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Lyme disease (LD), which is caused by genospecies of the Borrelia burgdorferi sensu

lato complex, is the most common vector-borne disease in the Northern hemisphere.

Spirochetes are transmitted by Ixodes ticks and maintained in diverse vertebrate animal

hosts. Following tick bite, spirochetes initially establish a localized infection in the skin.

However, they may also disseminate hematogenously to several distal sites, including

heart, joints, or the CNS. Because they need to survive in diverse microenvironments,

from tick vector to mammalian hosts, spirochetes have developed multiple strategies to

combat the numerous host defense mechanisms. One of these strategies includes the

production of a number of complement-regulator acquiring surface proteins (CRASPs)

which encompass CspA, CspZ, and OspE paralogs to blunt the complement pathway.

These proteins are capable of preventing complement activation on the spirochete

surface by binding to complement regulator Factor H. The genes encoding these

CRASPs differ in their expression patterns during the tick-to-host infection cycle,

implying that these proteins may exhibit different functions during infection. This review

summarizes the recent published reports which investigated the roles that each of

these molecules plays in conferring tick-borne transmission and dissemination in

vertebrate hosts. These findings offer novel mechanistic insights into LD pathobiology

and may facilitate the identification of new targets for preventive strategies against

Lyme borreliosis.

Keywords: Borrelia, complement, Factor H, CspA, CspZ, OspE, tick, host-pathogen interaction

LYME DISEASE SPIROCHETES EVADE THE VERTEBRATE
HOSTS’ COMPLEMENT

Lyme disease (LD) is the most common vector-borne disease in the northern hemisphere (Steere
et al., 2016). A recent report from the CDC categorizes LD as one of the zoonotic diseases of the
greatest concern in theUnited States. The disease is caused by spirochetes of theBorrelia burgdorferi
sensu lato complex (Rosa et al., 2005; Brisson et al., 2012; Radolf et al., 2012). Among the ∼20
Borrelia species that comprise the sensu lato complex, at least six have been confirmed to cause LD
in humans including Borrelia (B.) burgdorferi sensu stricto (hereafter referred as B. burgdorferi),
B. afzelii, B. garinii, B. spielmanii, B. bavariensis, and B. mayonii, all of which are transmitted by
Ixodes ticks and maintained in diverse reservoir hosts (mainly small mammals and birds) (Tufts
et al., 2019). Upon tick feeding, spirochetes are exposed to host blood and the first line of innate
immunity which they must overcome to survive (Hovius et al., 2007; Steere et al., 2016; Figure 1).
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FIGURE 1 | The roles of CRASP proteins in the enzootic cycle of LD

spirochetes. During the infection, LD spirochetes require the ability to evade

the complement in the vertebrate blood. CspA facilitates spirochete survival in

the blood meal of fed ticks and thereby enabling spirochetes to be transmitted

to the host. CspZ promotes spirochete survival in the bloodstream of

vertebrate animals, allowing in dissemination to distal tissues. While the role

that OspE paralogs (OspE) play in enzootic cycle remain unclear, the current

evidence supports that these proteins confer spirochete dissemination in the

vertebrate animals.

Spirochetes then migrate through the tick midgut epithelium
and the salivary glands and are transmitted to the host skin to
establish the infection (Hovius et al., 2007; Steere et al., 2016;
Figure 1). In untreated humans, the spirochetes may disseminate
hematogenously to distal tissues and organs (Coburn et al., 2013;
Hyde, 2017; Bernard et al., 2019; Figure 1).

Complement is a central component of the host innate
immune system and the first line of defense against bacterial
infection. Evasion of the host complement system is essential for
Borrelia to successfully establish infection (Caine and Coburn,
2016; Kraiczy, 2016; Marcinkiewicz et al., 2017) (see Sjoberg
et al., 2009; Zipfel and Skerka, 2009; Meri, 2016 for more
thorough reviews). The complement system is composed of more
than 30 proteins and inactive precursors (Zipfel and Skerka,
2009). Activation of complement cascades on the microbial
surface is initiated via three distinct pathways (Meri, 2016).
Antibody-antigen complexes trigger activation of the classical
pathway (CP) whereas the mannose-binding lectin pathway
(LP) is activated by recognition of carbohydrate complexes
(collectins and ficolins) on microbial surfaces. The alternative
pathway (AP) is activated when C3b is bound to the surface
of invading microbes. Activation of all three pathways leads
to the formation and deposition of C3 and C5 convertases on
the microbial surface. This results in the insertion of the pore-
forming membrane attack complex (MAC), leading to bacterial
cell lysis.

In the absence of invading microbes or cell/tissue damage,
vertebrate hosts produce complement regulatory proteins (CRPs)

Abbreviations:CRASPs, Complement regulator acquiring surface proteins; OspE,

OspE paralogs; CP, Classical Pathway; LP, Mannose-binding lectin pathway; AP,

Alternative pathway; TP, Terminal pathway; MAC, Membrane attacking complex;

CRPs, Complement regulatory proteins; FH, Factor H; BbCRASPs, Borrelia

burgdorferi sensu lato complement regulator acquiring surface proteins; FHL-1,

Factor H like protein 1; CFHR, Factor H related protein; lp54, Linear plasmid 54;

lp28-3, Linear plasmid 28-3; cp32, Circular plasmid 32; UHB, Upstream homology

box; LD, Lyme diseases.

which are deposited on host cells/tissues to avoid non-specific
damage by the complement cascade (Sjoberg et al., 2009; Zipfel
and Skerka, 2009; Meri, 2016). Factor H (FH) is a CRP that binds
to C3b by recruiting the serum protease, factor I. This complex
leads to the degradation of C3b and coincidently terminates
activation of AP (Zipfel and Skerka, 2009; Zipfel et al., 2013).

LD spirochetes produce several outer surface proteins
that facilitate host complement evasion (de Taeye et al.,
2013; Caine and Coburn, 2016; Kraiczy, 2016; Marcinkiewicz
et al., 2017). These proteins include five complement-regulator
acquiring surface proteins (BbCRASPs or CRASPs) (Kraiczy
and Stevenson, 2013): CspA (CRASP-1, BBA68), CspZ (CRASP-
2, BBH06), and OspE paralogs [i.e., ErpP (CRASP-3, BBN38),
ErpC (CRASP-4), and ErpA/I/N (CRASP-5, BBP38, BBL39)]
(Table 1). While all these proteins bind to FH to inactivate
human complement, CspA andCspZ also bind to FH-like protein
1 (FHL-1), the truncated form of FH (Zipfel and Skerka, 1999;
Kraiczy and Stevenson, 2013). Additionally, ErpP, ErpC, and
ErpA bind to different FH-related proteins (CFHR), a family
of CRPs with similar sequence identity and high-resolution
structures to that of FH (Zipfel et al., 2002; Kraiczy and
Stevenson, 2013). The expression of the genes encoding these
outer surface proteins varies at different stages of the infection
cycle, e.g., during spirochete transmission and dissemination
(Miller et al., 2003; von Lackum et al., 2005; Bykowski et al.,
2007; Brissette et al., 2008). These findings suggest that CRASPs
play distinct roles in facilitating spirochete survival in ticks
and/or vertebrate hosts. However, until recently, the role of these
CRASPs in the spirochete infection cycle in vertebrate hosts is
still unclear.

In this review, we summarize previous findings regarding the
role of CRASPs in the pathobiology and provide mechanistic
insights into transmission and dissemination of LD spirochetes
in ticks and different vertebrate animals.

CspA FACILITATES SPIROCHETE
SURVIVAL IN TICKS’ BLOOD MEAL AND
DURING TRANSMISSION FROM TICKS TO
HOSTS

During feeding, ticks are vulnerable to the attack by complement
present in the blood meal. To neutralize complement and
other dangerous constituents, ticks generate a cocktail of
diverse immunomodulatory proteins with immunosuppressive,
anti-inflammatory, and anti-complement activity in their
saliva (Tyson et al., 2007, 2008; Schuijt et al., 2008, 2011;
Wagemakers et al., 2016) (see de Taeye et al., 2013 for the
review). These proteins shield spirochetes from complement-
mediated killing in the ticks’ midgut. However, ticks devoid
of any one of these anti-complement proteins can still
transmit spirochetes to vertebrate animals (Schuijt et al.,
2011; Wagemakers et al., 2016). Additionally, LD spirochetes
survive at similar levels in the ticks feeding on wild-type or
complement-deficient mice (Rathinavelu et al., 2003; Hart et al.,
2018). These results suggest that spirochetes have developed
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TABLE 1 | In vitro and in vivo characteristics of CRASPsa,b.

CspA CspZ OspE paralogs

Synonyms and other designations CRASP-1

BbCRASP-1

BBA68 FHBP

CRASP-2

BbCRASP-2

BBH06

CRASP-3

BbCRASP-3

BBN38

CRASP-4

BbCRASP-4

ErpC

CRASP-5

BbCRASP-5

ErpI

ErpN

ErpA

BBP38

BBL39

Gene name cspA cspZ erpP erpC erpA

Gene location in B. burgdorferi strain B31 lp54 lp28-3 cp32-9 cp32-2 cp32-1

cp32-5

cp32-8

Gene expression in

enzootic cycle

Fed larvae + + (low expression) + (high expression) + (high expression) + (high expression)

Unfed nymphs + (high expression) – – – –

Fed nymphs + (low expression) + (low expression) + + +

Tick biting sites + + (high expression) + (high expression) + (high expression) + (high expression)

Dissemination – + (high expression) + (high expression) + (high expression) + (high expression)

FH binding Purified proteins + + + - +

GOFc + + + – +

LOFd + +
e NDf ND ND

Additional non-FH

ligands related to complement

inactivation

C7, C9, FHL-1 FHL-1 CFHR1

CFHR2

CFHR5

CFHR1

CFHR2

CFHR1

CFHR2

CFHR5

Serum resistance GOFc + + – – –

LOFd + +
e

+
g – +

g

Infection phenotype Spirochetes

transmission by ticks

Mutant showed

defects in surviving at

fed nymphs and

transmission to hosts

ND ND ND ND

Spirochete

acquisition by ticks

– – ND ND ND

Intradermal

inoculation

– Mutant showed defects

in bloodstream survival

and tissue colonizationc

ND ND Mutant showed

defects in tissue

colonizationh

aTable adapted from Kraiczy and Stevenson (2013).
bDifferent information may be shown because of different strains used to define that information. The information here is derived from B. burgdorferi strain B31.
cProduced in a gain-of-function background (GOF).
dProduced in a loss-of-function background (LOF).
eOnly in blood treated condition.
fNot determined.
gOnly when ErpP and ErpA are expressed under flaB promoter in a cspA-deficient B. burgdorferi in the infectious background.
hPerformed using a transposon-inserted erpA mutant in an infectious B. burgdorferi background.

additional means to evade complement when residing in
fed ticks.

The cspA gene is located on a linear plasmid 54 (lp54)
which is essential for LD spirochetes survival in the infection
cycle (Purser and Norris, 2000; Table 1). This gene is uniquely
expressed in spirochetes residing in ticks, suggesting that
CspA plays a role during spirochetal colonization of ticks (von
Lackum et al., 2005; Bykowski et al., 2007; Hart et al., 2018;
Table 1). Ectopically producing CspA into a non-infectious,
serum-sensitive, and cspA-deficient B. burgdorferi strain enables
this strain to inactivate complement and survive when exposed
to sera from various vertebrate animals in vitro (Kraiczy et al.,
2004b; Brooks et al., 2005; Hammerschmidt et al., 2014; Muhleip

et al., 2018; Table 1). Conversely, deleting cspA from a low
passage and fully infectious B. burgdorferi strain results in the
inability of this strain to survive in presence of serum from
vertebrate animals and enhances complement activation on
spirochete surface (Kenedy et al., 2009; Table 1). These results
demonstrate the role of CspA in conferring spirochetal evasion
from complement.

Moreover, a previous study demonstrates that CspA also
confers protection when spirochetes are exposed to complement
components in blood acquired during tick feeding. A recent
study shows that a LD Borrelia strain deficient in cspA is
eliminated in nymphs after the nymphs feed on wild-type mice
(Hart et al., 2018). However, this strain survives in the nymphs
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feeding on complement deficient mice, indicating that CspA
promotes spirochetal evasion of complement in ticks’ blood meal
(Hart et al., 2018). The CspA-mediated blood meal survival
has been attributed to the ability of CspA to bind FH (Hart
et al., 2018; Figure 1 and Table 1). CspA orthologs from different
LD species differ in their ability to bind to FH from other
vertebrate animals including birds, mice, and humans (Bhide
et al., 2009; Hart et al., 2018; Muhleip et al., 2018). CspA of
B. burgdorferi displays <50% of sequence identity compared to
other LD Borrelia species but >95% identity on the intra-species
level (von Lackum et al., 2005; Wywial et al., 2009). Further,
the sequence variability of CspA orthologs correlates with their
ability to interact with FH from humans and other hosts (von
Lackum et al., 2005; Bhide et al., 2009; Hammerschmidt et al.,
2014; Hart et al., 2018;Muhleip et al., 2018). Of note, one previous
study showed that recombinant CspA from B. burgdorferi B31
does not bind to non-human FH in the sera applied on a Far-
Western blot (McDowell et al., 2006). This result suggests that
those non-human FH variants are required to be maintained as
a native form in order to display their ability to bind to CspA.
Consistent with the allelic differences in FH-binding activity of
CspA, a cspA-deficient B. burgdorferi strain producing CspA
from B. garinii was incapable of surviving in nymphs upon
feeding on wild-type mice (Hart et al., 2018). That isogenic
strains survived in nymphs feeding on the complement-deficient
mice, similar to the isogenic strain producing CspA from B.
burgdorferi strain B31 (Hart et al., 2018). These findings imply
an allelic variation of CspA-mediated FH-binding activity. Such
results also lead to an intriguing possibility that CspA determines
spirochete host tropism by driving the transmission from ticks to
specific hosts (Kurtenbach et al., 2002; Kraiczy, 2016; Tufts et al.,
2019).

Recent investigations also revealed that CspA acts in multiple
ways to inactivate complement. CspA was shown to inactivate
the AP by binding to FH and FHL-1 as well as by binding
to complement proteins C7 and C9 to block MAC formation
(Hallstrom et al., 2013; Table 1). The presence of CspA on the
bacterial surface prevents the formation of MAC, suggesting
a FH-independent mechanism to confer complement evasion.
However, compared to the high affinity binding to FH (KD <

100 nM), CspA binds only moderately to C7 and C9 (KD >

5µM). These results raise questions regarding the physiological
relevance of CspA-mediated C7- and C9-binding activity
(Kraiczy et al., 2004a; Hallstrom et al., 2013; Hart et al., 2018).

THE ROLE OF CspZ IN PROMOTING
SPIROCHETE DISSEMINATION AFTER
INVADING VERTEBRATE HOSTS

A previous finding indicates that a B. burgdorferi strain deficient
in cspA is capable of surviving at the inoculation site in skin
at similar levels to the wild-type parental strain introduced by
needle infection (Hart et al., 2018). This suggests that additional
proteins confer this phenotype and/or work collaboratively with
CspA to facilitate the establishment of infection. In fact, CspZ

has been identified as an additional FH/FHL-1-binding protein
which is encoded on the linear plasmid 28-3 (lp28-3) of B.
burgdorferi B31 (Table 1). During tick-to-host transmission, the
expression of cspZ is undetectable when spirochetes reside in
ticks, but up-regulated when spirochetes reach the bite site in
host skin (Bykowski et al., 2007). Further investigation reveals
that cspZ is expressed throughout different infection stages in
vertebrate animals (Bykowski et al., 2007; Marcinkiewicz et al.,
2019), suggesting that the expression of CspZ and its role
in the infection are restricted to the host (Table 1). Similar
to CspA, introduction of CspZ into a cspZ-deficient, serum-
sensitive borrelial strain allows the transformed strains to survive
in vitro in presence of serum from various vertebrate animals
by preventing complement activation (Hartmann et al., 2006;
Siegel et al., 2008; Table 1). However, a cspZ-deficient strain
in the infectious background of B. burgdorferi also survived
in sera and colonized mouse tissues at similar levels as the
parental strain (Coleman et al., 2008; Marcinkiewicz et al., 2019;
Table 1). These findings support the following notions that
such indistinguishable phenotypes could be attributed to low
expression levels of cspZ in B. burgdorferi (Bykowski et al., 2007;
Rogers and Marconi, 2007; Marcinkiewicz et al., 2019). As LD
spirochetes produce additional complement interacting proteins
that confer evasion during dissemination, delineating CspZ’s
phenotype can be cumbersome (Kraiczy et al., 2003, 2004a;
Alitalo et al., 2004, 2005; Pietikainen et al., 2010; Bhattacharjee
et al., 2013; Garcia et al., 2016; Caine et al., 2017).

To amplify the phenotype conferred by these genes, vertebrate
blood has been used to cultivate spirochetes as cue to mimic
in vivo conditions, possibly due to host-specific nutrients and
ions in blood (Tokarz et al., 2004). Several borrelial genes
upregulated during transmission can be triggered in vitro by
incubation of the spirochetes with host blood (Tokarz et al.,
2004). These genes include cspZ. These findings are consistent
with additional data showing that a cspZ-deficient strain in an
infectious background of B. burgdorferi displays reduced ability
to survive when incubated with vertebrate sera (Marcinkiewicz
et al., 2019; Table 1). Furthermore, this cspZ mutant strain when
pre-treated with blood shows a delayed onset of dissemination
and lower burdens in distal tissues, compared to wild-type
B. burgdorferi strain, demonstrating CspZ’ role in promoting
spirochete dissemination (Marcinkiewicz et al., 2019; Figure 1
and Table 1).

Further, several studies examined the role of CspZ (or the
plasmid encoding cspZ) in infection cycle. CspZ was shown
not essential for spirochetes acquisition from mammalian hosts
to ticks (Coleman et al., 2008). However, fewer mice develop
antibody reactivity against whole spirochete cell lysates after
being fed on by the ticks carrying a B. burgdorferi strain missing
lp28-3 plasmid which encodes cspZ, compared to wild-type
parental spirochete strain (Dulebohn et al., 2013). These findings
suggest that the proteins encoded by lp28-3 (e.g., CspZ) facilitate
spirochete to establish an infection and disseminate to distal sites
after tick bites. A previous study revealed that LD patients with
manifestations (e.g., acrodermatitis, neuroborreliosis, erythema
migran) and/or positivity in two-tier LD serological tests elicited
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antibodies to CspZ, indicating that spirochetes produce this
protein during the infection process (Kraiczy et al., 2008; Rogers
et al., 2009).

Rogers et al. observed that CspZ shows allelically different
ability in binding to human FH (Rogers and Marconi,
2007; Rogers et al., 2009). As CspZ is highly conserved
(nearly 98% identical among B. burgdorferi strains and ∼70%
identical among LD spirochetes), the difference of these
variants may convey the observed strain-to-strain variation in
binding activity to human FH (Rogers et al., 2009; Brangulis
et al., 2014). Several sequence diverse regions in CspZ have
been identified (Brangulis et al., 2014). According to a
recently reported high-resolution co-crystal structure of CspZ-
FH binding complex (Protein Data Bank #6ATG) some of
these variable regions are located in the binding site/interface
with human FH. These results support the possibility that
these variable regions of CspZ mediate the different levels of
FH-binding activity and spirochete survival in the infection
cycle (Table 1).

THE ROLE OF OspE PARALOGS IN
SPIROCHETE SURVIVAL DURING THE
INFECTION CYCLE REMAINS UNCLEAR

Not every spirochete strain isolated from ticks feeding on LD
spirochetes-infected vertebrate hosts encodes CspZ (Rogers and
Marconi, 2007; Kraiczy et al., 2008), supporting that additional
FH-binding proteins confer dissemination during infection. In
fact, LD spirochetes produce multiple copies of OspE proteins,
encoded by several circular plasmids 32 (cp32) (Marconi et al.,
1996; Stevenson et al., 1996; Akins et al., 1999; Caimano
et al., 2000; Kraiczy and Stevenson, 2013; Table 1). Most of
these OspE paralogs bind to FH in vitro and share similar
promoter sequences (as known as upstream homology box
or “UHB”) to other outer surface proteins on cp32, such as
OspF (Marconi et al., 1996; Akins et al., 1999; Caimano et al.,
2000; Brissette et al., 2008). Because of these similarities, these
OspE/F-related proteins were grouped under the term as Erps
(Brissette et al., 2008).

Although some Erps have been shown to bind FH and confer
complement evasion, their role in spirochete survival during the
infection remains less clear. A serum-sensitive B. burgdorferi
strain which expresses erpP or erpA (the genes encoding OspE
paralogs in B. burgdorferi B31) driven by the endogenous
promoters, remains susceptible to complement-mediated killing
in human serum (Siegel et al., 2010; Hammerschmidt et al.,
2012; Table 1). This result is consistent with other B. burgdorferi
strains (i.e., the cspA-deficient strain) encoding erpP and erpA
under the control by the endogenous promoters which remain
susceptible to human serum. However, when those genes are
expressed ectopically in a serum-sensitive B. burgdorferi strain
using a strong and constitutive promoter, these spirochetes
inactivate complement and survive when incubated with human
serum (Kenedy and Akins, 2011; Table 1). These results imply
that high expression levels of OspE are needed for complement
inactivation and serum resistance.

The genes encoding OspE paralogs are not expressed when
spirochetes are in post-molting flat nymphs whereas they
are upregulated immediately after blood meals (Hefty et al.,
2001; Miller et al., 2003). Additionally, the expression of
ospE is maintained throughout different stages of infection
after spirochete transmission from ticks to hosts (Hefty et al.,
2001; Miller et al., 2003, 2005; Table 1). Consistent with the
expression profiles of these ospE genes, spirochete burdens
are reduced in nymphs feeding on mice passively immunized
with anti-OspE IgG, but remain unaffected when feeding on
mice inoculated with Ig isotype control (Nguyen et al., 1994).
Further, the transposon-inserted erpA mutant in an infectious
B. burgdorferi strain causes a 2-week delay in dissemination
to distal tissues when co-infected with a library of other
transposon-inserted mutants (Lin et al., 2012; Table 1). These
findings suggest that OspE paralogs may play a role in
conferring tick-to-host transmission of spirochetes as well as
facilitating rapid dissemination to distal tissues (Figure 1).
However, the off-target silencing by antibody-dependent deletion
or transposon insertion methodologies may be the confounding
effects of these results. Generating the deletion mutant of
ospE paralogs could be the favorable approach to address this
caveat, but multiple copies of OspE present in LD spirochetes
could be cumbersome. Thus, the gain-of-function approach
such as producing these OspE paralogs in a serum-sensitive
strain and evaluating bloodstream survival during a short-term
infection may be a suitable approach to address these technical
hurdles (Caine and Coburn, 2015).

OspE paralogs among different strains have highly variable
sequences (Marconi et al., 1996; Sung et al., 1998; Akins et al.,
1999; Caimano et al., 2000; Stevenson and Miller, 2003; Brissette
et al., 2008). These variants differ in their ability to bind to
vertebrate animals’ FH (Stevenson et al., 2002; McDowell et al.,
2003; Hovis et al., 2006). These results imply potential roles
of OspE paralogs in promoting LD spirochetes complement
evasion in a host-specific manner. Besides FH, OspE also binds
to different isotypes of CFHR (Zipfel et al., 2002; Siegel et al.,
2010; Kraiczy and Stevenson, 2013; Skerka et al., 2013; Jozsi
et al., 2015). However, the physiological importance of CFHR-
binding activity of OspE proteins is unclear and warrants
further investigation.

CONCLUSION

To survive their complex life cycle, LD spirochetes have
developed several strategies to evade the host immune system
that they encounter in ticks during feeding (blood meal) and in
the bloodstream of vertebrate animals. A key evasion mechanism
is to circumvent the complement components by producing
complement- or CRP-binding proteins, including CRASPs,
which facilitate complement inactivation. These CRASPs have
been shown to confer spirochete transmission from ticks to
hosts and promote infection and dissemination in vertebrate
hosts. However, the concurrent production of CRASPs increases
the complexity in delineating the contribution of these proteins
individually in each of the stages within the infection cycle.
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Elucidating such mechanisms will provide new insights into
how spirochetes survive in two distinct environments, ticks, and
vertebrate hosts. Such information will provide foundation for
the development of preventions through targeting CRASPs to
block these infection mechanisms, which will ultimately reduce
LD burdens in humans.
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