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INTRODUCTION

Coinfections of mycoviruses are generally common. The coinfecting mycoviruses are not
necessarily the result of horizontal virus transmission among homologous fungal hosts compatible
for anastomosis, but involve mycoviruses from phylogenetically diverse sources (Herrero and
Zabalgogeazcoa, 2011; Osaki et al., 2016; Ran et al., 2016; Hao et al., 2018). An experimental
study with different combinations of transmission scenarios among four partitiviruses showed
a significant positive influence of one virus (Heterobasidion partitivirus13-an1) on its distantly
related coinfecting partner Heterobasidion partitivirus 15-pa1, but no support of coinfection
between two related viruses (Heterobasidion partitiviruses 11-au1 and 11-pa1) (Kashif et al.,
2019). A more stable coinfection between distantly related species than conspecific strains was
also reported among mycoviruses infecting the fungus, Heterobasidion parviporum (Vainio et al.,
2015). Studies covering large geographical areas indicate that the mycoviruses in coinfections
belong to the local fungal community (Ran et al., 2016; Arjona-Lopez et al., 2018). Arjona-Lopez
et al. (2018) found a non-overlapping set of coinfecting mycoviruses in isolates of Rosellinia
necatrix from Japan and the Mediterranean that match with mycoviruses from the respective local
fungal pools. In general, transmission of mycoviruses occurs through anastomosis of vegetatively
compatible strains of the same species, but phylogenetic evidence implies occasional transmission
across vegetatively incompatible strains. The transmissions across vegetatively incompatible fungal
hosts are poorly studied except in a few cases (Liu et al., 2003, 2016; Yaegashi et al., 2013a). In
addition to transmission across heterologous fungi, interactions among mycoviruses play direct
roles in coinfection. The interactions among coinfecting mycoviruses are diverse, ranging from
synergistic to neutral to antagonistic. In some cases, mycovirus coinfection induces genome
rearrangement of one of the coinfecting partners, likely through recombination (Sun and Suzuki,
2008). A more comprehensive review on the interactions among coinfecting mycoviruses is found
in Hillman et al. (2018).

The diversity of coinfecting mycoviruses and the diverse nature of interactions may imply
that coinfections occur freely without any constraints. However, in examples from in vitro
experiments the frequency of coinfection varies with different fungal systems and in many cases
is lower than what would be expected from random incidences. For example, in 43 isolates of
the ascomycete Tolypocladium cylindrosporum, coinfections of mycoviruses were reported in only
in about 5% of the population (Herrero and Zabalgogeazcoa, 2011). In contrast, in almost 200
isolates of Ustilaginoidea virens examined multiple dsRNA elements were found in large samples,
and the coinfection frequency of two common mycoviruses: Ustilaginoidea virens RNA virus 1
(Totiviridae) and Ustilaginoidea virens RNA virus 4 (unclassified) was close to 30% (Jiang et al.,
2015). In our own study of about 200 North American isolates of Pseudogymnoascus destructans
a fungus causing a deadly disease in bats, the coinfection incidence of a partitivirus (Thapa et al.,
2016) and an unclassified mycovirus is close to 25%, but only in a geographically restricted area
(unpublished). Independent segregation of coinfecting mycoviruses in the population has been
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described only in a few cases where the interaction is likely
neutral, while in other cases one of the partners influences the
presence of other. In the coinfection of two unrelated RNA
viruses, Yado-nushi virus 1 (YnV1) and Yado-kari virus 1 (YkV1)
in Rosellinia necatrix, YkV1 is dependent on YnV1. YkV1 does
not segregate independently in the population (Zhang et al.,
2016). Thus, the coinfection scenarios are likely influenced by
the interactions between coinfecting viruses or at the level of
mycovirus transmission, particularly during the transmission
across vegetatively incompatible fungi or from other factors. Such
constraints led us to investigate the determinants of mycovirus
coinfections. Here, we discuss some of the determinants for
mycovirus coinfection based on the literature available and
provide our opinions on coinfection biology.

MYCOVIRUS ASSOCIATED SUPPRESSION

OF FUNGAL NON-SELF-RECOGNITION

This is an example of a coinfection system where one of the
mycoviruses suppresses its fungal host’s non-self-recognition,
which facilitates heterologous transmission of mycoviruses. Non-
self-recognition or allorecognition is a ubiquitous phenomenon
in fungi that enables them to distinguish one from another
(Glass and Dementhon, 2006). In fungi, non-self-recognition
between two isolates of different mycelial compatibility
results in compartmentalization followed by programmed
cell death to interrupt fusion between hypha, termed as
heterokaryon incompatibility (Glass and Kaneko, 2003).
Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4), which
is associated with hypovirulence in Sclerotinia sclerotiorum,
was found to suppress non-self-recognition of the fungus
and facilitate coinfection through horizontal transmission of
mycoviruses across vegetatively incompatible groups (Wu et al.,
2017). SsMYRV4 inhibits expression of heterotrimeric G proteins
and het or vic genes involved in vegetative incompatibility (Wu
et al., 2017). Further, the infection of SsMYRV4 reduces cellular
reactive oxygen species (ROS), which plays a major role in
fungal vegetative incompatibility reactions (Brosché et al.,
2014). In S. sclerotiorum, infection of SsMYRV4 determines
the infection ability of other mycoviruses. Involvement of vic
genes in vegetative incompatibility was also reported in Chestnut
blight fungus, Cryphonectria parasitica (Choi et al., 2012; Zhang
et al., 2014). Cryphonectria hypovirus 1 (CHV1) infection in C.
parasitica suppresses expression of the pheromone precursor
genes, Mf1/1, Mf2/1, and Mf2/2, resulting in disturbance
in the fungal sexual cycles. The defect in the sexual cycles
likely decreases the allelic diverstity of the vic gene, thereby
promoting the virus transmission among different strains
(Zhang et al., 1998).

INFECTION BY A MYCOVIRUS WITH AN

RNA SILENCING SUPPRESSOR

Many fungi use the adaptive immune system of RNA silencing to
suppress viruses (Hammond et al., 2008; Yaegashi et al., 2016).
Studies showed that mycoviruses like CHV1 and Rosellinia
necatrix mycoreovirus 3 infecting Cryphonectria parasitica

and Rosellinia necatrix, respectively, encode RNA silencing
suppressor (RSS) proteins that show similarity to plant RSS
proteins (Segers et al., 2006; Yaegashi et al., 2013b). The RSS of
one mycovirus may help another mycovirus that gets suppressed
by the host RNA silencing, to facilitate coinfection (Chiba and
Suzuki, 2015). For example, Rosellinia necatrix victorivirus 1
(RnVV1) originally isolated from R. necatrix can replicate in C.
parasitica when coinfected with CHV1, but not in the virus-
free C. parasitica strain (EP155). Infection in an RNA silencing
mutant of C. parasitica, dicer-like 2 knockout-∆dcl-2 has a
similar effect (Segers et al., 2006; Chiba et al., 2013). This suggests
RnVV1 has very low RNA silencing suppressor activities (Chiba
et al., 2013). Similarly, RnVV1 replication is impaired when
coinfected with Mycoreovirus 1 (MyRV1) and CHV1 mutant-
∆p69 in C. parasitica. MyRV1 induces silencing genes dicer-like
2 (dcl2) and argonaute-like 2 (agl2), and CHV1 mutant (∆p69)
is also impaired in RSS activity (Chiba and Suzuki, 2015). These
examples show that a mycovirus can mediate coinfection of
another mycovirus through RNA silencing pathways.

NUTRITIONAL/CHEMICAL

DETERMINANTS

The roles of chemical compounds that affect the programmed cell
death pathways involved inmycelial incompatibility were studied
to look at their facilitation of heterologous transmission of
mycoviruses. One successful case was the use of a zinc compound
in vitro that accelerates the transmission of mycoviruses among
vegetatively incompatible strains of R. necatrix (Ikeda et al.,
2013). Rosellinia necatrix shows very strong incompatibility
with different strains without the formation of anastomosis
(Inoue et al., 2011a). Zinc chloride concentrations in the
media ranging from 0.5 to 1.5mM facilitated heterologous
transmission of Rosellinia necatrix megabirnavirus 1 and other
partitiviruses similar to Rosellinia necatrix partitivirus 3 (Inoue
et al., 2011a). How zinc chloride induces anastomosis formation
in R. necatrix is unknown however, it is inferred that zinc
chloride reduces the effects of the hyphal secretion that suppress
anastomosis (Inoue et al., 2011a). In the basidiomycete fungus,
Helicobasidium mompa hyphal incompatibility is inhibited with
the supplementation of active charcoal in the media (Inoue
et al., 2011b). It is likely that in nature nutrient availability
influences the coinfection potential of mycoviruses among fugal
hosts through the heterologous anastomosis.

CONCLUSIONS

The determinants of mycovirus coinfections involve multiple
factors. One of the constraints that many mycoviruses have to
overcome for infection is non-self-recognition. RNA silencing
is another major hurdle that influences the success of infection.
The roles of nutrients or chemicals or other components of the
environment seems to have potential influence in determining
infection, but it is a poorly studied field. The biology of
coinfection is complex like any other biological phenomena
and many factors remained to be explored. On the other hand,
it is an important field particularly in manipulating virulence
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of pathogenic fungi in which mycoviruses are known to play
crucial roles. There are attempts underway to alter the non-self-
recognition factors in vegetative incompatible populations for
successful transfer of mycovirus related to hypovirulence (Zhang
et al., 2016). Similar efforts to modify RNA silencing suppressors
may prove more difficult. The idea is to produce desired
coinfection interactions to manipulate the fungal host’s virulence.
The coinfection biology of mycoviruses has an important scope
not only academically but also in many practical applications
associated with hypovirulence, and deserves further attention.
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