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Chronic HCV infection is characterized by several immunological alterations, such as the

accumulation of suppressor cells and of hyperactivated T lymphocytes. However, it is

unclear whether direct-acting antiviral (DAA)-mediated HCV clearance restores immune

dysfunctions. We performed a phenotypic characterization by flow cytometry of different

immune cell subsets, including monocytic myeloid-derived suppressor cells (M-MDSCs)

and T lymphocytes in 168 patients with persistent HCV infection not treated, under

DAA therapies and sustained virological responders. Chronic HCV infection prompted

the accumulation of M-MDSCs independently of patient and clinical characteristics,

and altered their metabolic properties. HCV RNA was undetectable in the majority of

patients just after few weeks of DAA therapy, whereas M-MDSC levels normalized

only 6 months after therapy. In addition, HCV infection deeply perturbed the T cell

compartment since a re-distribution of memory CD4+ and CD8+ T cells was observed at

the expenses of naïve cells, and memory T lymphocytes displayed increased activation.

Notably, these features were only partially restored by DAA therapies in the CD4, but

not in the CD8, compartment as high immune activation levels persisted in the terminally

differentiated memory CD8+ T cells even more than 1 year after sustained virological

response. Together, these results suggest that successful DAA therapies do not lead to

full immunological reconstitution as fast as viral clearance.

Keywords: HCV, DAA, M-MDCSs, Tregs, T lymphocytes

INTRODUCTION

TheWorld Health Organization (WHO) estimates that more than 70million people are chronically
infected with hepatitis C virus (HCV), causing about 400,000 deaths every year, and that ∼3–4
million new infections occur each year worldwide (WHO, 2018). ChronicHCV infection represents
a global health challenge because it leads to liver fibrosis, cirrhosis and hepatocellular carcinoma
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(HCC). At present, although numerous candidates have been
pursued, there is no vaccine available to prevent HCV infection,
transmission, and eradication. New generation of highly effective
interferon-free, direct-acting antiviral (DAA) therapies have
revolutionized the care of HCV-infected individuals due to
their dramatically high cure rate (Hezode, 2018). However, the
low access to this new generation of drugs in low income
countries, the detection in few patients of occult HCV infection
(Attar and Van Thiel, 2015; Elmasry et al., 2017) and the
emergence of drug resistance and suboptimal activity toward
some genotypes (Sun et al., 2018; Tavares et al., 2018)
occasionally reported in DAA-treated subjects could threaten
the achievement of HCV eradication in the absence of an
effective vaccine.

Several alterations of both innate and adaptive
immunity also occur in chronically HCV-infected patients
(Fernandez-Ponce et al., 2017), including increased level of
myeloid-derived suppressor cells (MDSCs), that may inhibit
T cell responses favoring viral escape and disease progression
(Ning et al., 2015). Immunosuppressive myeloid cells are most
likely generated as normal physiological response to acute and
excessive inflammatory conditions (Bronte, 2009; Bronte et al.,
2016). In healthy individuals MDSCs are present in low numbers
in the blood, whereas they rapidly expand during pathological
conditions such as cancer, autoimmune or infectious diseases,
trauma, sepsis and bone marrow transplantation (Bronte, 2009;
Bronte et al., 2016). Among the different subsets of MDSCs, it has
been reported that the monocytic ones (M-MDSCs) accumulate
more in HCV infection (Ning et al., 2015). However, little is
known about the role of DAA therapies on the restoration of
MDSC numbers.

Within this frame, a hallmark feature of persistent HCV
infection is chronic immune activation and dysfunction of several
types of immune cells, including naïve and memory CD4+ and
CD8+ T cells, which have been linked to perturbation of anti-
viral and anti-tumoral immune responses (Urbani et al., 2006;
Alanio et al., 2015). These immune alterations may increase
susceptibility of chronically infected patients to heterologous
infections and their severe consequences (Marrie et al., 2017) and
to extra-hepatic tumors (Pol et al., 2018) as well as may decrease
responses to vaccination (Buxton and Kim, 2008). At present, it is
unclear whether effective inhibition of HCV replication by DAAs
influences immune activation and restores the immune functions
and immune surveillance capacity in HCV-cured patients
(Tumino et al., 2017; Guarino et al., 2018; Singh et al., 2018).

To gain further insights into the activity of IFN-free
treatments on the immune dysfunctions, the main objective of
this study was to evaluate the capacity of DAAs of reestablishing
those cellular response features known to be affected by HCV
infection and/or to be crucial for the effectiveness of adaptive
immunity. In particular, we investigated the presence and quality
of suppressor cell populations such as M-MDSCs and Tregs and
the proportion as well as the activation and exhaustion phenotype
of different CD4+ and CD8+ T cell subpopulations.

The main results of the study confirm that HCV infection
deeply alters, quantitatively and qualitatively, both the myeloid
and lymphoid compartment, and indicate that DAA-based

therapies lead partially and slowly to restoration of these
immunological alterations.

MATERIALS AND METHODS

Study Design
HCV-chronically infected patients were enrolled for a cross-
sectional study (n = 168) and for a nested longitudinal study (n
= 11) at the Infectious and Tropical Disease Unit of the Azienda
Ospedaliera of Padua after signing an informed consent. Patients
with HIV or HBV co-infections, malignancy different from
liver cancer, autoimmune diseases and pregnant women were
excluded. The following information were provided: values of
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT), blood HCV RNA load, HCV genotype, age, and
sex (Table S1).

Patients undergoing therapy and sustained virological
responders were treated with different combinations of DAA
regimens (Table S2). HCV-negative healthy donors (n = 47)
were also enrolled as healthy controls. The study was approved
by the Ethics Committee of the Azienda Ospedaliera of Padua
(Prot. n. 3136/AO/14) and conducted according to the principles
expressed in the Declaration of Helsinki.

Sample Purification
Whole peripheral blood was collected in spray-coated
K2EDTA tubes. Briefly, for total leucocytes purification,
blood was diluted 1:3 with hemolysis’s solution [NH4Cl
(8,6g/l), KHCO3 (1g/l), EDTA tetrasodium (0.037 g/l)],
incubated for 20min, and centrifuged at 1,200 rpm for
7min. To remove residual red blood cells, the cellular
pellet was further diluted with 10ml of hemolysis’s solution
and processed as above. The pellet was resuspended in
10ml of 1X Dulbecco’s phosphate buffer saline without
calcium and magnesium (1X D-PBS) (Gibco) and alive
cells counted by the Trypan blue dye exclusion method. An
aliquot of fresh total leukocytes was immediately analyzed
by FACS.

PBMCs and plasma were obtained only from a restricted
number of donors due to small volume of blood available. PBMCs
were purified by Ficoll (GE Healthcare) density gradient, as
previously described (Sforza et al., 2014; Nicoli et al., 2018). Cells
were stored in 90% fetal bovine serum (FBS) (Lonza) and 10%
DMSO (Sigma-Aldrich) in liquid nitrogen. For plasma collection,
a whole blood tube (6ml) was centrifuged at 2500 rpm for
7 minutes at room temperature. After centrifugation, 1ml of
plasma was centrifuged at 3,000 rpm for 5min to remove residual
cells and stored at−80◦C.

Flow Cytometry Analyses
The frequency and phenotype of MDSCs were analyzed by
flow cytometry after surface staining in the dark for 15min
at room temperature with monoclonal antibodies (mAbs). The
monocyte fraction of MDSCs (M-MDSCs, CD33+CD11b+HLA-
DR−/lowCD15−CD14+) was identified using the following
fluorochrome-conjugated anti-human mAbs: anti-CD14 PE-
Cy7 (eBioscience), anti-HLA-DR APC (eBioscience), anti-CD15
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eFluor R© (eBioscience), anti-CD33 FITC (eBioscience), anti-
CD11b PE (Beckman Coulter) and expressed as percentage
of PBMCs.

The characterization of the T cell subsets was
performed using anti-CD4 APC (eBioscience), anti-
CD3 BV605 (eBioscience), anti-CD8 APC-Cy7 (BD-
biosciences), anti-HLA-DR PE-Cy7 (BD-biosciences),

anti-CD38 PE-CF594 (BD-biosciences), anti-PD1
PerCP-Cy5.5 (BioLegend), anti-CD27 Alexa Fluor 700
(BioLegend), and anti-CD45RA V450 (BD-biosciences)
mAbs. For Treg staining, cells were incubated with
Foxp3 fixation/permeabilization working solution and
the anti-FoxP3 FITC mAb (eBioscience) according to
manufacturer’s instructions.

FIGURE 1 | Cross-sectional analysis of M-MDSCs in peripheral blood of patients with untreated and treated HCV-chronic infection. (A) Percentage of M-MDSCs in

healthy controls (HC, n = 38) and in subjects with HCV-chronic infection, not-treated (NT, n = 66), under therapy (T, n = 53), and sustained virological responders

(SVR, n = 27). (B) Percentage of M-MDSCs in NT HCV-infected patients stratified by HCV genotypes (G1, n = 34; G2, n = 8; G3, n = 15; G4, n = 9), sex (F =

female, n = 35; M = male, n = 31), and age (<50 y = below 50 years old, n = 17; >50 y = below 50 years old, n = 49). (C) Correlation between the percentage of

M-MDSCs and peripheral blood HCV-RNA viral load, serum AST and ALT levels in NT HCV-infected patients (n = 66). (D) Content of ROS, expressed as CellROX

MFI, in M-MDSCs of HC (n = 8) and of subjects with HCV-chronic infection, NT (n = 10), and SVR (n = 19). (E) 19M expressed as TMRM MFI in M-MDSCs of HC (n

=9) and of subjects with HCV-chronic infection, NT (n = 10), and SVR (n = 20). (A,B,D,E) Lines represent the means. (D,E) Left panels show histograms from two

representative donors for each group, whereas right panels show single donors. *P < 0.05, ***P < 0.0001 calculated one-way ANOVA followed by Bonferroni’s

post-test. Correlations were calculated by Spearman’s rank test.
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The production of reactive oxygen species (ROS) and the
mitochondrial membrane potential (19M) in M-MDSCs were
assessed using the CellROX R© Green Reagent (Life Technologies)
and tetramethylrhodamine (TMRM, Life Technologies), as
previously described (Nicoli et al., 2018). After washing, cells
were stained with the specific fluorochrome-conjugated mAbs
for M-MDSC identification: anti-CD15 eFluor450 (eBioscience),
anti-CD33 Alexa Fluor700 (eBioscience), anti-HLA-DR APC
(eBioscience), anti-CD14 PE-Cy7 (eBioscience), and anti-CD11b
ViogreenTM (Miltenyi Biotec).

Data were acquired using a BD LSR II flow cytometer (BD
Biosciences) and analyzed with FlowJo software (Tree Star).

T Cell Suppression Assay
As a robust definition for human MDSC subsets is still lacking
(Mandruzzato et al., 2016), the gating strategy was confirmed
by analyzing the function of M-MDSCs sorted from PBMCs
of representative subjects with FACSAria II cell sorter (BD).
Heterologous PBMCs, from healthy donors, were labeled with
a solution containing 5µM 5(6)-carboxy-fluorescein diacetate
succinimidyl ester (CFSE, eBioscience) for 10min at 37◦C and
washed twice before culturing. Labeled PBMCs were seeded in
384-well plates (Falcon) coated with 80 µl of anti-human CD3
mAb (eBioscience) at 1µg/ml and cultured without and with
sorted M-MDSCs at 2:1 ratio. T cell proliferation was induced by
soluble anti-human CD28mAb (Miltenyi Biotec) at 0.1µg/ml for
4 days at 37◦C. Detached cells were transferred into FACS tubes,
washed, stained with anti-human CD8APC-Cy7 and analyzed by
flow cytometry.

Analysis of Cytokine Plasmatic Levels
Millipore’s MILLIPLEX R© MAP Human High Sensitivity T
Cell Magnetic Bead Panel (Millipore) was used according to
the manufacturer’s instructions, with the Bio-Plex 200 System
(BioRad) and the Bio-Plex Pro Wash Station (BioRad) as
previously described (Borgatti et al., 2010; Lampronti et al., 2017).

Statistical Analysis
Mann-Whitney and Wilcoxon signed-rank tests were
used to compare the difference between two independent
or paired groups respectively. The one-way analysis of
variance (ANOVA) was used to determine any statistically
significant differences between the means of more than
three independent (unrelated) groups, and Bonferroni
correction was used. Correlations were analyzed by
Spearman’s rank test. P values < 0.05 were considered to
be statistically significant.

RESULTS

Study Subjects
The baseline characteristics of the enrolled participants are
summarized in Table S1. HCV-chronically infected patients
(n = 168) were enrolled for the cross-sectional study and
grouped in: not-treated patients (NT, n = 75), patients during
pharmacological treatment with DAA (T, n = 53) and sustained
virological responders (SVR, n= 40). The SVR group considered
in this analysis, if not otherwise specified, includes different time

points after sustained virological response: 25 subjects since 12
weeks (SVR12), 5 since 24 weeks (SVR24), 8 since 48 weeks
(SVR48), and 2 since 96 weeks (SVR96) after the end of therapy.
The majority of patients was infected with HCV genotype 1.
HCV viral loads reached very low levels (<103) already during
treatment (group T), and the same trend was observed for AST
and ALT values.

M-MDSC Frequency Is Increased During
Chronic HCV-Infection and Not Influenced
by Virological and Clinical Characteristics
M-MDSCs were identified by flow cytometry as shown in
Figure S1 and their suppressive capacity on CD8+ T cell
proliferation was confirmed by a functional assay (Figure S2).
The frequencies of M-MDSCs in peripheral blood of NT
patients was compared with that of HC and shown to be
significantly higher in HCV-infected patients (mean percentages
± SEM: 2.6 ± 0.2 and 0.8 ± 0.1 in NT and HC, respectively,
P < 0.0001, Figure 1A). To understand if M-MDSC number
perturbation was affected by the patients’ virological and
clinical characteristics, we next analyzed the percentages of
M-MDSCs in NT subjects stratified by HCV genotype, age
or sex. However, none of these factors influenced M-MDSC
frequencies (Figure 1B), which were not correlated with HCV
RNA viral loads, AST, and ALT values (Figure 1C). Together,
these data indicate that M-MDSCs accumulate during HCV-
chronic infection independently of age, sex, HCV viral load or
genotype, and disease severity.

Restoration of Quantitative and Qualitative
M-MDSC Alterations Appears Late After
Viral Clearance
To evaluate whether the use of IFN-free antiviral therapies was
associated with immunomodulatory effects and restoration of
immune functions to physiological levels, the frequency of M-
MDSCs was compared among chronically HCV-infected patients
untreated (NT), under therapy (T), with cleared infection
(SVR) and HC. Despite HCV RNA viral loads and clinical
symptoms were already restored during therapy (Table S1),
the percentages of M-MDSCs were comparable among NT, T
and SVR groups and significantly higher if compared to HC
(Figure 1A; P < 0.0001, P < 0.0001, and P < 0.05, respectively),
suggesting that viral clearance per se is not readily associated
to the reduction of M-MDSC numbers. As T patients showed
similar features of NT and SVR groups, they were not considered
for further analysis.

To determine whether DAA treatments affected the
qualitative properties of M-MDSC, we then assessed the
production of reactive oxygen species (ROS), which is a
suppression mechanism used by MDSCs, and their metabolic
fitness by measuring the mitochondrial membrane potential
(19M), considered a surrogate marker of mitochondrial activity
(Zorova et al., 2018). As shown in Figure 1D, ROS levels were
comparable across the study groups. Conversely, the1ψM levels
of M-MDSCs were significantly higher in NT patients compared
to HC (Figure 1E; P < 0.05). Interestingly, SVR patients showed
intermediate M-MDSC 19M levels between HC and NT,
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FIGURE 2 | Analysis of M-MDSC frequencies in a longitudinal cohort. (A) Percentage of M-MDSCs in subjects with HCV-chronic infection (nested longitudinal cohort,

n = 11) during treatment (T), at SVR12, and at SVR24. The dashed line represents the median value of M-MDSC percentages in HC (n = 38), and the gray area the

interquartile range. (B) Correlation between the percentage of M-MDSCs during treatment (T) and the ratio between the percentage at time T and SVR24 (longitudinal

cohort, n = 11). (C) Cytokines levels in subjects with HCV-chronic infection at SVR12 and at SVR24 (longitudinal cohort, n = 8). The dashed line represents the

median concentrations in HC (n = 14), and the gray area the interquartile range. ns, not significant, *P < 0.05, ***P < 0.0001 calculated by one-way repeated

measures ANOVA followed by the Bonferroni’s post-test (A) or by Wilcoxon signed-rank test (C). Correlations were calculated by Spearman’s rank test (B).

which may suggest a normalization of this parameter after DAA
therapies (Figure 1E).

To better evaluate the effects of IFN-free therapies on M-

MDSC numbers, we performed a nested longitudinal study.
Eleven patients (Table S3) undergoing DAA treatments (T) were

followed up and blood samples collected at 12 (SVR12) and

24 (SVR24) weeks after viral clearance. Interestingly, subjects
showed very low percentages of M-MDSCs at SVR24 (Figure 2A;

P < 0.0001), with values comparable to those observed in HC.
As shown in Figure 2B, the decline directly correlated with
the number of M-MDSCs measured at enrollment (i.e., during
therapy T). Consistently, a significant decrease of GM-CSF and
IL-10, both considered involved in M-MDSC development was
observed between SVR12 and SVR24 (Figure 2C). However, the
same was not observed for IL-6 and TNF-α, that are also related
to M-MDSC accumulation, nor for other cytokines (Figure S3).

Altogether, these data suggest that the restoration ofM-MDSC
numbers to physiological levels occurs fairly slowly after viral

clearance, considering that it was observed 6 months from the
end of the therapeutic protocol.

DAA Therapies Revert T Cell Abnormalities
Only Partially
The increase of M-MDSCs is known to be associated with the
suppression of T cell functions (Tacke et al., 2012; Cai et al.,
2013). As chronically HCV-infected patients, further to have
an impaired HCV-specific immunity, are also characterized by
reduced responses to heterologous infections (Moorman et al.,
2011), extrahepatic tumors (Pol et al., 2018) and vaccines (Buxton
and Kim, 2008), we determined the effects of HCV infection and
DAA treatments on the whole T cell compartment. To this aim
we analyzed the frequencies of different T lymphocyte subsets
without considering epitope-specific immune responses.

As Tregs have been suggested to be among the major
responsible for the dysfunctions of T cells during chronic
infections, and their development is linked to that of MDSCs
(Zhai et al., 2017), we measured Tregs in the NT and SVR
groups in comparison with HC. However, despite the Treg
numbers were slightly higher in HCV-infected NT patients
and in SVR compared to HC, results did not reach statistical
significance (Figure 3A, Figure S4).
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FIGURE 3 | Effect of DAA-based therapies on T cells. (A) Percentage of Tregs in healthy controls (HC, n = 10) and in subjects with HCV-chronic infection, not-treated

(NT, n = 9) and sustained virological responders (SVR, n = 19). (B) Percentage of naïve (N, CD45RA+CD27+), central memory (CM, CD45RA−CD27+), effector

memory (EM, CD45RA−, CD27−) and terminally differentiated effector memory (EMRA, CD45RA+CD27−) in CD4+ (left panel) and CD8+ (right panel) T cells of HC

(n = 10) and of subjects with HCV-chronic infection, NT (n = 9) and SVR (n = 19). (C) Percentage of PD-1+ cells among different CD4+ (left panel) and CD8+ (right

panel) T cell subsets of HC (n=10) and of subjects with HCV-chronic infection, NT (n = 9), and SVR (n = 19). (D) Percentage of CD38+HLA-DR+ cells among different

CD4+ (left panel) and CD8+ (right panel) T cell subsets of HC (n = 10) and of subjects with HCV-chronic infection, NT (n = 9), and SVR (n = 19). (A) Lines represent

the means. (B–D) Results were expressed as mean ± the standard error of the mean. *P < 0.05 calculated by one-way ANOVA followed by Bonferroni’s post-test.

Instead, the analysis of different CD4+ and CD8+ T cell
subsets (Alanio et al., 2015) revealed perturbation in the T
cell compartment by HCV infection (Figure S5). In particular,
a significant decrease of naïve (N, CD45RA+CD27+) CD4+

T cells was observed in NT patients (P < 0.05), and their
frequency only modestly increased in SVR (Figure 3B). Within
the CD8+ T cell compartment, we could observe significant
expansion of the central memory (CM, CD45RA−CD27+)
subset in the NT group (P < 0.05), at the expenses of
the N and terminal differentiated effector memory (EMRA,
CD45RA+CD27−) subsets (Figure 3B). Notably, the CD8+ T

cell subset distribution was comparable between the NT and the
SVR subjects.

HCV-infection is known to induce qualitative alterations
in T cells as mechanism of immune evasion (Fernandez-
Ponce et al., 2017). To assess if DAA therapies restored these
abnormalities, we analyzed the exhaustion and activation profiles
of different T cell subsets. The expression of the inhibitory
checkpoint PD-1 was analyzed in the different CD4+ and
CD8+ T cell subsets, although we did not find any significant
difference between NT and SVR groups as compared to
HC (Figure 3C).
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FIGURE 4 | Radar plots of immunological changes at SVR48/96. (A) Mean percentages of M-MDSCs of subjects with HCV-chronic infection, not-treated (NT, n =

66), and sustained virological responders at 48 and 96 weeks (SVR48/96, n = 9); mean ROS content and 19M levels (both expressed as MFI) in M-MDSCs of

subjects with HCV-chronic infection, NT (n = 10), and SVR48/96 (n = 8). (B) Mean percentages of different CD4+ (left panel) and CD8+ (right panel) T cell subsets in

NT (n = 9) and SVR48/96 (n = 8). (C) Mean percentages of CD38+HLA-DR+ on different CD4+ (left panel) and CD8+ (right panel) T cell subsets in NT (n = 9) and

SVR48/96 (n = 8). Black lines represent NT subjects, gray lines SVR48/96 subjects and dashed lines represent the interquartile range (IQR) of values from healthy

controls (HC). ***P < 0.0001 calculated by Mann-Whitney U-test.
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As regard to immune activation, we noticed increased
co-expression of CD38 and HLA-DR in the EMRA CD4+

and CD8+ T cells of HCV-infected patients (P < 0.05)
(Figure 3D). Interestingly, although not statistically significant,
all other memory CD8+ T cell subsets showed higher activation
(Figure 3D). However, while EMRA CD4+ T cell activation
was restored to HC levels in the SVR cohort, the same was
not true for the CD8+ T cell compartment. Indeed, the NT
and SVR subjects showed a similar co-expression of CD38 and
HLA-DR which, for both groups, were significantly higher (P
< 0.05) in the EMRA CD8+ T cell subset when compared to
HC (Figure 3D). Taken together, these data indicate that HCV
infection perturbs the distribution of T cell subsets and induces
their hyper-activation, and that these phenomena are restored
only partially after viral clearance.

Effects of DAA Therapies on
Immunological Alterations at 48 Weeks
After Viral Clearance
As our data indicate that treatment with DAAs is associated with
restoration of M-MDSC numbers at SVR24, we further analyzed
our dataset focusing only on sustained virological responders
enrolled at week ≥48 (SVR48/96) to assess if immunological
abnormalities found in NT patients were normalized at these late
time points. Consistently with the previous results, percentages
of M-MDSCs were significantly lower in SVR48/96 subjects
compared to NT (Figure 4A; P < 0.0001), whereas no
significant differences were observed regarding ROS production
and19M.

The SVR48/96 group showed only a minimal amelioration
of T cell parameters previously observed to be altered in
NT patients; indeed, percentages of N CD4+ T cells were
slightly increased and percentages of CM CD8+ T cells slightly
decreased (Figure 4B) at 48/96 weeks after viral clearance, but
not reaching statistical significance. Similarly, EMRA CD8+ T
cell hyperactivation was not reverted to physiological levels in
SVR48/96 subjects (Figure 4C).

These data further confirm that DAA therapies slowly
normalize the levels of circulating M-MDSCs, while the
abnormalities in T lymphocytes persist and are partially restored
after almost 2 years from the end of therapy and viral clearance.

DISCUSSION

In the last years, few studies suggested that HCV promotes
the increase of MDSCs (Tacke et al., 2012; Cai et al., 2013;
Ning et al., 2015; Pang et al., 2016). Consistently, we observed
their accumulation in individuals with chronic HCV infection.
The dynamics underlying this phenomenon are, however, only
partially known and controversial. Indeed, it has been reported
that the frequency of MDSCs correlates with the clinical
biochemical parameters of HCV patients, including RNA viral
load and the level of ALT and AST, which reflect liver injury
(Cai et al., 2013). However, we and others (Ning et al., 2015)
did not observe such correlations, suggesting that mechanisms
explaining the HCV-induced increase of MDSCs is a complex

phenomenon deserving further investigations, probably due to
the infection per se rather than its clinical outcome. Indeed,
HCV core protein induces MDSCs (Tacke et al., 2012) through
the PI3K pathway and autocrine cytokines, such as IL-10, IFN-
β, and TNF-α (Pang et al., 2016). In addition, signals that acts
through STAT3 prompt MDSC differentiation and accumulation
(Condamine and Gabrilovich, 2011). These signals include GM-
CSF and IL-6 (Lechner et al., 2010), both induced by HCV
infection (Malaguarnera et al., 1997; Chusri et al., 2016).

The accumulation of M-MDSCs was not reverted in T and
SVR groups, as instead recently shown by others (Li et al.,
2018), indicating that DAA treatments do not have any direct
effect on their number. Sub-analysis on most frequent DAA
regimens suggested that this effect is not dependent by the type
of therapy (not shown). Notably, our results are in line with
those reported by Tumino et al. (2017) in HCV/HIV co-infected
patients. However, the results of the longitudinal cohort revealed
a significant decline of the frequency of M-MDSCs starting
from 24 weeks after viral clearance. The apparent discrepancy
between the cross-sectional and the nested longitudinal cohorts
may depend by the fact that more than half of SVR patients, in
the cross-sectional study, were at SVR12. At this time point, even
in the longitudinal cohort, a significant decline was not observed.
However, when we just focused on SVR48/96 enrolled within
the cross-sectional study, their M-MDSCs percentages were
significantly lower compared to those of NT (Figure 4A). Their
slow reduction might be explained by two mechanisms, such as
a long half-life of M-MDSCs, surviving also after viral clearance,
although to our knowledge data regarding the in vivo half-life of
M-MDSCs in chronic infections are not available. Alternatively, it
is plausible that the presence of soluble factors (Pang et al., 2016),
persisting at high levels for some weeks after viral clearance,
promote the survival of M-MDSCs. Consistently, we noticed a
significant decline of GM-CSF and IL-10 between SVR12 and
SVR24, thatmirrored the decline inM-MDSCs observed between
these time points. Others described a decreased frequency of
M-MDSCs after 4 weeks of treatment with IFN-based therapy
(Cai et al., 2013), probably because IFN itself impairs M-MDSC
differentiation (Dangi et al., 2018).

MDSCs of HCV-infected individuals, although poorly
characterized compared to those derived from cancer patients,
are able to inhibit T cell proliferation mainly by means of ARG1
(Cai et al., 2013) and ROS production (Tacke et al., 2012). We
observed high ARG1 levels in M-MDSCs, irrespectively of the
study group (not shown), and comparable ROS production
between HC, NT and SVR subjects, suggesting that HCV
infection and the subsequent treatment do not affect the
suppressor pathways used by M-MDSCs. However, M-MDSCs
from NT patients showed very high levels of 19M, that may
derive by the increased activity of the tricarboxylic acid (TCA)
cycle and electron transport chain (Zorova et al., 2018) or by
high levels of fatty acid oxidation (FAO) (Schonfeld et al., 2010).
Notably, FAO is crucial for M-MDSC suppressor functions
(Hossain et al., 2015), that are also fueled by the TCA cycle
(Hammami et al., 2012). Therefore, the enhanced levels of
19M observed in M-MDSCs from NT patients could reflect an
ongoing suppression activity. As this is the first work assessing
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metabolic alterations of M-MDSCs during HCV infection,
further studies are needed to deepen this aspect.

Several studies conducted in HCV infected patients reported
the increased levels of Tregs, which are responsible together with
MDSCs of dampening T cell responses (Barjon et al., 2015; Zhai
et al., 2017). Our results showed a trend toward higher Treg
levels in NT patients compared to HC, a pattern maintained also
after sustained virological response in DAA-treated individuals,
in line with recent studies (Langhans et al., 2017; Tumino et al.,
2017). Conversely, reports showing a decrease of M-MDSCs
after IFN-based therapies also showed a reduction of Treg
numbers (Su et al., 2014), confirming the strong link between
these two cell populations (Zhai et al., 2017) and suggesting
that IFN-free and IFN-based therapies have opposite effects on
their dynamics.

It has been proposed that the increase in Treg numbers
occurring during chronic HCV infection is associated with
higher expression of inhibitory receptors on T cell surface
(Barjon et al., 2015). High levels of PD-1 on bulk CD4+ and
CD8+ T cells and on HCV-specific and liver-infiltrating CD8+

T cells have been described during chronic HCV infection
(Urbani et al., 2006; Shen et al., 2010, 2011; Su et al., 2014).
In contrast, we did not find any significant increase in PD-
1 levels on the different T cell subsets. Our data suggest that
the increased PD-1 expression observed by others in bulk
CD4+ and CD8+ T cells may be due to lymphocyte subset
redistribution, such as the loss of PD-1 negative cells (like naïve
T cells), and the enrichment in subpopulations with higher
PD-1 levels.

With this study, we aimed also at investigating whether
chronic HCV infection, and DAA treatment, could affect the
overall T cell compartment. HCV-infected individuals show
reduced numbers of naïve T cells and a proportional increase
of memory subpopulations in both CD4+ and CD8+ T cells,
and the magnitude of these alterations predicts response to
therapy (Shen et al., 2010, 2011; Hutchinson et al., 2018). In
agreement, we observed reduction of N CD4+ T cells and
increase of CM CD8+ T cells in NT subjects. The number
of N T cells may take more than 2 years after viral clearance
through IFN-based therapy to reach values similar to those of
HC (Alanio et al., 2015). Consistently with these observations
and with a previous report (Hartling et al., 2015), the alteration
of T cell subset proportion was only slightly mitigated by
DAA therapies and, as already observed during HIV infection
(Nicoli et al., 2016), was associated with immune activation
(Shen et al., 2010). However, our results confirm these data
only partially, as we show higher CD8+ T cell activation in
the memory, but not in the naïve, compartment while only
terminally differentiated CD4+ T cells experienced the same
phenomenon. In addition, while DAA therapies normalized
activation of EMRA CD4+ T cells, the same was not
observed in the CD8+ compartment, confirming previous
observations on bulk T cells (Hartling et al., 2015; Najafi
Fard et al., 2018). Together with data reporting that DAA
treatments normalize levels of soluble inflammatory markers
only partially (Hengst et al., 2016; Kostadinova et al., 2018),
these pieces of evidence suggest that IFN-free therapies have

only minor effects on immune activation. In addition, DAA
therapies do not fully restore the αβ T cell functionality
(Martin et al., 2014; Wieland et al., 2017), as previously
observed for γδ T cells (Ravens et al., 2018) and in animal
models (Callendret et al., 2014), nor the NK compartment
(Strunz et al., 2018), supporting the concept that a partial
immunological recovery is achieved in chronically HCV-infected
patients after IFN-free therapy. This may pose at risk SVR
patients for re-infections, low response to vaccination as well as
for susceptibility to other infections and tumors. For instance,
recent studies describe the presence of occult HCV infection
in some patients (Attar and Van Thiel, 2015; Elmasry et al.,
2017) and the recurrence of HCC (Reig et al., 2016; Guarino
et al., 2018; Singh et al., 2018), despite SVR after treatment
with DAAs, although other reports failed in finding this
association (Guarino et al., 2018; Li et al., 2019). Nonetheless,
the increased levels of pro-inflammatory chemokines and
hyperactivated T cells of DAA-treated patients, as well as the
higher percentage of M-MDSCs, could all contribute to the
development of hepatic and extrahepatic tumors (Solito et al.,
2014; Makarova-Rusher et al., 2015). In addition, an impaired T
cell response to heterologous infections in HCV-infected subjects
has been demonstrated (Moorman et al., 2011), not restored
neither by IFN-based (Barnes et al., 2009) nor by IFN-free
therapies (Martin et al., 2014).

This body of evidence suggests that, although DAA therapies

are very effective in clearing HCV, cured chronically HCV-
infected patients do not achieve full immune reconstitution.

Further studies are needed to better clarify how this lack

of complete immune-restoration impacts the capacity of
HCV-cured patients to arise immunity to infections, tumors,

and vaccines.
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