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Lung microbiome ecosystem homeostasis in idiopathic pulmonary fibrosis (IPF) remains

uncharacterized. The aims of this study were to identify unique microbial signatures of

the lung microbiome and analyze microbial gene function in IPF patients. DNA isolated

from BALF samples was obtained for high-throughput gene sequencing. Microbial

metagenomic data were used for principal component analysis (PCA) and analyzed at

different taxonomic levels. Shotgun metagenomic data were annotated using the KEGG

database and were analyzed for functional and metabolic pathways. In this study, 17

IPF patients and 38 healthy subjects (smokers and non-smokers) were recruited. For

the PCA, the first and the second principal component explained 16.3 and 13.4% of

the overall variability, respectively. The β diversity of microbiome was reduced in the IPF

group. Signature of IPF’s microbes was enriched of Streptococcus, Pseudobutyrivibrio,

and Anaerorhabdus. The translocation of lung microbiome was shown that 32.84%

of them were from oral. After analysis of gene function, ABC transporter systems,

biofilm formation, and two-component regulatory system were enriched in IPF patients’

microbiome. Here we shown the microbiology characteristics in IPF patients. The

microbiome may participate in altering internal conditions and involving in generating

antibiotic resistance in IPF patients.

Keywords: idiopathic pulmonary fibrosis, bronchoalveolar lavage fluid, microbiota, antibiotic resistant gene,

virulence factor

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disease without a known cause
(Molyneaux et al., 2014). IPF is increasing in prevalence and has a median survival of 3 years after
diagnosis; the life expectancy for IPF patients is worse than those of some cancers (Maher et al.,
2007; Ley et al., 2011; Navaratnam et al., 2011; Molyneaux et al., 2014). Because microorganisms
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may disturb the internal environment of the lower airway
and cause lung damage, it is crucial to determine the
precise composition of the lung microbiota and predict
associated gene functions to understand IPF (Han et al.,
2014; O’dwyer et al., 2016).

Traditional microbiological culture-based methods do not
provide a complete profile of the microbiota in the lower
respiratory tract (Garg et al., 2017; Ubags and Marsland,
2017). In contrast, culture-independent approaches, primarily
based on gene sequencing, better describe the wide diversity
of the microbial inhabitants of the lung microbiota and are
able to identify significant differences between healthy subjects
and patients with various respiratory diseases (Turnbaugh
et al., 2007; Huse et al., 2012; Dickson and Huffnagle,
2015; O’dwyer et al., 2016).

Bronchoalveolar lavage fluid (BALF) samples obtained from
the lower respiratory tract are used for routine diagnostic
procedures. BALF sampling is suitable for the identification of
a distinct microbiome in the lower respiratory tract (Zemanick
et al., 2017). The bronchi harbor a specificmicrobiome associated
with healthy individuals as well as a microbiome specific to
pulmonary fibrosis patients (Charlson et al., 2011; Zimmermann
et al., 2015). In addition, some studies have identified differences
in the microbiomes of the upper respiratory tracts of smokers
vs. non-smokers (Morris et al., 2013; Faner et al., 2017).
Smoking may directly affect the composition of the respiratory
microbiome, leading to changes or shifts inmicrobial community
structure (Charlson et al., 2010; Sapkota et al., 2010; Lee et al.,
2012). However, few studies have examined differences in the
microbiomes of the lower respiratory tract in smokers vs. non-
smokers (Garmendia et al., 2012; Morris et al., 2013).

In our current study, we broadly characterized the BALF-
associated microbial communities in IPF patients and healthy
individuals, including smokers and non-smokers. Additionally,
we compared the lung microbiome with other local microbial
communities, including those of the upper airway tract (the
oropharynx) and gut. We attempted to assess the usefulness of
shotgun metagenomics applied directly to DNA extracted from
BALF samples to characterize the lung microbiomes in IPF and
healthy patients and to reveal the role of the microbiome in
IPF pathophysiology.

METHODS

Study Design
A diagnosis of IPF was made after multidisciplinary
consultations. Only individuals diagnosed according to the
international guidelines of the American Thoracic Society (ATS)
and the European Respiratory Society (ERS) were subsequently
included in this study (Travis et al., 2013). Healthy control
subjects included non-smokers and smokers with normal
lung function. Exclusion criteria included: (a) a history of
self-reported upper or lower respiratory tract infection in the
previous 3 months; (b) antibiotic use in the previous 3 months;
(c) acute IPF exacerbation; and (d) other respiratory disorders.
Written informed consent was obtained from all subjects, and
the study was approved by the Institutional Review Board and

Ethics Committee of Beijing Hospital (Beijing, China). The
workflow of this research is shown in Supplementary Figure 1.

Bronchoscopy
Fiberoptic bronchoscopies with bronchoalveolar lavage
(BAL) were performed according to ATS guidelines via the
oropharyngeal route in accordance with a standard operating
procedure, during which 20ml of normal saline was instilled into
a designated segment of the lobe showed in Figure 1A (Busse
et al., 2005). After specimen collection, an aliquot of unfiltered
and unprocessed BAL was immediately placed on ice and then
frozen at−80◦C for further analysis.

DNA Extraction
DNA was extracted from 3.0ml of each original BALF sample
using a QIAamp DNA Microbiome Kit (catalog 51704, Qiagen,
Hilden, Germany) in strict accordance with the manufacturer’s
instructions. The DNA concentration was measured using a
Qubit R© 2.0 Fluorimeter (Life Technologies, Invitrogen, USA).

DNA Library Construction and Sequencing
DNA libraries were constructed using an Illumina TruSeq DNA
kit according to the manufacturer’s instructions. The same
Illumina workflows were used to perform cluster generation,
template hybridization, isothermal amplification, linearization,
blocking, denaturation and hybridization of the sequencing
primers. We performed paired-end sequencing on 2 × 100
base pairs (bp) or single-end sequencing on 100 bp. The base-
calling pipeline was used to process raw fluorescent images
and to call sequences. Reads that mapped to the human
genome (hg19) were removed from each sample with BWA
MEM using the default parameter (Li and Durbin, 2009). For
quality control, we employed Trimmomatic (version 0.36) with
the following criteria: (a) scan the read with a 4-base-wide
sliding window, cutting when the average quality per base drops
below 15; (b) drop reads below 50 bases in length; and (c)
remove leading/tailing low quality (Q < 13). This produced
an average of 8.5 gigabases (Gb) of high-quality sequences for
each sample, resulting in a total of 470 Gb of sequence data
(Supplementary Table 1). The reads were assembled into contigs
for all samples using the assembly software IDBA (version 1.1.1)
(Peng et al., 2012). IDBA was applied for Illumina short read
assembly with the parameters “–pre_correction –mink 30 –maxk
120 –step 10.” Then, we removed ambiguous bases from the
assembled scaffolds and discarded scaffolds with lengths less than
500 bp. Finally, 73% of the total reads were used to generate
88,761 contigs without ambiguous bases (minimum length of
500 bp). These contigs had a total length of 210,670,314 bp,
an average N50 length of 4,151 bp and ranged from 503 to
620,529 bp.

Construction of a Non-redundant
Microbiome Gene Set
To predict microbial genes from the assembly, we applied the
methodology used in the MetaHIT human gene catalog study
(Qin et al., 2010). MetaGeneMark (MetaGeneMark_v1.mod) was
used to predict the open reading frames (ORFs) in contigs
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FIGURE 1 | Principal component analysis with BALF samples from IPF patients and health subjects. (A) Diagram of the bronchoscopy performance. (B) Principal

component analysis with BALF samples from IPF patients and health subjects (including smokers and non-smokers) was performed based on the taxonomic profiles

at species level. Different colors of points were represented for different groups: the blue points represent BALF samples from IPF group, the green points represent

BALF samples from smoking control subjects, and the red points represent BALF samples from non-smoking control subjects. BALF samples from IPF patients were

with an apparent clustering pattern of microbial composition compared with smoking control subjects, but no significant distribution pattern with the non-smoking

control subjects.

without ambiguous bases (Zhu et al., 2010). The program
predicted 250,268 ORFs using a 100-bp cut-off. The total length
of the predicted ORFs was 183,986,409 bp, representing 87.3%
of the total contig length. Among these ORFs, 142,871 (57.1%)
were complete genes, while 107,397 (42.9%) were incomplete
without a start or stop codon. A non-redundant “gene set”
was established by removing redundant ORFs, defined as those
sharing 95% identity with VSEARCH (Rognes et al., 2016). Then,
genes from the HMP and HOMD databases (Dewhirst et al.,
2010) were merged as a non-redundant reference gene set for
gene-source analysis.

Organism Abundance Profiling
We followed the approach described in previous study to perform
organism abundance profiling (Qin et al., 2014). BWA was
applied to align paired-end clean reads against reference genomes
using default parameters. Reads with alignments on the same
reference genomes were assigned into the following two groups:
reads having alignments with only one genome were identified as
unique reads (U), and reads having alignments with more than
one genome were identified as multiple reads (M).

For species S, if its abundance was Ab (S), and if it potentially
aligned with U unique reads and M multiple reads, the following
formulae were used:

Ab (S) = Ab (U) + Ab (M)

Ab (U) = U/l

Ab (M) = (

M
∑

i= l

Co ∗ {M})/l

Shannon diversity index (H) at the species level was calculated as
the following, with pi denoting the proportion in group k.

H = −

k
∑

i=1

pi log
(

pi
)

Gene Abundance Profiling
Gene abundance was determined using a method similar to
RPKM (reads per kilobases per million reads) used to quantify
gene expression based on RNA sequencing data. In brief, high-
quality original Illumina reads from each sample were aligned
with a reference gene set using BWA. For each gene, Gi, the
number of read pairs that aligned to it divided by the length of
the gene was calculated as Num_Gi, and the relative abundance,
RNum_Gi, of each gene in each sample (n genes) was computed
using the following formula:

RNumGi = Num_Gi/

n
∑

i= 1

Num_Gi

Gene Function Classification and Ortholog
Group Abundance Profiling
Protein sequences of the predicted genes were searched using
BLASTp (Altschul et al., 1990) against the EggNOG 4.5 database
(Huerta-Cepas et al., 2016) (Supplementary Table 3) and the
KEGG gene database(Kanehisa et al., 2017) with the parameters
“-num_descriptions 10,000, -e-value 1e-5.” Genes that had
alignments with a score slightly higher than 60 were assigned
into one or more eggnog or KEGG ortholog groups. We used
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the methods introduced in previous study (Li et al., 2014) to
calculate the abundances of KEGG ortholog groups; additionally,
we added the abundances of proteins assigned into the same
KEGG ortholog groups as abundances of KEGG ortholog groups,
and KEGG ortholog group profiles were generated.

Quantification of Antibiotic Resistance
Genes and Virulence Factors
Antibiotic resistance genes (ARGs) were annotated using the
ARDB (Liu and Pop, 2009) database with BLASTp (e-value
< 1 × 10−5). Then, antibiotic resistance gene abundance was
determined as mentioned above. We used the Wilcoxon rank
sum test to determine significantly different abundances between
conditions. Virulence factors (VFs) were analyzed using a similar
strategy. In brief, all VFs were identified using the VFDB database
(Chen et al., 2016) with BLASTp (e-value < 1 × 10−5). Gene
abundances and related statistical analysis were followed the
ARGs’ method.

Multivariate Analysis
To analyze the beta diversity of various groups based on the
Bray-Curtis dissimilarity, ANOSIM was performed to detect
significant dissimilarity or similarity in community composition
among different groups (IPF/smoking/non-smoking). Pairwise
comparisons were performed in ANOSIM, and pairwise P-values
were obtained to assess significant differences in community
composition between any two groups.

Statistical Analysis
PCA was analyzed using QIIME (Version 1.9.1) (Caporaso et al.,
2010). Differential gene abundance and KEGG modules were
tested with the Wilcoxon rank-sum test. One-way ANOVA test
was performed and P-values were corrected for multiple testing
with the Benjamin &Hochberg method using R software Version
3.1.1 (http://www.r-project.org/).

Availability of Data
The data set supporting the results of this article has been
deposited in the NCBI Short Read Archive database under
BioProject accession code PRJNA387212.

RESULTS

Patients Characteristics
In total, 17 IPF patients (IPF group) and 38 healthy control
subjects (control group, including 23 non-smokers and 15
smokers) were included according to the inclusion criteria.
The demographic data for these subjects are summarized in
Table 1. IPF groups were slightly older than healthy subjects
(IPF group vs. control group: [62.71 ± 7.90] years vs. [61.28 ±

9.37] years). As expected, IPF patients exhibited reduced forced
expiratory volume in 1 one second (FEV1) and forced vital
capacity (FVC) compared with those of healthy subjects. Total
lung volume (TLC), residual lung volume (VR), lung diffusing
capacity (DLCO) and the transfer coefficient (KCO) were sharply
reduced in the IPF group, shown in Table 1.

TABLE 1 | Patient characteristics.

Healthy control (n = 38) IPF patients (n = 17)

Age, years 62.71 ± 7.90 61.28 ± 9.37

Gender (M/F) 24/14 11/6

Smoker (Never/current), n 23/15 11/6

Pack-year 14 ± 6 48 ± 32

FEV1% pred 110 ± 10 68 ± 17

FVC% pred 115 ± 14 66 ± 16

FEV1/FVC% 82 ± 5 77 ± 12

TLC, %pred nd 65 ± 13

RV, %pred nd 65 ± 30

DLCO% pred nd 34 ± 12

KCO% pred nd 54 ± 14

Principal Component Analysis for
Microbiome
To identify any differences in the organismal structure of the lung
microbiota, principal component anlaysis was performed based
on taxonomic profiles at the species level (Figure 1B). Different
colored points represent different groups: the blue points
represent BALF samples from the IPF group, the green points
represent BALF samples from smoking control subjects, and the
red points represent BALF samples from non-smoking control
subjects. The first principal component explained 16.32% of the
overall variability among different groups, whereas the second
principal component explained 13.42% of variability. As shown
in Figure 1B, an apparent microbial composition clustering
pattern was identified for IPF patients and smoking control
subjects. Conversely, non-smoking control subjects, which are
marked in red, exhibited no significant distribution pattern.

Microbial Community Structure of BALF
Sequencing reads (average number: 7,242,099 ) were aligned
against 3,096 reference genomes from the National Center for
Biotechnology Information and the HMP reference sequence,
which contains 131 archaeal strains comprising 97 species, 326
lower eukaryotes comprising 326 species, 3,683 viral strains
comprising 1,420 species, and 1,751 bacterial strains comprising
1,253 species (Supplementary Table 1). Relative abundances at
the phylum, class, order, family, genus, and species levels
were compared between the IPF group and control group.
Intrinsic differences in lung microbiota composition are shown
in Figure 2 and Supplementary Table 2. Species with a median
relative abundance larger than 0.01% of the total abundance
in either the control group or the IPF group were included
for comparison. Furthermore, we imported taxonomic data
into QIIME for comparison. At the phylum level, Firmicutes
(ANOVA, P-value = 0.02) and Fusobacterium (ANOVA, P-
value = 0.04) dominated the BALF microbial communities in
both groups (Figure 2). Compared to the control group, the IPF
group had lower levels of Bacteroidetes (ANOVA, P-value= 0.03)
but higher levels of Proteobacteria (ANOVA, P-value = 0.004)
and Fusobacteria (ANOVA, P-value = 0.022). At the genus
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FIGURE 2 | Microbiota composition of BALF samples in IPF and healthy subjects. The microbiota in IPF patients and healthy subjects (including smokers and

non-smokers) were shown at the phylum (A), class (B), order (C), family (D), and genus (E) levels. Species with a median relative abundance larger than 0.01% of the

total abundance in either the control group or the IPF group were included for comparison. P stands for IPF group, N stands for non-smoking normal subjects, S

stands for smoking normal subjects. All results are presented as the median, the 25–75 % percentiles and the variation range; results for IPF group (P) are presented

as yellow boxes, smoking control subjects (S) are marked with pink boxes and non-smoking control subjects (N) are marked with violet boxes. Blue dots represent the

abnormal observations at the corresponding taxonomic levels.

level (Figure 2E), Bacteroides was the dominant phylotype in
both groups but was significantly decreased in the IPF group.
Similar to previous studies (Morris et al., 2014), Streptococcus,
representing 23.0 % of total reads, was the most common
genus in subjects with IPF, followed by Pseudobutyrivibrio,
Anaerorhabdus, Campylobacter, and Blautia, all of which were
enriched in the IPF group. In contrast, Sutterella, Coprococcus,
Parasutterella, Paludibacter and Dorea were dominant in the
healthy group. The microbial communities of subjects with IPF
were by contrast less diverse (Shannon diversity index, 2.81 ±

0.08 vs. 4.01± 0.10; P = 0.004) than the healthy subjects.

Biodiversity Analysis of BALF Samples
To measure the diversity of the BALF communities in IPF
patients and healthy subjects (including smokers and non-
smokers), we employed various methods, such as Adonis and
ANOSIM of QIIME, to evaluate differences (beta-diversity) in
the lung microbiota among the groups. BALF biodiversity was
significantly reduced (P-value= 0.01) in the IPF group compared

with that in the smoking/non-smoking groups according to the
ADONIS results. A similar grouping pattern was identified based
on the Bray-Curtis matrix using hclust2 (Figure 3). We identified
the following two groups that were differentiated based on
combinations of sex, age, and condition: Group 1, opportunistic
pathogenic bacteria primarily derived from the skin and mouth,
according to study of Blauwkamp (Blauwkamp et al., 2019);
and Group 2, bacteria derived from the gut. These two groups
were similar to those identified by ANOSIM. Mantel tests of the
vegan package revealed the significant correlation of community
structure with a P-value= 0.001 (Mantel Statistic R: 0.3057).

Crosstalk of BALF Microbiom to the Oral
and Gut Microbiomes
To explore the origins of the lung microbiome, we constructed a
reference gene catalog based on the HOMD and HMP (https://
portal.hmpdacc.org) databases. We compared annotated genes
with the reference database to determine functional gene sources.
According to our results, the majority of genes were shared,
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FIGURE 3 | Heatmap of the normalized abundances of all BALF samples. A similar grouping pattern on the combinations of the gender, age, and condition was also

identified by Bray-Curtis matrix using the hclust2 and Mantel tests. The significant correlated of community structure of two groups was revealed (P-value = 0.01). The

species in the red box are group 1, opportunistic pathogenic bacteria primarily derived from the skin and mouth, as mentioned above. The rest species are group 2,

which is mainly from gut. Heatmap is color-coded based on the normalized abundance of species, from black (lower abundance) to red (higher abundance).

32.84% genes were derived from oral, and 1.32% genes were
derived from the gut, as determined by V search (see theMethods
section for details) and the results were shown in Figure 4A.
We also analyzed the crosstalk of the different enriched genes
between smoking group and IPF group: 38% of them were from
oral and rest of them were unique in BALF (Figure 4B). None of
the different enriched genes were from gut.

Functional Analysis of the
Lung Microbiome
To identify functional differences in the BALF microbiome
between control subjects (including smokers and non-smokers)
and IPF patients, shotgun metagenomics data were annotated
using the KEGG and eggNOG database and analyzed for
functional and metabolic pathways (Supplementary Tables 3,
4). A total of 2,707 KOs were identified either in healthy
controls or IPF samples. We further mapped these KOs to

KEGG modules and pathways and calculated the adjusted
P-value for the hypergeometric distribution. In particular, ABC
transporter systems, the two-component regulatory system,
biofilm formation, methane metabolism, aromatic compound
degradation, amino acid biosynthesis (including alanine,
tyrosine, valine and leucine), vitamin biosynthesis, biotin
metabolism, and amino sugar and nucleotide sugar metabolism
were enriched in the IPF group (Supplementary Figure 2).
Among these pathways, the ABC transporter system, which
imports amino acids, represented the majority of the enriched
genes in the IPF group (Supplementary Figure 3). Multidrug
efflux genes, which contribute to drug resistance, were enriched
in the IPF group. According to ARDB databases, antibiotic
resistant genes (ARG) was checked and 48 different types of
ARGs was identified, which showed in Supplementary Table 5.
The relative abundance of identified ARGs in IPF group and
healthy control groups (smoking and non-smoking) was shown
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FIGURE 4 | Crosstalk of BALF’s microbiome to oral and gut microbiome. (A) The origin lung microbiome was explored by comparison with HOMD and HMP

databases. The genes rescore was shown: 32.84% genes were from oral and 1.32% genes were from the gut, as determined by the Vsearch. (B) Crosstalk of the

different enriched genes were analyzed in this research: 38% of them were from oral and rest of them were unique in BALF.

in Figure 5. Compared with microbial genes from healthy
control subjects, genes from IPF group were enriched of ARGS
(5/10), including tet40, acrR, evgA, tolC,mdtO, with significantly
abundance changes. These ARGs identified in IPF group are
related to multidrug efflux, suggesting that the multidrug efflux
pumps maybe the primary mechanism for bacteria to extrude
antibiotics and other materials (Figure 5A). At the same time,
virulence genes were also detected in this research showed in
Supplementary Table 6 and the relative abundance of each
group was showed in Figure 6.

DISCUSSION

The Human Microbiome Project was launched in 2007 to study
the microbial inhabitants of the human body and the microbes
that live on human mucosal surfaces with the understanding that
human biology may partially depend on interactions with these
microorganisms (Turnbaugh et al., 2007). Because the human
lung was believed to be sterile, it was not included in the original
Human Microbiome Project. However, a growing number of
studies have revealed the presence of microbial communities
in the lungs. Next generation sequencing technology has
dramatically improved lungmicrobiome identification in healthy
subjects and in patients with chronic airway diseases, but
humanized genomic DNA contamination remains a major
technical challenge (Corless et al., 2000; Zoetendal et al., 2006;
Salonen et al., 2010; Wu et al., 2010). As shown in our
previous study, the use of pure microbial DNA avoids humanized
genomic pollution and facilitates investigation of the lung
microbiota (Wen et al., 2016).

In our current study, bacteria and virus microbial genes
discriminated between IPF patient BALF and the BALF of healthy
individuals with a high specificity; for example,Acinetobacter and
Neisseria were identified at the genus level. The most common
pathogenic bacteria in the IPF group were Acinetobacter and
Neisseria (at the genus level), and the most common pathogenic
viruses were microvirus, simplex virus and varicella virus. The

same results had been reported with an increased bacterial load
and decreased microbial diversity in BAL samples from IPF
patients (Morris et al., 2014). At the same time, there are clear
differences in the IPF BAL microbiome (increase in Neisseria,
Streptococcus and some other species) compared to healthy
subjects, which was also proven in our study. The bacterial load
affects survival in these patients whereas retrospective analysis of
the lung microbiome in BAL samples from the COMET-cohort
suggested that presence of specific Streptococcus operational
taxonomic units (OTU) or Staphylococcus OTU was associated
with worse outcomes of IPF. These studies were showed the
differential microbiome and specific microbial genes changes in
BALF isolated from IPF patients, which suggested microbiota-
targeted biomarkers may be potential tools for disease diagnosis
and predicting prognosis. Biodiversity analysis revealed greater
microbiome diversity associated with better lung function in the
control group; conversely, the IPF group demonstrated decreased
microbial diversity in terms of bacterial gene richness. Analysis of
BALF microbiome revealed the appearance of common oral and
gut inhabitants in BALF. Notably, shifts in the bacterial make-
up of the BALF were associated with the human gut and oral
microbiotas. In the IPF group, the majority of inhabitants were
derived from the oral microbiome, suggesting they shifted from
the mouth and throat. Comparison of BALF microbial genes to
oral and gut microbiomes demonstrated that majority genes were
from oral source, which hint the potential mechanism of oral
aspiration as a risk factor in pathogenesis of IPF.

This study provides an opportunity to identify the bacterial

functions required for a bacterium to thrive in the context of

the BALF from IPF group and healthy subjects. To identify

the functions of the BALF genome, gene length and copy
number were normalized, and the relative frequencies of
different functions were deduced based on the number of genes
recruited to different EggNOG clusters. ABC transporter systems,
the two-component regulatory system, biofilm formation,
amino acid and vitamin biosynthesis, and central carbon
metabolism were enriched in the IPF group. Not surprisingly,
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FIGURE 5 | Abundances of antibiotic resistant genes from BALF samples. Each column corresponds to an individual BALF’s sample from IPF group (pink color) and

healthy control group (smoking: blue color; non-smoking: green color) showed on the left side. The types of antibiotic resistant genes were indicated in the boxes at

the bottom. Each row corresponds to a specific abundance of antibiotic resistant genes based on different colors according to different abundance folds.
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FIGURE 6 | Abundances of virulence genes from BALF samples. Each column corresponds to an individual BALF’s sample from IPF group (pink color) and healthy

control group (smoking: blue color; non-smoking: green color) showed on the left side. The types of virulence factors were indicated in the boxes at the bottom. Each

row corresponds to a specific abundance of virulence genes based on different colors according to different abundance folds.

projection of the range clusters in KEGG metabolic pathways
provided highly explicit directions associated with antimicrobial
resistance. Antimicrobial resistance is a natural response
of bacteria to antibiotic exposure (Sherrard et al., 2014).
Antimicrobial resistance may be intrinsic to a bacterium, arise
from spontaneous genetic mutations, or be associated with
horizontal gene transfer (Sherrard et al., 2014). The enrichment
of ABC transporters and biofilm formation signals indicates
the presence of major antimicrobial resistance pathways in
the IPF lung.

ABC transporter systems play a large variety of biological
roles in processes such as translation, elongation, and DNA

repair. In some antibiotic-producing or drug-resistant
bacteria, particularly Gram-negative bacteria, ABC systems
are responsible for the active efflux of drugs and other harmful
compounds across the cell envelope (Seeger and Van Veen,
2009). Relative abundance of multidrug efflux genes were
increased in IPF group compared with healthy controls which
listed in this research. Furthermore, the virulence factors also
evaluated in this research and showed significant differences
between IPF group and control group. Biofilm formation is a
feature of chronic airway infection. Bacteria growing in biofilms
are embedded in a matrix of exopolymeric substances and are
much more resistant to antibiotics than organisms growing
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planktonically (Stewart and Costerton, 2001; Wu et al., 2015).
Together, these findings emphasize antimicrobial resistance as a
primary function of the BALF ecosystem.

Our descriptions of the major characteristics of the lung
microbiome provide a holistic view to understand IPF patients.
In our study, intrinsic changes in the microbiome emphasize
the production of strong antimicrobial resistance by the BALF
ecosystem, which is important to understand pathophysiological
processes. The interesting modules and pathways found in
this project suggest the BALF microbiome in IPF patients is
related to antibiotic resistance. Therefore, more therapeutic
options for IPF may become available through the adaptation
of lung environments or the identification of beneficial probiotic
microorganisms. Further studies in this area will lead to a deeper
understanding of bacterial life in the BALF.
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