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Francisella tularensis is an intracellular pleomorphic bacterium and the causative agent of

tularemia, a zoonotic disease with a wide host range. Among the F. tularensis subspecies,

especially F. tularensis subsp. holarctica is of clinical relevance for European countries.

The study presented herein focuses namely on genetic diversity and spatial segregation

of F. tularensis subsp. holarctica in Germany, as still limited information is available. The

investigation is based on the analysis of 34 F. tularensis subsp. holarctica isolates and

one draft genome from an outbreak strain. The isolates were cultured from sample

material being that of primarily human patients (n = 25) and free-living animals (n =

9). For six of 25 human isolates, epidemiological links between disease onset and tick

bites could be established, confirming the importance of arthropod linked transmission

of tularemia in Germany. The strains were assigned to three of four major F. tularensis

subsp. holarctica clades: B.4, B.6, and B.12. Thereby, B.6 and B.12 clade members

were predominantly found; only one human isolate was assigned to clade B.4. Also,

it turned out that eight isolates which caused pneumonia in patients clustered into the

B.6 clade. Altogether, eight different final subclades were assigned to clade B.6 (biovar I,

erythromycin sensitive) and six to B.12 (biovar II, erythromycin resistant) in addition to one

new final B.12 subclade. Moreover, for 13 human and 3 animal isolates, final subclade

subdivisions were not assigned (B.12 subdivisions B.33 and B.34, and B.6 subdivision

B.45) because official nomenclatures are not available yet. This gives credit to the genetic

variability of F. tularensis subsp. holarctica strains in Germany. The results clearly point out

that the given genetic diversity in Germany seems to be comparably high to that found

in other European countries including Scandinavian regions. A spatial segregation of B.6

and B.12 strains was found and statistically confirmed, and B.12 clade members were

predominantly found in eastern parts and B.6 members more in western to southern

parts of Germany. The portion of B.12 clade members in northeastern parts of Germany

was 78.5% and in southwestern parts 1.9%.
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INTRODUCTION

Francisella tularensis is a small, intracellular, non-motile, Gram-
negative pleomorphic bacterium and the causative agent of
tularemia, a zoonotic disease with a wide range of hosts
(mammals, birds, amphibians, fishes, and invertebrates) (Ellis
et al., 2002; Maurin and Gyuranecz, 2016; Schulze et al., 2016).
Two F. tularensis subspecies are of clinical relevance: F. tularensis
subspecies tularensis (Jellison Type A) and F. tularensis subsp.
holarctica (Jellison Type B). F. tularensis subsp. tularensis is
prevalent in North America, whereas the subspecies holarctica
is found all over the northern hemisphere. The subtype A2 of
subspecies tularensis is described to be more virulent than F.
tularensis subsp. holarctica (Jellison, 1961; Farlow et al., 2005;
Vogler et al., 2009a; Molins et al., 2014; Dwibedi et al., 2016). In
Germany, F. tularensis subsp. holarctica is the only Francisella
subspecies which is known to cause disease in both animals
and humans. Recently, one additional Francisella species (Isolate
W12-1067) has been identified in Germany, yet pathogenicity
needs to be evaluated (Rydzewski et al., 2014; Faber et al., 2018).
However, F. tularensis subsp. holarctica originates from North
America or Asia from where the bacteria spread (Vogler et al.,
2009a; Karlsson et al., 2013; Dwibedi et al., 2016; Hestvik et al.,
2018). Additionally, it was proposed that within the postulated
spread of the pathogen from east to west, Germany might be
a “melting pot,” a region where strains are mixed, reassorted,
and give rise to further variants (Jusatz, 1952, 1961; Faber et al.,
2018). Also, phylogenetic studies have already revealed a spread
of the pathogen from Scandinavia to the southern parts of Europe
(Karlsson et al., 2013; Dwibedi et al., 2016).

The minimal number of bacteria needed to cause an infection
in humans depends on the route of infection. Intradermal and
inhalational tularemia can already be caused by 10–25 bacteria
(Saslaw et al., 1961; Jones et al., 2005). Primary infection sources
for humans are free-living lagomorphs (hares and rabbits), other
mammals, animal carcasses, and insects (mosquitoes and ticks)
and the environment (water, dust, aerosol, and soil) (Oyston
and Griffiths, 2009; Maurin and Gyuranecz, 2016). A broad host
species diversity was also reported in Germany (Schulze et al.,
2016), and especially hunters bear a high risk of getting infected
by skinning, preparing, or consuming meat of infected hares.
The high rate of seropositive animals in Germany indicated that
the frequency as well as the occurrence of the pathogen in the
environment and wild animals might be underestimated (Jenzora
et al., 2008; Gehringer et al., 2013; Kuehn et al., 2013; Muller
et al., 2013; Otto et al., 2014). There might be also a high diversity
of different F. tularensis subsp. holarctica strains in northeastern
parts of Germany (Antwerpen et al., 2015; Schulze et al., 2016;
Faber et al., 2018). For distinguishing between F. tularensis
subsp. holarctica strains which display within its subspecies little
genetic variation, canonical single-nucleotide polymorphisms
(canSNPs) can be used (Svensson et al., 2009a; Vogler et al.,
2009b; Karlsson et al., 2013; Dwibedi et al., 2016). Based on this
analysis and an erythromycin-resistant/erythromycin-sensitive
phenotype and genotype, F. tularensis subsp. holarctica can be
subdivided into two biovars (biovar I and biovar II) and four
major clades: B.4, B.6, B.12, and B.16 (Vogler et al., 2009b;

Karlsson et al., 2013). These clades can be subdivided further into
subclades. The subdivision into different clades and subclades is
so far not performed consistently. For instance, B.12 subclade
B.75 is designated as subclade and by others as clade. However,
an up-to-date typing scheme, also used in this study, was recently
published (Wittwer et al., 2018).

Spatial segregation of clades predominantly found in Europe
(B.6 and B.12) has already been reported (Gyuranecz et al.,
2012), pointing out that B.6 is primarily found in western
parts of Europe and B.12 in central to eastern parts (Koene
et al., 2019). Both clades are postulated to display differences in
pathogenicity in lagomorphs (Origgi et al., 2014; Origgi and Pilo,
2016; Kreizinger et al., 2017; Hestvik et al., 2018). B.6 and B.12
clade members exhibit also a different resistance to erythromycin
due to a mutation in the rrl gene (Kudelina and Olsufiev, 1980;
Karlsson et al., 2016). Asmentioned above, B.6 clademembers are
sensitive to erythromycin and B.12 clade members are resistant
(Kudelina and Olsufiev, 1980; Karlsson et al., 2016).

The objective of the study presented herein was to enhance
our understanding about the genetic diversity of B.6 and
B.12 clade members in Germany with a specific focus on
human isolates. Also, the geographical distribution pattern
of B.6 and B.12 clade members was investigated. To this
end, the genomes of 34 F. tularensis subsp. holarctica
isolated from mainly human and animal hosts were
sequenced and compared by computational analysis based
on phylogenetic constructions and canSNP analysis. The
analysis also includes a draft genome of a F. tularensis subsp.
holarctica strain which has caused an outbreak in Germany
recently (Jacob et al., 2019).

MATERIALS AND METHODS

Bacterial Isolates
A total of 34 F. tularensis subsp. holarctica isolates fromGermany
were investigated, including 25 bacterial isolates from human
specimens in addition to 9 isolates from samples collected
from free-living animals (wild boar, raccoon dog, fox, and hare,
Table 1). All bacterial strains were isolated or received from
third parties to the German National Consultant Laboratory
for Tularemia in human medicine between 2007 and 2018.
For the isolation of Francisella from different sample materials,
species and subspecies identification routine diagnostic tools
were applied (Broekhuijsen et al., 2003; Versage et al., 2003; Jacob
et al., 2011).

In addition, six isolates from different European countries
were included: one F. tularensis subsp. holarctica strain from
Lithuania (Fth-40), three F. tularensis subsp. holarctica strains
(Fth-34, Fth-35, and Fth-38), and two recently isolated from
hares in Austria and two isolated from ticks in Switzerland (A-
328-25 and A-328-2). The isolate Fth-40 was obtained from
the Lithuanian National Public Health Surveillance Laboratory.
The isolates Fth-34, Fth-35, and Fth-38 were received from
Germany’s Federal Institute for Risk Assessment, and the
tick isolates provided by the Spiez Laboratory, Bacteriology
Branch, Switzerland.
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TABLE 1 | Overview on investigated Francisella tularensis subsp. holarctica genomes from Germany.

F. tularensis

holarctica ID

Year of

isolation

Federal state

ID Germany

Host organism Clinical

manifestation of

pneumonia (+

yes, – no)

Biovar Clade Final

subclade1

Fth-41 2007 BB Human Unknown I B.4 –

Fth-39 2007 TH Hare Unknown II B.12 B.34/nd

A-63/63 (FDC407) 2008 BB Fox – II B.12 B.74

A-317 (FDC409) 2012 BB Raccoon dog Unknown II B.12 B.71

A-271-1 (FDC408) 2012 BB Beaver Unknown II B.12 B.75

A-702 2015 BB Wild boar Unknown II B.12 B.71

A-655 2015 B Human – II B.12 B.34/nd

A-660 2015 BW Human + I B.6 B.45/nd

A-571 2015 MV Hare Unknown II B.12 B.33/nd

A-663 2015 MV Human Unknown II B.12 B.33/nd

A-635 2015 NI Human + I B.6 B.7

A-797 2016 BW Human – II B.12 B.34/nd

A-820 2016 BY Human + I B.6 B.45/nd

A-821 2016 BY Human – I B.6 B.45/nd

A-810-1 2016 NI Human – II B.12 B.34/36

Fth-Must
◦

2016DNA RP Mice Unknown II B.12 B.34/nd

A-988-1 2016 RP Hare-L (lung) – I B.6 B.45/51

A-988-2 2016 RP Hare-M (spleen) – I B.6 B.45/51

A-1050 2017 BB Human Unknown II B.12 B.New

A-936 2017 BW Human** – I B.6 B.49

A-981 2017 BW Human** + I B.6 B.45/nd

A-922 2017 BW Human – I B.6 B.45/nd

A-1007 2017 BY Human – I B.6 B.46/63

A-1005 2017 RP Human** – I B.6 B.45/nd

A-1022 2017 RP Human + I B.6 B.45/nd

A-1020 2017 RP Human + I B.6 B.45/51

A-1049 2017 SH Human Unknown I B.6 B.45/52

A-1341 2018 BB Human# – II B.12 B.71

A-1158 2018 BW Human + I B.6 B.45/50

A-1174 2018 BW Human** + I B.6 B.45/nd

A-1308 2018 BY Human – II B.12 B.34/36

A-1338 2018 BY Hare Unknown II B.12 B.33/nd

A-1183 2018 BY Human** – I B.6 B.45/53

A-1201 2018 BY Human Unknown I B.6 B.45/nd

A-1171 2018 NW Human** – I B.6 B.45/nd

Shown are the ID of the Francisella, the year of isolation, the federal state ID in which samples from patients and animals were collected, the host organism, and known clinical

manifestation of pneumonia in humans as well as the biovar, the clade, and the final assigned subclade of the respective strain. BB, Brandenburg; B, Berlin; BW, Baden-Württemberg;

BY, Bavaria; MV, Mecklenburg-Western Pomerania; NI, Lower Saxony; NW, North Rhine-Westphalia; RP, Rhineland-Palatinate; SH, Schleswig-Holstein; TH, Thuringia.
1According to Wittwer et al. (2018), “nd” means no assignment of a final subclade available, currently no published reports.
◦No bacterial isolate, genomic DNA only; for further details, please see Jacob et al. (2019).

**Clinical manifestation of the disease is possibly associated to tick bit.
#Clinical manifestation of the disease seems to be connected to contact with wild boar.

Antimicrobial Susceptibility Testing (AST)
of Bacterial Isolates and In silico Analysis
To collect information about antimicrobial resistances of
bacterial isolates to erythromycin, 26 of 34 isolates were
tested using the disk diffusion method (n = 17) or the
microdilution methods (n = 16). The disk diffusion method
was performed for erythromycin using only two different agar

plates: Mueller–Hinton agar plates with 5% sheep blood (Becton
Dickinson GmbH, Heidelberg, Germany) and chocolate plates
(Oxoid, Munich, Germany). The microdilution method was

performed in compliance with the Clinical and Laboratory

Standards Institute (CLSI) standards (Clinical Laboratory
Standards Institute, 2011). For the interpretation of minimum
inhibitory concentration (MIC) values, determined MICs are in
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general compared to defined clinical breakpoint standards. Yet,
for F. tularensis subsp. holarctica, officially released breakpoints
for erythromycin, are so far not available. Therefore, MIC
values higher than 16µg/ml were interpreted as resistant,
corresponding to results obtained by phylogenetic analysis
of genomes. Recommendations provided in World Health
Organization (2007) guidelines on tularemia were followed.

For 7 of 34 F. tularensis subsp. holarctica isolates, the
erythromycin resistance was assigned in silico according to
Karlsson et al. (2016) exclusively. The erythromycin resistance
of the F. tularensis subsp. holarctica isolate Fth-41 was not
investigated since this is an isolate not clustering into the B.6
or B.12 clade. The outcome of the tests was compared to results
obtained by phylogenetic analysis of genomes.

Recovery of Genomic DNA for Genome
Sequencing From Bacterial Isolates
DNA extraction was performed out of bacterial colony material
using the QIAGEN DNeasy Blood and Tissue Kit (Hilden,
Germany) following the manufacturer’s instructions. DNA
elution was performed in 100 µl of QIAGEN Elution Buffer
(Hilden, Germany).

Genome Sequencing
DNA quantification was performed with the QubitTM 4
fluorometer (Invitrogen by Thermo Fisher Scientific) using the
Qubit dsDNA HS assay kit (Life Technologies, Darmstadt,
Germany). To generate the libraries, the NextEra XT DNA
Sample Preparation Kit (Illumina, San Diego, CA, USA)
was used; the library normalization step described in the
manufacturer’s instructions was thereby skipped. For the
estimation of the DNA fragment sizes of the libraries, the
Agilent 2100 Bioanalyzer was used (Agilent Technologies,
Waldbronn, Germany) utilizing the High-Sensitivity DNA
Analysis Kit (Agilent Technologies, Waldbronn, Germany) and
electrophoresis DNA chips.

Library pool sequencing was performed in paired-end mode
on a MiSeq instrument (Illumina, San Diego, CA, USA) as
previously described (Jacob et al., 2019). All genome sequences
have been uploaded to the European Nucleotide Archive (ENA:
www.ebi.ac.uk/ena). The BioProject ID is PRJEB33006; IDs of
single data sets are provided in Supplementary Table S1.

Computational Analysis and Phylogenetic
Classification
For quality trimming and adapter clipping of Illumina raw
data, an in-house pipeline QCumber was used. The pipeline
comprises the following tools: FastQC version 0.11 (Andrews,
2014), trimmomatic version 0.36 (Bolger et al., 2014), and
KRAKEN (Wood and Salzberg, 2014). The mapping was
performed with Bowtie version 2.3 using default setting
parameters (Langmead, 2010). F. tularensis subsp. holarctica
LVS [National Center for Biotechnology Information (NCBI)
reference: NC_007880.1] was used as the reference genome
for the assembly of draft genomes (Barabote et al., 2009).
BAM files were uploaded into Geneious version R9.3 (Kearse
et al., 2012) for further analysis. The consensus sequences
of genomes were extracted and aligned using a progressive

Mauve alignment for collinear genomes applying the Muscle
(version 3.6; Edgar, 2004) alignment algorithm. The alignment
was used for determining canSNPs (Svensson et al., 2009b;
Vogler et al., 2009a; Karlsson et al., 2013) and for phylogenetic
constructions. The phylogenetic tree was constructed based on
entire genome sequences and in addition for comparison also
on sequences of Francisella pathogenicity islands (FPIs) only.
To generate the phylogenetic tree, the neighbor joining method
for clustering was used, applying a bootstrap of 100 (Saitou
and Nei, 1987). Reference genomes included in the phylogenetic
reconstructions were F. tularensis subsp. holarctica OSU18
(NCBI reference: NC_017463.1) (Petrosino et al., 2006; Puiu and
Salzberg, 2008), F. tularensis subsp. holarctica FSC162 (NCBI
reference: PRJNA89145) (Karlsson et al., 2013), F. tularensis
subsp. holarctica FSC200 (NCBI reference: NC_019551.1)
(Svensson et al., 2012), F. tularensis subsp. holarctica LVS (NCBI
reference: NC_007880.1) (Larsson et al., 2005), and FTNF002-
00 (NCBI reference: NC_009749.1) (Haristoy et al., 2003;
Barabote et al., 2009).

In addition, seven genomes of F. tularensis subsp. holarctica
strains from different European countries (A-328-25, A-328-
2, Fth-40, Fth-34; Fth-35, and Fth-38) were included. Genome
sequences generated during the study have been uploaded to
ENA (www.ebi.ac.uk/ena). The BioProject ID is PRJEB33006; IDs
of single data sets are provided in Supplementary Table S1.

The Pearson chi-squared test with Yates’s correction was
applied to test if the geographical distribution of Francisella
clades (clade B.12 vs. B.6) within northern and southern parts of
Germany is possible (Pearson, 1900). The Yates (1934) correction
was applied to prevent overestimation of statistical significance
in the small dataset. To run the statistical computing, the free
software R version 3.5.1 was used (Dessau and Pipper, 2008).
To perform the assessment, Germany was geographically divided
into a northeastern part (group 1) and a southwestern part (group
2). Group 1 comprised a total of 13 F. tularensis subsp. holarctica;
of these, 11 were classified into clade B.12 and 2 were classified
into clade B.6. Group 2 comprised a total of 21 F. tularensis subsp.
holarctica; of these, 4 were classified into clade B.12 and 17 were
classified into clade B.6.

RESULTS

Genetic Diversity in Germany and Analysis
of canSNP Analysis
The typing results could show that one out of 35 F. tularensis
subsp. holarctica (Fth-41, Table 1) genomes clustered into clade
B.4, next to the reference strain OSU18 (Figure 1). No other
genome clustered into clade B.4. Altogether, 19 genomes (17 from
humans and 2 from animals) were assigned to clade B.6 and
15 genomes to clade B.12 (seven from humans and eight from
animals). Surprisingly, it turned out that all F. tularensis subsp.
holarctica genomes associated to samples taken from patients
with pneumonia (n = 8) clustered into clade B.6. Also, for six
of 17 Francisella human isolates belonging to clade B.6, links
between the onset of tularemia in patients and tick bites could
be established (Table 1). No link between onset of tularemia and
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FIGURE 1 | Phylogenetic relationship of Francisella tularensis subsp. holarctica in Germany. The phylogenetic analysis was based on a Mauve alignment for collinear

genomes, and for the clustering, the neighbor joining bootstrap method (Fth OSU18 as an out-group) was chosen. Outlined for each genome are the identifier of the

investigated Francisella and the year of sampling; the host organism (human or animal) and the sampling spot are indicated by the identifier of Germany’s federal

states. Also, the different Francisella clades are given in addition to the lowest assignable subclade (final subclade) for each genome. Also, reference genomes were

included in the analysis; these genomes are highlighted in bold. These Francisella isolates come from different countries including the United States (US), France (FR),

Lithuania (LT), Austria (AT), Switzerland (CH), and Sweden (SE). Germany’s federal states, BB, Brandenburg; B, Berlin; BW, Baden-Württemberg; BY, Bavaria; MV,

Mecklenburg-Western Pomerania; NI, Lower Saxony; NW, North Rhine-Westphalia; RP, Rhineland-Palatinate; SH, Schleswig-Holstein; TH, Thuringia.

tick bites could be established for any human isolate which was
assigned to clade B.12.

For clade B.6, a total of eight different lowest assignable
subclades (final subclades) were determined. The dominating
final subclade was B.45, followed by the final subclades B. 51,
B.49, and B.63. In addition, for 10 human isolates and the
draft genome of the outbreak strain (Fth-Must), a final subclade
subdivision of B.45 was not assigned as no official nomenclature
is available yet (Table 1).

Referring to clade B.12, six final subclades were identified,
predominantly Francisella belonging to subclade B.33 followed
by subclade B.71. In addition, a new B.12 subclade of branch
B.39 could be identified, namely, B.39-New (Figure 1). For three
human isolates and three animal isolates, a final subclade of
subdivisions B.33 and B.34 was not assigned as no official
nomenclature is available. No correlation between clade or
subclades and different hosts could be identified (Table 1).

To test the reproducibility of results, biological genome
duplicates were included. The results could show that these
duplicates, clustered identically: A-821 and A-820, as well as A-
988-2 and A-988-1 (Figure 1). The samples A-988-2 and A-988-1
were sampled from the same hare (Table 1), one from a sample
taken from the spleen and one lung sample. The isolates A-821
and A-820 were both obtained from specimens coming from
the same patient, taken at different time points of the infection.
Interestingly, a third cluster of two F. tularensis subsp. holarctica
genomes was identified. One genome from a dead hare isolate
(A-663) clustered next to one human isolate (A-571) (Figure 1).
Both genomes were, in terms of SNPs, identical. Furthermore, the
F. tularensis subsp. holarctica genome obtained from a hunter (A-
1341) grouped next to a genome from an isolate obtained from a
wild boar (A-702). The wild boar Francisella isolate was obtained
in 2015, and the hunter was infected in the same region by a wild
boar in 2018. One isolate [A-317 (FDC-409)] from a raccoon dog
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hunted in the same region [Brandenburg (BB)] was also found
to cluster in B.71 (Schulze et al., 2016), together with an isolate
obtained from the hunter (A-1341) (Figure 1).

Phylogenetic constructions performed herein were based on
comparison of entire genomes among each other. Analysis
performed on the entire genomes was also performed on
selected sequences, being those of FPIs only. The analysis was
performed to gather more information on minimal input of
sequence needed for phylogenetic analysis allowing drawing of
correct conclusions of Francisella biovars, clades, and subclades
(Supplementary Figure S1). It turned out that to a certain
point, comparable results were achieved by relying on selected
sequences only. The Francisella grouped into the same main
clades, comprising B.4, B.6, and B.12. However, the informative
and discriminative value of FPIs beyond the classification into
main clades and some subclades (B.71, B.72, and B.42) seems
compromised, as the assignment of other subclades could not be
performed properly (Supplementary Figure S1).

Erythromycin Resistances of Clades B.6
and B.12
The biovar typical erythromycin resistance could be confirmed
by laboratory tests (microdilution method) and by in silico
analysis for all F. tularensis subsp. holarctica strains tested. The
disk diffusion methods as well as the microdilution method, yet
applied without predetermined comparative clinical breakpoint
values, yielded consistent results. The results obtained by
phylogenetic analysis were confirmed.

Geographical Distribution of Clades B.6
and B.12 in Germany
During the investigation, differences of geographical distribution
of F. tularensis subsp. holarctica clade B.6 and clade B.12 in
Germany were specifically searched. A pure, perfect pattern could
not be identified. However, striking the higher portion of B.12
clademembers in northeastern parts of Germany, a total of 78.5%
of strains of the region were assigned to clade B.12 [(group 1)
11 of 14 genomes, Figure 2], whereas in southwestern parts,
the portion of B.12 clade members was 1.9% [(group 2) 4 of
21 genomes, Figure 2]. The possible geographical segregation
between northeastern (group 1) and southwestern parts (group
2) of Germany is indicated by a dashed line in Figure 2. To
test if the distribution of Francisella clades (B.12 vs. B.6 clades)
within Germany is different, Pearson’s chi-squared test with
Yates’s correction was applied. The x-squared was determined
to 11.468 and the p-value to 0.000707, showing indeed that the
distribution of Francisella clades in both groups is different.
In fact, the results indicate that a geographical segregation in
Germany seems to be highly likely; still further confirmation
is required by testing larger sample sizes. In these lines, it
could be shown that B.6 members are primarily found in
southwestern parts and B.12 clademembers in northeastern parts
of Germany (Figure 2). F. tularensis subsp. holarctica clade B.6
was primarily found in Rhineland-Palatinate (RP), Bavaria (BY),
and Baden-Württemberg (BW), whereas clade B.12 members

FIGURE 2 | Geographical distribution of clades B.6 and B.12 in Germany. The

results gathered from the analysis of different Francisella tularensis subsp.

holarctica genomes are shown, outlined are assigned Francisella clades

(yellow, B.4; orange, B.12; blue, B.6), and the sample size clustering in the

respective clades is proportional to circles used for illustrating the distribution

of clades in Germany. The different federal states in Germany are indicated by

identifiers, BB, Brandenburg; B, Berlin; BW, Baden-Württemberg; BY, Bavaria;

MV, Mecklenburg-Western Pomerania; NI, Lower Saxony; NW, North

Rhine-Westphalia; RP, Rhineland-Palatinate; SH, Schleswig-Holstein; TH,

Thuringia. For statistical evaluations, Germany was split into two parts

(northeastern and southwestern) indicated by the dashed line.

were predominantly found in northeast Germany [Mecklenburg-
Western Pomerania (MV), Brandenburg (BB), and Berlin (B)]
(Figure 2). Additionally, it turned out that B.12 clade members
were assigned to two additional regions [Thuringia (TH) and
Lower Saxony (NI)] and B.6 members to three additional regions
in Germany [North Rhine-Westphalia (NW), Schleswig-Holstein
(SH), and Lower Saxony (NI)].

DISCUSSION

Tularemia is a rarely reported but reemerging infectious disease
in Germany (Kaysser et al., 2008; Splettstoesser et al., 2009;
Faber et al., 2018). A recent review has outlined aspects of the
genetic diversity, epidemiological situation, and surveillance data
of tularemia in Germany (Faber et al., 2018). The objective herein
was to focus tighter on elucidating the genetic diversity of F.
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tularensis subsp. holarctica strains in Germany, with a main focus
on human isolates classified into clades B.6 and B.12.

Thirty-five genomes were included in our analysis: 34 F.
tularensis subsp. holarctica genomes of strains isolated mainly
from humans and animal hosts and 1 draft genome from an
outbreak (Fth-Must) (Jacob et al., 2019). Included in the panel
are also two sets of biological duplicates (A-988-1 and A-998-2;
A-820 andA-821) which clustered in the phylogenetic tree next to
each other andwere in terms of canSNPs identical. These findings
indicate that no bias was introduced during the analysis. Also,
one F. tularensis subsp. holarctica genome obtained from a strain
isolated from a wild hare (A-663) clustered in the phylogenetic
tree together with an isolate from a human patient (A-571). Both
genomes were, in terms of SNPs, identical (Figure 1), and based
on the patient report, it seems highly possible that there is an
epidemiological link between both cases.

Of the 35 genomes, 34 clustered into the B.6 and B.12 clades
and one genome was assigned to clade B.4. That only one
of 35 analyzed genomes clustered into the B.4 clade was not
surprising, as, in Europe, strains of clades B.6 and B.12 are
dominant (Gyuranecz et al., 2012) and known to be present in
Germany (Muller et al., 2013; Tomaso et al., 2017, 2018). The
erythromycin susceptibility of biovar I (B.6 clade), as well as the
erythromycin resistance of biovar II (B.12 clade), was confirmed
by both experimental and in silico analyses. The findings are
in compliance with results obtained by others showing that
experimental results obtained by different means, e.g., AST using
the microdilution method or disk diffusion method, can confirm
in silico data based on phylogenetic reconstructions (Tomaso
et al., 2017) or in silico assessment of erythromycin resistances
by specifically investigating the rrl gene (Karlsson et al., 2016).

Besides, it turned out that all F. tularensis subsp. holarctica
genomes associated to samples taken from patients with
pneumonia clustered in this study into clade B.6. In hares, it was
recently reported that pneumonia is significantly more common
in B.6 than in B.12 cases (Koene et al., 2019). However, referring
to human cases, different clinical manifestations are known to
be caused by both clades (Johansson et al., 2014; Afset et al.,
2015). To investigate a possible biovar-associated manifestation
of pneumonia in humans would be of importance for public
health matters, showing the need for analyzing genetic diversity
and phylogeny of Francisella. In addition, the ratio of putative
tick-borne tularemia in clade B.6 was surprisingly high, but this
finding needs to be corroborated with more data. The ratio of
almost 1:2 (8 out of 19) underlines the importance of tularemia
transmitted by arthropods in Germany (Gehringer et al., 2013;
Boone et al., 2015; Borde et al., 2017).

The study could clearly emphasize that a geographical
segregation or clustering of F. tularensis subsp. holarctica in
Germany is highly likely. Findings could show that clade B.12
members were more frequently found in northeastern parts of
Germany and B.6 clade members in southwestern parts (Muller
et al., 2013). A similar geographic distribution, meaning that
biovar I is mainly found in Western Europe and biovar II in
Northern and Eastern Europe, was already described (Kudelina,
1973; Ellis et al., 2002; Svensson et al., 2009a; Vogler et al., 2009a;
Gyuranecz et al., 2012; Dwibedi et al., 2016; Karlsson et al., 2016;
Origgi and Pilo, 2016; Faber et al., 2018).

Different to former analyses which were mainly based on F.
tularensis subsp. holarctica isolates from brown hares, a broader
host spectrum (humans and wild animals) was included next to a
broader geographical scope covered (e.g., Berlin, Brandenburg)
(Muller et al., 2013). But no correlation between host and
subclade could be identified (Farlow et al., 2005; Pilo, 2018) as
already described for F. tularensis subsp. tularensis.

Altogether, 14 different F. tularensis subsp. holarctica B.6 and
B.12 final subclades were identified. For 15 isolates and the
outbreak strain, the final B.12 and B.6 subclade subdivisions
(subdivisions of B.33, B.34, and B.45) were not assigned because
an official nomenclature is still lacking until today. Moreover, one
new B.12 final subclade closely related to B.39 was identified,
yet not defined. The identification of a new subclade distantly
related to all other strains of subclade B.45 or B.33, and further
two members of a recently identified new B.71 subcluster in
Berlin-Brandenburg (Schulze et al., 2016) showed that there are
still open gaps in Francisella phylogeny, still to be addressed by
further analysis (Wittwer et al., 2018). In addition, these results
show that the genetic diversity of F. tularensis subsp. holarctica
strains inGermany seems to have been underestimated as initially
thought (Gehringer et al., 2013; Muller et al., 2013; Schulze et al.,
2016). There seems to be still room for discussions if a “sub-
sub”-clades definition is needed for further phylogenetic analysis
of F. tularensis subsp. holarctica. However, to find high genetic
diversity gives credit to studies presuming that the diversity of
tularemia in non-Scandinavian countries seems to be higher than
initially expected (Chanturia et al., 2011; Gyuranecz et al., 2012;
Gehringer et al., 2013; Muller et al., 2013; Antwerpen et al.,
2015; Borde et al., 2017; Wittwer et al., 2018). The diversity
seems even to be comparably high to Scandinavian countries
known for being the source of the historical spread of the bacteria
(Chanturia et al., 2011; Gyuranecz et al., 2012; Gehringer et al.,
2013; Karlsson et al., 2013, 2016; Muller et al., 2013; Antwerpen
et al., 2015; Schulze et al., 2016; Borde et al., 2017; Wittwer
et al., 2018). For instance, a final B.6 subclade, namely, B.52,
was reported to be found in Spain exclusively (Dwibedi et al.,
2016) and now also assigned during the study for German
Francisella isolates.

To conclude, the study presented herein represents a
comprehensive analysis of F. tularensis subsp. holarctica strains
recovered from both wild animals and human patients and is
extending our current understanding about genotypic diversity
of tularemia and spatial segregation in Germany.
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This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10 November 2019 | Volume 9 | Article 376

https://doi.org/10.3389/fcimb.2018.00089
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.2307/2983604
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	Genetic Diversity and Spatial Segregation of Francisella tularensis Subspecies holarctica in Germany
	Introduction
	Materials and Methods
	Bacterial Isolates
	Antimicrobial Susceptibility Testing (AST) of Bacterial Isolates and In silico Analysis
	Recovery of Genomic DNA for Genome Sequencing From Bacterial Isolates
	Genome Sequencing
	Computational Analysis and Phylogenetic Classification

	Results
	Genetic Diversity in Germany and Analysis of canSNP Analysis
	Erythromycin Resistances of Clades B.6 and B.12
	Geographical Distribution of Clades B.6 and B.12 in Germany

	Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


