (Lu and Collins, 2007; Bikard et al., 2014;
Citorik et al., 2014; Alves et al., 2016; Fong et al., 2017).

PREVENTING BIOFILM FORMATION AND
AFFECTING THE BIOFILM STRUCTURE
WITHOUT KILLING BACTERIA

Bacteria can live in a community called biofilm, a structure
that can be formed by extracellular polymeric substances, such
as DNA, protein, and polysaccharides (Flemming et al., 2016).
After forming biofilms, bacteria can disperse and colonize other
environments (Fleming and Rumbaugh, 2017). This lifestyle can
protect bacteria against potential environmental stress, such as
antibiotics and host defense components (Hall and Mah, 2017;
Tseng et al., 2018). In the clinical situation, biofilm formed by
pathogenic bacteria can establish themselves on human surfaces
or medical devices, including implants, catheter, endotracheal
tubes and others (Rieger et al., 2016; Konstantinović et al., 2017;
Kenaley et al., 2018; Silva et al., 2018). Biofilm formation on
these surfaces can serve as a source of infection. The successful
establishment of pathogenic biofilm on human surfaces can cause
chronic infections and limit the success of antibiotic therapy
(Rybtke et al., 2015; Li et al., 2017). In general, combating biofilms
may require high antibiotic doses and a combination of strategies
(Ribeiro et al., 2016). Unfortunately, many of the marketed
antibiotics fail to affect biofilm, especially if they are formed
by resistant bacteria. To overcome this problem, researchers
have prospected compounds from the natural world (from
animals, plants, fungi, viruses, and even bacteria) or synthetics
(synthesized through the chemical process and/or screened from
chemical libraries) (Rajput et al., 2017). In both situations, anti-
biofilm agents can be represented by a variety of organic and
inorganic chemical compounds (Rajput et al., 2017).

Anti-virulence compounds against biofilms could be used to
limit bacterial adhesion on surfaces (Liu et al., 2018; Ranfaing
et al., 2018) to affect the production of an extracellular matrix
(Feng et al., 2018) and to disturb the existing biofilm (Puga et al.,
2018; Table 1). Some examples of anti-virulence compounds
cited here work against non-pathogenic bacteria to humans and
animals. However, the approaches using these bacteria may serve
as proof of principle to study anti-virulence compounds against
biofilms in a general way.

In the prevention scenario, one possibility consists of
interfering with structures associated with the successful
establishment of biofilms such as flagella (that favor the
bacterial motility and interaction with surfaces) and fimbriae
(with structures that facilitate bacterial adhesion). Higrocin C
(a compound isolated from marine-derived Streptomyces sp.
SCSGAA 0027) for example, suppressed swimming motility of
Bacillus amyloliquefaciens SCSGAB0082, which could explain the

biofilm inhibition (Wang et al., 2018a). Transcriptome studies
showed downregulation (more than twofold) of genes associated
with bacterial chemotaxis and flagellar motor (Wang et al.,
2018a). Coumarin, for example, presents the ability to prevent
bacteria biofilm without affecting bacterial growth (Lee et al.,
2014). This compound repressed curli genes and motility genes
in E. coli O157:H7 and reduced fimbriae production, swarming
motility, and biofilm formation (Lee et al., 2014).

Another way to prevent biofilm formation consists of
affecting the extracellular matrix production. A chemical
compound named TCC (3, 3′, 4′, 5-tetrachlorosalicylanilide)
for example, inhibited B. subtilis biofilm formation by reducing
extracellular matrix production. This was associated with the
repression of SinR protein negative regulated genes (involved
in extracellular matrix production) (Feng et al., 2018). Other
studies have shown that compounds that prevent biofilm
formation can potentially affect bacterial cell communication
by degrading quorum-sensing molecules (Ivanova et al., 2015;
Passos da Silva et al., 2017).

In the context of combating existing biofilms, compounds
can be used to destroy components of extracellular matrix, such
DNA, proteins and carbohydrates (Puga et al., 2018). In this
context, enzymes have been used as potential agents to disrupt
mono and polymicrobial biofilm (Puga et al., 2018). DNAse I,
for example, presents the ability to degrade extracellular DNA
of Campylobacter jejuni, promoting biofilm removal without
affecting bacterial viability (Brown et al., 2015).

The understanding of mechanisms involved in the formation
of bacterial biofilm, as well as the understanding of their
cells and biofilm structures, could indicate possible targets to
develop compounds that affect biofilmwithout killing bacteria. In
addition to potential anti-biofilm therapy, agents that can prevent
or disperse biofilm could potentially combine with anti-virulence
compounds. For example, anti-virulence agents could be used
to neutralize endotoxins from bacterial cells that disperse from
biofilms and thus prevent or minimize the harmful effects of the
host inflammatory response against bacterial infection.

BACTERIAL TOXIN NEUTRALIZATION

It is known that pathogenic bacteria may produce diverse
virulence determinants in order to successfully survive host
system responses, as well as colonizing a host (Kong et al.,
2016). Among them, toxins comprise proteins expressed by
bacteria during post-exponential and early stationary phases that
have been divided into different classes, including hemolysin
(Powers et al., 2015), leukotoxin (Zivkovic et al., 2011),
exfoliative toxins (Bukowski et al., 2010), endotoxin (Heinbockel
et al., 2018), among others. These protein-based toxins are
intrinsically related to physical damage, biochemical degradation
and signaling interruption in the host cells, resulting in immune
system evasion and characterizing pathogen-to-host interactions
(Wei et al., 2017). Bacterial toxin neutralization, for instance,
has been shown to compromise bacterial proliferation and
survival in the host (Ortines et al., 2018). More importantly,
unlike antibiotic-based treatments, anti-toxin or anti-virulence
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therapies do not affect bacterial viability directly and, as a
consequence, could impose reduced selective pressure, probably
decreasing the frequency of resistance events (Rasko and
Sperandio, 2010). In addition, anti-virulence compounds are
also known to preserve the host’s endogenous microbiome as
they target virulent factors secreted exclusively by pathogenic
bacteria (Clatworthy et al., 2007). In this context, here we
described compounds, including antibodies, nanoparticles, small
molecules, and bioactive peptides (Figure 1 and Table 1),
which have been studied recently as promising candidates
for anti-virulence therapies that aim to treat and prevent
bacterial infections.

The α-toxin (AT), also known as α-hemolysin, is a key
virulence factor expressed by S. aureus that has been investigated
in different animal infection models, including bacteremia,
pneumonia and skin/soft tissue infections (Surewaard et al.,
2018). This toxin is capable of lysing red blood cells, and
also targets monocytes, macrophages and neutrophils (Bubeck
Wardenburg et al., 2007). Moreover, in the clinic, AT levels
in patients are often correlated with disease severity (Jenkins
et al., 2015). Studies have shown that rabbits with acute bacterial
skin and skin structure infections (ABSSSI) caused by AT-
expressing methicillin-resistant S. aureus (MRSA) develop severe
infections similar to those observed in humans, including the
presence of large dermonecrotic lesions. In contrast, rabbits
infected with a mutant deficient AT strain developed only small
dermonecrotic lesions (Le et al., 2016). One major anti-virulence
strategy to neutralize AT consists of using antibodies. The study
cited above also reported a significant decrease in the disease
severity thought AT neutralization by treating the rabbits with
an anti-AT human monoclonal antibody (mAb) (MEDI4893∗)
(Le et al., 2016). Similarly, Ortines et al. (2018) observed in
non-diabetic and diabetic mice that S. aureus-infected animals
passively immunized with anti-AT mAb (MEDI4893∗) showed
decreased wound size and bacterial counts when compared to
the untreated controls. Moreover, those authors also showed
the differential host immune response effects, revealing different
patterns of macrophage, monocyte and neutrophil infiltrates, as
well as neutrophil extracellular traps (NETs) in non-diabetic and
diabetic mice (Ortines et al., 2018).

In addition to skin infections, S. aureus strains are often
associated with respiratory mono-infections and co-infections
with Gram-negative strains, including P. aeruginosa and
Klebsiella pneumoniae. In a study by Cohen et al. (2016),
it was shown that S. aureus AT, in a mixed pathogen-
lung infection model, could potentiate Gram-negative bacterial
dissemination and lethality. This situation, however, could be
circumvented by the passive immunization of mice with an
anti-AT mAb, leading to S. aureus and co-pathogens (Gram-
negative bacteria) clearance in the lungs (Cohen et al., 2016).
Additionally to mAb, the intravenous immunoglobulin (IVIG),
which consists of a polyclonal human antibody pool, has been
investigated regarding its protective effects against necrotizing
pneumonia caused by different epidemic community-associated
and hospital-associated MRSA strains (Diep et al., 2016). As
reported by Diep et al. (2016), two IVIG antibodies specific to
an AT (α-hemolysin, HTa) and a Panton-Valentine leukocidin

(PVL) conferred protection on immunized rabbits against
MRSA, leading to improved survival outcomes (Diep et al., 2016).

In the clinic, patients affected by bacteremia, including
S. aureus, may present occlusion of small blood vessels by
the formation of large platelet aggregates (van der Poll and
Opal, 2008). In a recent study, it was reported that AT induces
rapid platelet aggregation and liver injury, causing multi-organ
dysfunction during S. aureus sepsis (Surewaard et al., 2018).
Interestingly, however, all these damaging effects could be
prevented in mice treated with the anti-AT mAb (MEDI4893∗)
(Surewaard et al., 2018), thus reinforcing the importance of
monoclonal antibodies as bacterial toxin neutralizing agents in
anti-virulence therapies. More recently, Wang et al. (2018b),
reported a novel vaccine platform based on extracellular vesicles
(EVs) from S. aureus. In that work, the authors purified EVs
from a genetically engineered S. aureus capable of overexpressing
detoxified cytolysins (HlaH35L and LuKE), which were non-
toxic, immunogenic and protected mice from lethal sepsis caused
by S. aureus (Wang et al., 2018b). Also in the field of S. aureus
toxin neutralization, the monoclonal antibody, ASN100 (Arsanis
Inc.), which consists of the combination of two human IgG1k
monoclonal antibodies, ASN1 and ASN2, has shown promising
results in the neutralization of six S. aureus toxins (Rouha et al.,
2015; Badarau et al., 2016). Despite the advances in the usage
ASN100 in the clinic, the company Arsanis Inc. has discontinued
a phase II clinical trial for ASN100 as it failed to prove its
effectiveness in high-risk, mechanically ventilated patients with
S. aureus pneumonia.

Antibodies have also been applied as anti-virulent therapies
involving Clostridium difficile, which represents a primary
cause of nosocomial antibiotic-related diarrhea. This bacterium
produces two main virulence factors, toxin A (TcdA) and toxin
B (TcdB), responsible for gastrointestinal epithelial damage and
colonic inflammation. In this matter, the engineering and use of
TcdA/B-neutralizing antibodies appears as a promising approach
to counter diarrhea episodes caused by C. difficile infections.
With that in mind, Andersen et al. (2016) developed an antitoxin
strategy to express TcdB-neutralizing antibody fragments in
Lactobacillus strains in the gastrointestinal tract of hamsters
infected with a TcdA−/ TcdB+ C. difficile strain. Initially, in vitro
studies were carried out to confirm the ability of the expressed
fragments in neutralizing the cytotoxic effect of TcdB. Moreover,
in vivo assays revealed that Lactobacillus strains expressing
two TcdB-neutralizing antibodies led to improved survival rates
in the treated group. Furthermore, the protection with TcdB-
neutralizing antibodies also preserved the gastrointestinal tract
of the animals as no damages or limited inflammation were
observed (Andersen et al., 2016). In addition to antibody-based
therapies, studies have also explored the potential of small
molecules as inhibitors of C. difficile TcdB. Tam et al. (2015)
reported a high-throughput phenotypic method for screening
small molecules capable of protecting human cells from TcdB.
As a result, the authors reported a series of small molecules
with diverse mechanisms of action on TcdB, including direct
binding, sequestration of TcdB, non-competitive inhibition of
the glucosyl-transferase activity of TcdB, as well as endosomal
maturation inhibition (Tam et al., 2015). However, in vivo studies
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are still underway to confirm the effectiveness of these small
molecules in C. difficile infections.

Apart from the application of anti-toxin antibodies and
small molecules in anti-virulence therapies, studies have
also highlighted the importance of engineered nanoparticle
mimicking cell membranes (e.g., liposomes) in sequestering
cytotoxic bacterial toxins both in vitro and in vivo (Fang
et al., 2015). Artificial liposomes are constituted exclusively of
natural lipids and therefore are not active against bacteria, thus
allowing their usage in combination with antibiotics for bacterial
infection treatment. Henry et al. (2015), for instance, showed
the potential of artificial liposomes in sequestering bacterial
toxins in vitro, along with the preservation of the integrity
of mammalian cells. The authors also observed that, during
in vivo experiments, the administration of artificial liposomes
resulted in mice recovering from septicemia caused by S. aureus
and Streptococcus pneumoniae, as well as mice being protected
against pneumonia (Henry et al., 2015). Moreover, combining
the artificial liposomes with conventional antibiotics, including
vancomycin and penicillin, improved survival rates were
observed when compared tomono-therapies (Henry et al., 2015).

Bacteria secrete a wide variety of toxins during host
colonization and infection, which represents a bottleneck when
it comes to vaccine development aiming at anti-virulence
therapies. Indeed, vaccine strategies based on multiple targets
(bacterial toxins) have already been reported; however, the
identification and further confirmation of virulence factors
secreted by bacteria is considered a costly and time-consuming
method (Fujita and Taguchi, 2011). As an alternative, studies
have proposed the use of multiantigenic nanotoxoids based
on naturally occurring bacterial proteins to develop vaccines
against pathogenic bacteria. Wei et al. (2017) reported a feasible
approach for entrapping diverse toxins from bacterial protein
preparations using a membrane-coated nanosponge construct
capable of delivering these virulence factors in the organism
and, consequently, combating bacterial infections. As for the
other anti-virulence therapies here described, the nanoparticle-
based neutralization and delivery not only usefully prevent
severe bacterial infections but also decrease the risk of antibiotic
resistance events (Wei et al., 2017).

Besides the secretion of protein-based toxins, the bacterial
LPS in the host’s blood stream is known to cause severe
immune system stimulation, resulting in septic shock and sepsis
(Rietschel et al., 1996). Among the strategies to neutralize LPS,
the application of antimicrobial peptides (AMPs) has shown
promising results. Moreover, the mechanisms of action and
structural arrangements of some AMPs in contact with LPS have
already been investigated, including polymyxins (Pristovsek and
Kidric, 1999), temporins (Bhunia et al., 2011), and melittins
(Bhunia et al., 2007). This class of antimicrobials is well
known for its multifunctionality and structural diversity. Studies
have shown that AMPs with extended activities, including
immunomodulatory, are capable of binding to LPS and,
consequently, decreasing the production of nitric oxide and
tumor necrosis factor-α (TNF-α), which are commonly related
to tissue damage (Pulido et al., 2012). Chih et al. (2015),
for instance, have reported the antiendotoxin effects of two

antimicrobial peptides, S1 and KWWK. Interestingly, the authors
observed that LPS-neutralizing activities were directly related
to the addition of β-naphthylalanine end-tags in both peptides,
which was also reflected in the dose-dependent inhibition of
nitrite oxide production and TNF-α release in vitro and in
vivo (Chih et al., 2015). In addition, other AMPs, including
members from the Pep19-2.5 family (Heinbockel et al., 2018)
and retrocyclins (Kudryashova et al., 2015), have revealed
the ability to unfold bacterial toxins, as well as causing
conformational changes such as toxin aggregation and fluidity
(Heinbockel et al., 2018).

FUTURE DIRECTIONS

The antimicrobial resistance threat has driven the global scientific
community to search for effective solutions. Given the fact that
antimicrobial resistance is a multifactorial phenomenon, the
solution for this problem involves a range of approaches focused
on controlling the factors that facilitate the emergence and spread
of resistance. One of these approaches consists of developing
new therapeutic agents that operate under different principles
to the currently available antibiotics. In this respect, anti-
virulence therapy has been envisioned as a promising alternative
with the aim of controlling pathogen virulence in a pathogen-
specific fashion, without exerting strong selective pressure on
the pathogens.

However, as an emerging therapeutic strategy, anti-virulence
therapy has to face several challenges. The selection of the
targeted virulence factor(s) is of critical importance for the
effectiveness of the strategy in terms of evolutionary robustness.
In line with this, a suitable target should be a virulence factor
whose disruption does not imply (or imply minimal) fitness
consequences for the pathogen (Vale et al., 2016). Moreover, a
virulence factor that is conserved between different pathogens
could be ideal, because in principle it would be possible to
treat polymicrobial infections with a single anti-virulence drug
(Maura et al., 2016). It is necessary to understand the detailed
dynamics of action of the targeted virulence factor as well as
the dynamics of production (Dickey et al., 2017). For example,
during P. aeruginosa infection of cystic fibrosis patients take
place an acute to chronic infection transition. This shift involves
down-regulation of virulence factors as the flagellum, T3SS
secretion system, proteases, and others; while virulence factors as
exopolysaccharides are up-regulated (Hogardt and Heesemann,
2013; Sousa and Pereira, 2014). Therefore, the anti-virulence
agent that target some of these virulence factors should be
supplemented in accordance with this dynamic of expression.
In addition to knowing the targeted virulence factor production
dynamics, it is important to know if this virulence factor
undergoes chemical modifications that modulate its activity.
Furthermore, as anti-virulence therapy works in a pathogen-
specific fashion, it is important to have diagnostic methods
like matrix-assisted laser desorption ionization-time of flight
mass spectrometry (MALDI-TOF), microarray-based nucleic
acid test, magnetic resonance-based diagnostic, fluorescence in
situ hybridization (FISH) test, next generation sequencing (NGS)
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andmultiplex PCR-based diagnostic test, which permit rapid and
precise identification of the infection-causing pathogen (Dickey
et al., 2017; Messacar et al., 2017). It is also mandatory to
define which parameters will be taken into account for measuring
the effectivity of the anti-virulence therapy and for which type
of infection the therapy is most suitable (Maura et al., 2016;
Dickey et al., 2017). For example, in certain types of S. aureus
infections (e.g., chronic and bacteremia), a dysfunctional agr-
QS system appears to be beneficial for the pathogen (Khan
et al., 2015). Moreover, recently it has been reported that
defective agr-QS system could mediate the tolerance to certain
antibiotics (gentamicin and ciprofloxacin; Kumar et al., 2017).
In addition, it has been suggested that phenol-soluble modulin
toxins (PSMs) are involved in the control of S. aureus persister
cells population (Bojer et al., 2018). Because the PSMs production
is under the control of the agr-QS system, it is probably that a
defective agr-QS system down-regulate the expression of PSMs
which could favor the emergence of persister cells to certain
antibiotics. Therefore, in the above-pointed situations maybe

anti-virulence therapies based on agr-QS system inhibition
could be not a feasible strategy. Although anti-virulence therapy
is an emerging field, several potential anti-virulence drugs
have already been identified, and existing chemical libraries
for antibiotic discovery could be a valuable source for rapid
identification of novel anti-virulence drugs (Maura et al., 2016;
Dickey et al., 2017). At this point, it is necessary to direct
these potential anti-virulence candidates toward pre-clinical and
clinical trials.
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