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Gut dysbiosis has been associated with several disease outcomes including diabetes in

human populations. Currently, there are no studies of the gut microbiome composition

in relation to type 2 diabetes (T2D) in Africans. Here, we describe the profile of the gut

microbiome in non-diabetic adults (controls) and investigate the association between gut

microbiota and T2D in urban West Africans. Gut microbiota composition was determined

in 291 Nigerians (98 cases, 193 controls) using fecal 16S V4 rRNA gene sequencing

done on the Illumina MiSeq platform. Data analysis of operational taxonomic units (OTU)

was conducted to describe microbiome composition and identify differences between

T2D and controls. The most abundant phyla were Firmicutes, Actinobacteria, and

Bacteroidetes. Clostridiaceae, and Peptostreptococcaceaea were significantly lower in

cases than controls (p < 0.001). Feature selection analysis identified a panel of 18 OTUs

enriched in cases that included Desulfovibrio piger, Prevotella, Peptostreptococcus, and

Eubacterium. A panel of 17 OTUs that was enriched in the controls included Collinsella,

Ruminococcus lactaris, Anaerostipes, andClostridium.OTUs with strain-level annotation

showing the largest fold-change included Cellulosilyticum ruminicola (log2FC = −3.1;

p= 4.2× 10−5),Clostridium paraputrificum (log2FC=−2.5; p= 0.005), and Clostridium

butyricum (log2FC = −1.76; p = 0.01), all lower in cases. These findings are notable

because supplementation with Clostridium butyricum and Desulfovibrio piger has been

shown to improve hyperglycemia and reduce insulin resistance in murine models. This

first investigation of gut microbiome and diabetes in urban Africans shows that T2D is

associated with compositional changes in gut microbiota highlighting the possibility of

developing strategies to improve glucose control by modifying bacterial composition in

the gut.
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INTRODUCTION

The gut microbiota (GM) has been intensely studied over the past few years for its involvement
in health and disease (Forslund et al., 2015; Kataoka, 2016; Lynch and Pedersen, 2016; Tang et al.,
2017). These investigations have provided novel insights into the important role that GM plays
in host nutrition, metabolism, and immunity (Komaroff, 2017; Pascale et al., 2018). GM produces
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numerous biochemical molecules including vitamins, amino-
acids, and short chain fatty acids that are involved in the proper
functioning of human organs and systems. It has been suggested
that the GM function as an additional endocrine system
(Pascale et al., 2018). The composition of GM is considerably
influenced by factors such as lifestyle, age, seasonal variations,
and geography (De Filippo et al., 2010, 2017; Yatsunenko et al.,
2012; Schnorr et al., 2014). Comparative studies have shown that
human GM from industrialized societies e.g., North America
and Europe have different gastro-intestinal microbial profiles
compared to what is observed in less industrialized societies
e.g., South America and Africa (De Filippo et al., 2010, 2017;
Yatsunenko et al., 2012; Schnorr et al., 2014). Indeed, a recent
study showed that migration from a non-Western country to
the United States of America (USA) was associated with loss
of gut microbiome diversity and function. The USA-associated
strains and functions displace native strains and functions, and
these effects increase with age and duration of US residence
(Vangay et al., 2018).

Although GM has been associated with many pathologies
including type 2 diabetes (T2D), atherosclerosis, inflammatory
bowel disease, and cancer (Lynch and Pedersen, 2016; Komaroff,
2017, 2018), most of these studies were conducted in westernized
societies or in animal models (Zhang et al., 2010; Bech-Nielsen

TABLE 1 | List of microbiome studies conducted in Sub-Saharan Africa.

Study Year Region/country Population Design References

Population structure of human gut

bacteria in a diverse cohort from rural

Tanzania and Botswana

2019 Tanzania and

Botswana

Adults/Rural

Hunter-Gathers, pastoralists,

agropastoralists, Mixed hunter-

gathers/agropastoralist

Comparative study

(geographic and

subsistence lifestyle)

Hansen et al.,

2019

Diet, environments, and gut microbiota. A

preliminary investigation in children living in

rural and Urban Burkina Faso and Italy

2017 Burkina Faso Children/rural and urban Comparative study (within

the same country)

De Filippo et al.,

2017

Atopic dermatitis and food sensitization in

South African toddlers: role of fiber and

gut microbiota

2017 South Africa Children/Urban Comparative study

(disease state and

controls)

Mahdavinia

et al., 2017

Seasonal cycling in the gut microbiome of

the Hadza hunter-gatherers of Tanzania

2017 Tanzania Children and adults,

Hunter-gatherers age > 3

Comparative study (dry

season vs. wet season

Smits et al.,

2017

Variation in Rural African Gut microbiota is

strongly correlated with colonization by

entamoeba and subsistence

2015 Cameroon Adults/ Hunter-gathers, farmers,

fishermen

Comparative study (mode

of subsistence in same

environment and degree

of urbanization)

Morton et al.,

2015

Metagenome Sequencing of the Hadza

Hunter-gatherer gut microbiota

2015 Tanzania Adults and

children/hunter-gathers

Comparative functional

Analysis, gut microbiome

resistome profile

Rampelli et al.,

2015

Gut microbiome of the Hadza

hunter-gatherers

2014 Tanzania Adults and

children/hunter-gathers

Descriptive and

comparative study across

different populations

(including mode of

subsistence)

Schnorr et al.,

2014

Human gut microbiome viewed across

age and geography

2012 Malawi Adults and children/monozygotic

and dizygotic twin pairs/Rural

Comparative study across

socio-geographic

populations and age

range

Yatsunenko

et al., 2012

Impact of diet in shaping gut microbiota

revealed by a comparative study in

children from Europe and rural Africa

2010 Burkina Faso Children/rural and urban Comparative study

(inter-continental)

De Filippo et al.,

2010

et al., 2012; Qin et al., 2012; Forslund et al., 2015; Kataoka,
2016). To date, only a handful of studies have investigated
the composition of gut microbiome or its relationship to
disease and health in Africans (Grześkowiak et al., 2012;
Yatsunenko et al., 2012; Schnorr et al., 2014; Morton et al.,
2015; Cheung et al., 2016; Iebba et al., 2016; Davis et al.,
2017; De Filippo et al., 2017; Hansen et al., 2019) (Table 1).
Furthermore, these studies conducted in Africans have focused
on description of GM, relationship between GM and childhood
malnutrition, lifestyles, environmental adaptation, or presence
of other parasites (De Filippo et al., 2010, 2017; Yatsunenko
et al., 2012; Schnorr et al., 2014; Morton et al., 2015) (Table 1).
While some of these studies demonstrate differences in GM
composition between African populations and between African
and European or American groups for example (Schnorr et al.,
2014), little is known about the role of GM in relation to
diseases, especially metabolic disorders such as obesity and T2D
in Africans (Upadhyaya and Banerjee, 2015). The current paucity
of data in Africans is concerning given the well-established
associations between GM and several disease outcomes in
populations of European ancestry as well as in animal models
(Liu et al., 2018; Weickert and Pfeiffer, 2018). Reported specific
associations include decreased abundance in Akkermansia
muciniphila (Zhang et al., 2013) and butyrate-producing
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bacteria (Brunkwall and Orho-Melander, 2017) in diabetes and
association between insulin resistance and branch-chain amino-
acid (BCAA)-producing species such as Prevotella copri and
Bacteroides vulgaris (Wang et al., 2011; Pedersen et al., 2016).
Furthermore, the increasing global prevalence of cardiometabolic
diseases such as T2D in low- and middle-income countries
(LMIC) calls for investigations that go beyond descriptions
of GM, to those that assess relationships between GM and
disease outcomes in these societies where critical data are
currently lacking.

Here, we provide an analysis of the GM in 291 unrelated
adults enrolled from an urban center in Nigeria with the
aims of describing the GM microbial composition in non-T2D
population samples (controls) and comparing the phylogenetic
diversity and taxonomic relative abundance between controls and
cases. We also conducted functional analyses to predict genes
and pathways abundance in these two groups. To our knowledge,
this is the first investigation of the association between GM and
T2D in Africa and is so far the largest study of GM conducted in
Africa populations.

MATERIALS AND METHODS

Study Participants
Included in this investigation are 291 participants (193 controls
and 98 cases) from the longstanding genetic epidemiology
study of T2D in Africa—the Africa America Diabetes Mellitus
(AADM) study—which has been previously described elsewhere
(Rotimi et al., 2001; Adeyemo et al., 2015). Participants for
the microbiome studies were enrolled at a single site—Ibadan,
Nigeria—one of the largest cities in sub-Saharan Africa (SSA).
Briefly, ethical approval was obtained from the Institutional
Review Board of the participating institution. Written informed
consent was obtained from all participants. Demographic
information was collected using standardized questionnaires
and anthropometric, medical history, and clinical examination
parameters were obtained by trained study staff during a clinic
visit. Weight was measured in light clothes on an electronic
scale to the nearest 0.1 kg and height was measured with a
stadiometer to the nearest 0.1 cm. Body mass index (BMI) was
computed as weight (kg) divided by the square of height inmeters
(m2). All serum biochemistry (fasting glucose, insulin, total
cholesterol, HDL-cholesterol, LDL-cholesterol, and triglycerides)
were measured using a COBAS R© Integra Analyzer Series (Roche
Diagnostics, Indianapolis, Indiana). The definition of T2D was
based on the American Diabetes Association (ADA) criteria: a
fasting plasma glucose concentration (FPG) ≥ 126 mg/dl (7.0
mmol/l) or a 2-h postload value in the oral glucose tolerance
test ≥ 200 mg/dl (11.1 mmol/l) on more than one occasion.
Alternatively, a diagnosis of T2D was accepted if an individual
was on pharmacological treatment for T2D and review of
clinical records indicated adequate justification for that therapy.
The detection of autoantibodies to glutamic acid decarboxylase
(GAD) and/or a fasting C-peptide ≤ 0.03 nmol/l was used to
exclude probable cases of type 1 diabetes. Controls were required
to have FPG < 126 mg/dl or 2-h post load of < 140 mg/dl and no

symptoms suggestive of diabetes (the classical symptoms being
polyuria, polydipsia, and unexplained weight loss).

Fecal samples were collected from each consenting participant
during a clinic visit and frozen at −80◦C until shipped by
expressed courier to our lab at the National Institutes of Health
(NIH) in the USA where the samples remained frozen until
processed for DNA extraction.

DNA Extraction From Fecal Samples
DNA extraction was performed with the MoBioPowerMag R©

Microbiome kit (Carlsbad, CA) according to the manufacturer’s
guidelines and optimized for high-throughput processing. All
samples were quantified using the Qubit R© Quant-iT dsDNA
High Sensitivity Kit (Invitrogen, Life Technologies, Grand Island,
NY) to ensure that they met minimum concentration and mass
of DNA.

Library Preparation and Profiling
Samples were enriched for bacterial 16S V4 rDNA region, by
amplifying the DNA samples utilizing fusion primers designed
against the surrounding conserved regions which are tailed
with sequences to incorporate adapters and indexing barcodes
(Illumina, San Diego, CA). Each sample was PCR amplified with
two differently bar coded V4 fusion primers and PCR products
were quantified by fluorometric method (Qubit or PicoGreen
from Invitrogen, Life Technologies, Grand Island, NY). Samples
that met the post-PCR quantification minimum were pooled
equimolar and sequenced.

A pool containing 16S V4 enriched, amplified, barcoded
samples was loaded into a MiSeq R© reagent cartridge, and
then onto the instrument along with the flow cell. After
cluster formation on the MiSeq instrument, the amplicons
were sequenced for 250 cycles with custom primers designed
for paired-end sequencing. Quality control (QC) and quality
assurance (QA) metrics are maintained for all sample handling,
processing, and storage procedures.

Bioinformatic Analysis and Statistical
Methods
The data analysis pipeline for microbial profiling was done using
SecondGenomeR package 2.2.0 which incorporates the steps of
pre-processing, summarization, normalization, alpha-diversity
metrics (within sample diversity), beta diversity metrics (inter-
sample similarity), ordination/clustering, sample classification,
and significance testing. A SecondGenome Solutions’ proprietary
software package as well as MicrobiomeAnalyst, a web-based
pipeline, were used for statistical analyses and visual exploration
(Dhariwal et al., 2017).

Operation Taxonomic Unit (OTU) Selection and

Summarization
Sequenced paired-end reads were merged using USEARCH
and the resulting sequences were compared to an in-house
strains database (http://www.secondgenome.com/solutions/
resources/data-analysis-tools/strainselect/) using USEARCH
(usearch_global). All sequences matching a unique strain
with an identity >=99% were assigned a strain OTU. To
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ensure specificity of the strain hits, a difference of >=0.25%
between the identity of the best hit and the second-best hit
was required (e.g., 99.75 vs. 99.5). For each strain OTU, one
of the matching reads was selected as representative and all
sequences were mapped by USEARCH (usearch_global) against
the strain OTU representatives to calculate strain abundances.
The remaining non-strain sequences were quality filtered and
dereplicated with USEARCH. Samples with <50,000 reads were
removed. Resulting unique sequences were then clustered at
97% by UPARSE (de novo OTU clustering) and a representative
consensus sequence per de novo OTU was determined (Edgar,
2013). The UPARSE clustering algorithm comprises a chimera
filtering and discards likely chimeric OTUs. All non-strain
sequences that passed the quality filtering were mapped to the
representative consensus sequences to generate an abundance
table for de novo OTUs. Representative OTU sequences were
assigned taxonomic classification via mothur’s bayesian classifier,
trained against the Greengenes reference database of 16S rRNA
gene sequences (greegenes.lbl.gov) clustered at 99% similarity
(Mcdonald et al., 2012).

Independent filtering reduced the number of OTUs from
3,229 to 1,165 and the number of sequences from 51,959,463 to
51,655,653 (Figure S1). Approximatively 99% of the sequences
were classified at phylum, class, and order levels, whereas 93.2%
were classified at family, 52.2% at genus level, 26% at species
and 24% at strain levels (Figure S2). The rarefaction curve
approached plateau indicating near-completeness of the captured
microbiome profiles (Figure S3).

Following taxa identification, the values used for each taxa-
sample intersection were populated with the abundance of reads
assigned to each OTU in an “OTU table.” A corresponding
table of OTU Greengenes classification was also generated. The
Phyloseq R package was used to analyze generated metadata,
taxonomy, and sequence counts (Mcmurdie and Holmes, 2013).

Diversity Metrics, Ordination, Clustering, and

Classification Methods
Alpha-diversity, a measure of within sample diversity,
was computed using two metrics: OTU richness and
Shannon diversity (Ce, 1948). Similarly, beta-diversity (a
measure of microbial community compositional differences
between samples) was computed using the Bray-Curtis
dissimilarity metric (Bray and Curtis, 1957). Permutational
Analysis of Variance (PERMANOVA) was used to access
significant differences between cases and controls. In this
randomization/Monte Carlo permutation test, the samples are
randomly reassigned to the various sample categories, and
the expected between-category differences are compared to
the observed between-category differences. PERMANOVA
utilizes the sample-to-sample distance matrix directly, not a
derived ordination or clustering outcome. Kruskal-Wallis rank
sum test was used to compare GM structure between cases
and controls for alpha and beta diversity and proportional
abundances, which are reported as mean percentage relative
abundance unless specified. Two-dimensional ordinations
Principal Coordinate Analysis (PCoA) and hierarchical
clustering maps (Ward’s method) of the samples were generated

in the forms of dendrograms to visually summarized the
inter-sample relationships.

Metagenomic Inference
Piphillin, an algorithm independent of phylogenetic tree that
leverages the most contemporary functional genome databases
(e.g., KEGG 70.1), was used to estimate the functional capacity
of the GM in cases and controls (Iwai et al., 2016). A genome
was inferred for each 16S rRNA OTU based on the sequence
identity between an OTU’s representative sequence and the
nearest neighbor 16S rRNA sequence from the genome databases
restricted to a minimum identity of 97%. OTU abundance was
normalized by 16s rRNA copy numbers and then multiplied
by the gene contents of each inferred genome to predict each
sample’s metagenome.

The DESeq2 package was used to evaluate univariate
differential abundance of OTUs, genes and pathways as
previously described (Love et al., 2014; Mcmurdie and Holmes,
2014). A negative binomial noise model for the over-dispersion
and Poisson process intrinsic were applied to generate data
thus accounting for both technical and biological variability
between the experimental conditions. We implemented DESeq2
using the default settings and q-values were calculated using
the Benjamini-Hochberg procedure to correct p-values by
controlling for false discovery rates (Benjamini and Hochberg,
1995). An OTU is considered differentially abundant if adjusted
p-values were <0.05 and the absolute value of the logFC ≥ 1.

RESULTS

Consistent with expectations, several anthropometric, and
clinical parameters were significantly different between cases
and controls. Compared to controls, cases had higher BMI
(32 vs. 30 Kg/m2) and larger waist circumference (102.0 vs.
97 cm). Cases also had unfavorable lipid and glycemic profiles
with fasting glucose, insulin, HOMA-IR, hemoglobin A1C, and
triglycerides levels being much higher in cases than in controls,
whereas HDL-C was lower (Table 2). Nearly all cases (97%) in
this study were on treatment, with 38.8% on metformin (Met)
only, 5.1% on sulfonylurea (SU) only, 49% on metformin and
sulfonylurea (Met+SU), and 4.1% on combinations of anti-
diabetes medication. Three cases (3.1%) were treatment-naïve.

Gut Microbiome Composition in Controls
Controls had a median OTU richness of 448 (IQR 377-519) and
median Shannon Diversity of 3.45 (IQR 3.14-3.70). Shannon
Diversity and OTU richness were not significantly associated
with age, gender or measures of body composition (BMI,
waist circumference and percent fat mass)—(Table S1). The
only covariate significantly associated with beta-diversity
was gender (p = 0.032)—Table S1. At the phylum level,
Firmicutes constituted the majority with percent relative
abundance of 78% (median 80.07%) followed by Actinobacteria
(mean: 16.5%, median: 14.8%) and Bacteroidetes (mean: 2.2%,
median: 0.3%) (Figure 1A and Table 3). At the family level,
the most represented taxa were Lachnospiraceae (25.7%),
Coriobacteriaceae (11.4%), Erysipelotrichaceae (11.1%),
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Clostridiaceae (10.7%), and Peptostreptococcaceae (8.9%)
(Figure 1B). Blautia (15%) represented the most abundant genus
followed by Collinsella (8%), Ruminococcus and Bifidobacterium
(5%). Other genera including Catenibacterium, Eubacterium,

TABLE 2 | Characteristics of gut microbiome study participants: the AADM study.

Characteristic Controls (N = 193)

Mean (SD)

Cases (N = 98)

Mean (SD)

P value*

Age (years) 54.3 (13.3) 59.7 (10.4) 0.0002

Body mass index (BMI,

kg/m2 )

30.33 (6.09) 32.21 (5.94) 0.0125

Percent fat mass (PFM, %) 37.30 (9.65) 39.62 (10.62) 0.0641

Waist circumference (cm) 97.11 (12.56) 101.83 (12.34) 0.0025

Waist-to-hip ratio (WHR) 0.94 (0.08) 0.96 (0.09) 0.0549

Glucose (mg/dl) U 82.0 (76–89) 118 (96–157) <0.0001

Insulin (uIU/ml)U 7.2 (4.4–10.5) 9.2 (5.8–13.0) 0.0022

HOMA-IRU 1.51 (0.87–2.20) 2.67 (1.76–4.68) <0.0001

HbA1C (%) U 5.40 (5.2–5.7) 7.4 (6.20–8.80) <0.0001

Total cholesterol (mg/dl) 193.20 (51.34) 201.16 (64.12) 0.288

HDL-cholesterol (mg/dl)U 24 (13–37) 31 (20–44) 0.0272

LDL-cholesterol (mg/dl) 123.10 (44.08) 122.72 (49.77) 0.9478

Triglycerides (mg/dl) 94.82 (41.51) 120.28 (59.57) 0.0002

Significantly different between cases and controls at p< 0.05 in bold.

*P-value for t-test except for variables with ¥ for Wilcoxon rank-sums test was used.

¥ indicates median (interquartile range). All other figures are mean (SD).

Streptococcus, Prevotella were identified with relative abundances
of <5% (Figure S6).

Diversity Analysis
Both alpha-diversity indices used in this study were significantly
higher in cases than in controls (Figure 2). The median (IQR)
OTU richness was significantly different between cases 489 (408–
561) and controls 448 (377–519), p= 0.008. Similarly, themedian
(IQR) ShannonDiversity was 3.52 (3.26–3.80) vs. 3.45 (IQR 31.4–
3.70), respectively in cases and controls (p = 0.04). However, we
did not observe any distinct clustering of microbial communities
between cases and controls as shown by the PCoA plot or Ward’s
method (Figure S5). PERMANOVA analysis of the Bray-Curtis
dissimilarity matrix (an index of beta-diversity) demonstrated
that T2D is strongly associated with microbiome abundance
profile as measured by beta diversity [F(1, 290) = 2.55, p < 0.001].

Firmicutes Are Significantly Decreased
Among Diabetics in This Study of
Sub-Saharan Africans
The microbiota composition in cases displayed a significantly
different profile at both phylum and family levels when
compared to that of the controls. Firmicutes, the largest microbial
community was moderately decreased in cases compared to
controls (median: 76.6 vs. 80%, p = 0.02) and correspondingly
an increase in Actinobacteria (mainly Coriobacteriaceae and
Bifidobactericeae—median: 16.7%), while Bacteroidetes (mainly
Prevotella), Euryarchaeota, and Tenericutes were nominally

FIGURE 1 | GM composition in controls at the phylum (A) and family (B) levels: the AADM study.
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TABLE 3 | Comparative relative abundances of the gut microbiome’s most abundant phyla in controls and cases: the AADM study.

Taxonomic Rank/OTU Median (Controls) IQR (Controls) Median (Cases) IQR (Cases) Chi-square* P

Phylum

Firmicutes 80.07 71.18, 86.03 76.61 69.51, 83.33 5.759 0.0164

Actinobacteria 14.80 9.25, 22.32 16.66 10.57, 23.62 2.432 0.1189

Bacteroidetes 0.30 0.09, 1.07 0.44 0.18, 1.38 3.861 0.0494

Proteobacteria 0.13 0.03, 0.60 0.18 0.05, 0.85 2.053 0.1519

Euryarchaeota 0.02 0.00, 0.98 0.15 0.00, 2.29 3.876 0.049

Tenericutes 0.47 0.09, 1.07 0.78 0.14, 1.36 3.703 0.0543

Verrucomicrobia 0.00 0.00, 0.02 0.00 0.00, 0.02 0.008 0.9273

Cyanobacteria 0.04 0.00, 0.25 0.04 0.00, 0.28 0.05 0.8227

Family

Lachnospiraceae 25.01 19.39, 31.72 24.16 17.60, 31.56 0.315 0.5744

Coriobacteriaceae 10.95 6.54, 14.97 12.12 6.93, 16.25 1.19 0.2754

Erysipelotrichaceae 9.27 4.48, 15.88 10.71 5.58, 15.57 0.458 0.4987

Clostridiaceae 8.69 3.61, 15.73 5.50 1.14, 12.14 9.83 0.0017

Ruminococcaceae 6.65 3.62, 11.39 7.63 3.94, 13.58 2.596 0.1072

Peptostreptococcaceae 7.56 3.30, 13.53 4.62 0.77, 10.15 12.704 0.0004

Bifidobacteriaceae 0.28 0.02, 5.27 1.04 0.02, 8.16 1.049 0.3056

Unclassified 2.68 1.79, 3.63 2.56 1.75, 3.72 0.168 0.682

Values are median (interquartile range) of percentage relative abundance means.

*Kruskal-Wallis H test.

P < 0.05 in bold.

FIGURE 2 | Alpha diversity of the GM in controls and cases: the AADM study. (A) OTU richness represents the number of OTUs present in each sample. (B) Shannon

diversity index accounts for the richness and evenness of OTUs within a sample.

increased in cases (p = 0.05) (Figure 3A and Table 3).
At the family level, Clostridiaceae and Peptostreptococcaceae
were significantly decreased in cases compared to controls

(p < 0.05) while no significant difference was observed among
other families of the Firmicutes phylum (Lachnospiraceae,
Erysipelotrichaceae, Bifidobacteriaceae) (Figure 3B and Table 3).
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FIGURE 3 | Microbiota composition in controls and cases: the AADM study. (A) Shows microbial composition at the phylum level while (B) shows microbial

composition at the family level. The most abundant taxa are labeled.

Effect of Treatment on Gut Microbiota in
Diabetes
Median Shannon Diversity (a measure of α-diversity) was higher
in the treatment groups (Met only, Met+ SU, SU only, other
combinations) compared to controls indicating a treatment
effect (Figure S4), while the untreated cases seemed to have
the lowest α-diversity and higher Firmicutes (86%) compared
to all the treatment classes. However, their numbers are too
few (only 3 cases) to draw meaningful conclusions. The average
percent relative abundance of Bacteroidetes is the same across the
different groups (∼2%) except for “other combinations” group
(Bacteroidetes, 7%) (Figure S7).

Metformin is the most widely used treatment in T2D and
had been studied in other populations. To assess its effect
on the relative abundance of key taxa, we utilized regression
models (either non-parametric regression or Poisson regression
depending on the data distribution) in the diabetic subset with
and without adjusting for age, sex, and BMI as covariates.
Metformin treatment seems to be associated with lower relative
abundance of Firmicutes (p = 0.004) in the unadjusted model.
However, the effect was nullified after adjustment for covariates
(Table S2A). At the family level, the relative abundance of
Verrucomicrobiaceae appeared to increase with metformin
treatment (beta = 2.14, p = 0.03) in the unadjusted model, but
the model was not significant after adjustment (p = 0.08). No
apparent effect of metformin was observed on other microbial
families (Table S2B).

Differentially Abundant Microbial Features
in Diabetes
Feature selection identified 35 significant differences out of the
1,165 tested features. Seventeen OTUs were lower whereas 18
were higher in cases compared to controls (Figure 4 andTable 4).
The majority (∼74%) of the OTUs differentially abundant in
diabetes belongs to the Firmicutes and includes genera such as
Anaerostipes (log2FC = −2.5, p = 4.01 × 10−5), Ruminococcus

(logFC = −2.62, p = 4.0 × 10−5), Clostridium (logFC = −1.8,
p = 0.01), and Epulopiscium (logFC = −2.2, p = 0.02) that
were less abundant in cases compared to controls whereas
Peptostreptococcus (logFC = 1.3, p = 0.040), and Eubacterium
(logFC = 1.48, p = 0.048) were more abundant in cases.
Prevotella, a member of Bacteroidetes was significantly abundant
in cases (LogFC= 2.7, p= 4.5× 10−5). Six of the 35 differentially
abundant features had a strain-level annotation and half of
them (Cellulosilyticum ruminicola, Clostridium paraputrificum,
andClostridium butyricum had large fold changes and were lower
in cases (Table 4).

Functional Profiles of Controls and
Diabetes Gut Microbiome
Functional contributions of GM in cases and controls were
explored based on OTUs using Piphillin. The results revealed
7,474 genes across all samples. The top most abundant functional
genes are presented in Figure 5 and included several members
of the ABC transport system ATP-binding proteins (ABC-2. A,
ABC.CD.A, ABC.CD.P), LacI family transcriptional regulator
(lacI, galR), and tRNA (tRNA-Arg and tRNA-Leu). While most
of the abundant functional genes tended to be slightly higher
in controls, there was no significantly different inferred genes
between cases and controls (Table S3). Feature selection analysis
on the inferred genes between cases and controls identified 16
genes (log 2 FC ≥1, p < 0.05) that were enriched in cases
including Aspartate dehydrogenase (nadX) and cobaltochelatase
(cobN) (Table 5 and Figure S8). However, after FDR adjustment
they were no longer statistically significant.

As for the inferred pathways, 338 KEGG orthologies (KO)
were identified across all samples with the most abundant
functional pathways belonging to ABC transporters, aminoacyl-
tRNA biosynthesis, amino acids and secondary metabolites
synthesis, and metabolic pathways which had the highest mean
proportional abundance (16.1% in both groups). Similarly, to
the inferred genes, there was no significant difference in the
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FIGURE 4 | Differentially abundant features in cases vs. controls in the AADM study. Each point represents an OTU belonging to each genus. Points are color-coded

by phylum.

most abundant inferred pathways between cases and controls
(Figure 5 and Table S4). However, feature selection analysis
identified the proteasome pathway, which was not among the
top most abundant inferred pathways) to be statistically higher
in cases compared to controls (log2FC= 1.02, p= 0.045).

DISCUSSION

The design of this first study of the microbial composition
of GM for a common metabolic disorder (T2D) provided
opportunities to investigate two main questions, namely “what
is the distribution of GM in free living urban dwellers in SSA?”
and “Does the GM profile differ between cases and controls?.”
Similar to previous GM studies conducted in SSA and other
human populations (De Filippo et al., 2010, 2017; Schnorr et al.,
2014; Morton et al., 2015; Hansen et al., 2019), we found that
Firmicutes was the single largest microbial community in the
control population (Human Microbiome Project Consortium,
2012; Costea et al., 2018). However, in contrast to the
other reports including some published African GM studies
(De Filippo et al., 2010, 2017; Human Microbiome Project
Consortium, 2012; Costea et al., 2018), the relative abundance
of Actinobacteria (Coriobacteriaceae, Bifidobacteriaceae) was
approximatively twice (8%) what had been previously reported
and considerably higher than Bacteroidetes, which is usually the
second most abundant phylum in other populations (Human
Microbiome Project Consortium, 2012; Costea et al., 2018). Also,
in contrast, Bifidobacterial species were not the most represented

in the gut of these individuals but rather Coriobacterial species,
specifically Collinsella was the most abundant. The rank shift
between Actinobacteria and Bacteroidetes in this study sample
compared to other populations is remarkable yet not well-
understood. Actinobacteria plays important physiological roles
in the gut including the breakdown of resistant starch, the
production of acetate (gut barrier), and the development of
the immune system (Binda et al., 2018). The presence of
Actinobacteria in the gut is influenced by many factors including
diet. There is evidence that the abundance of Collinsella is a
function of the host dietary intake and increases with low-fiber
diet (Gomez-Arango et al., 2018). Others have also reported
a positive correlation between high-fat diet and Actinobacteria
abundance (Binda et al., 2018). Collinsella is thought to
affect both gut leakage and the tight junction proteins in
enterocytes, two attributes of metabolic endotoxemia (Gomez-
Arango et al., 2018). Potential explanations for the observed
differences between the findings of this study and previously
published studies of African populations include differences in
dietary patterns, urbanization, and changes in diet due to the
nutritional transition.

The GM of cases showed distinct patterns compared to that of
the controls. First, α-diversity was higher in cases. This finding
contrasts with few early reports in T2D where α-diversity is often
decreased (Larsen et al., 2010; Lambeth et al., 2015; Dominguez-
Bello et al., 2019). This observation may be due to treatment
and/or lifestyle changes (e.g., diet, physical activity) that are
prescribed following diabetes diagnosis as supported by our
analyses that treatment may contribute to increased α-diversity.
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TABLE 4 | Feature selection analysis for gut microbiome in cases vs. controls: the AADM study.

Phylum Family Genus Strain log2FC P Adjusted P value

Actinobacteria Coriobacteriaceae Collinsella Unclassified −3.14 1.84 × 10−7 4.01 × 10−5

Actinobacteria Coriobacteriaceae 94otu12706 Unclassified −1.29 0.002 0.04

Actinobacteria Coriobacteriaceae _Adlercreutzia Unclassified −1.79 9.7 × 10−6 0.0008

Firmicutes Lachnospiraceae Anaerostipes Unclassified −2.46 2.0 × 10−7 4.01 × 10−5

Firmicutes Lachnospiraceae Epulopiscium Unclassified −2.17 0.0008 0.02

Firmicutes Lachnospiraceae Epulopiscium (Cellulosilyticum ruminicola)# –3.11 2.7 × 10−7 4.2 × 10−5

Firmicutes Lachnospiraceae 94otu29676 Unclassified 1.14 0.0010 0.025

Firmicutes Lachnospiraceae 94otu9710 (Ruminococcus lactaris ATCC 29176) –1.49 0.0003 0.01

Firmicutes Peptostreptococcaceae 94otu24718 Unclassified −1.46 0.0006 0.02

Firmicutes Peptostreptococcaceae Peptostreptococcus Unclassified 1.30 0.002 0.04

Firmicutes Peptostreptococcaceae Unclassified ([Clostridium] glycolicum) –1.28 1.4 × 10−5 0.001

Firmicutes Clostridiaceae Clostridium unclassified −1.58 5.4 × 10−6 0.0005

Firmicutes Clostridiaceae Clostridium (Clostridium butyricum)# –1.76 0.0004 0.014

Firmicutes Clostridiaceae 94otu972 (Clostridium paraputrificum)# –2.51 8.3 × 10−5 0.005

Firmicutes Clostridiaceae unclassified Unclassified −1.96 5.3 × 10−5 0.003

Firmicutes unclassified unclassified Unclassified −2.80 0.0001 0.007

Firmicutes Ruminococcaceae unclassified Unclassified 1.19 0.0002 0.011

Firmicutes Ruminococcaceae Ruminococcus Unclassified −2.62 2.1 × 10−7 4.01 × 10−5

Firmicutes Ruminococcaceae 94otu17229 Unclassified 1.41 8.1 × 10−5 0.005

Firmicutes Ruminococcaceae 94otu6476 Unclassified −1.90 0.002 0.04

Firmicutes Ruminococcaceae 94otu27110 Unclassified 1.16 0.0009 0.02

Firmicutes Ruminococcaceae 94otu6043 Unclassified 1.70 5.4 × 10−5 0.003

Firmicutes Ruminococcaceae 94otu34076 Unclassified 1.07 0.0005 0.01

Firmicutes Christensenellaceae 94otu29530 Unclassified 1.24 0.0004 0.01

Firmicutes 91otu17987 94otu36286 Unclassified 2.04 0.0004 0.01

Firmicutes 91otu8397 94otu30248 Unclassified 1.52 3.4 × 10−6 0.0004

Firmicutes 91otu9176 94otu7814 Unclassified 1.31 0.0010 0.03

Firmicutes Erysipelotrichaceae Eubacterium Unclassified 1.48 0.002 0.045

Firmicutes Lactobacillaceae Pediococcus Unclassified −1.72 0.0007 0.02

Proteobacteria Desulfovibrionaceae Desulfovibrio Unclassified 1.60 0.0004 0.01

Proteobacteria Desulfovibrionaceae Desulfovibrio (Desulfovibrio piger ATCC 29098) 1.50 0.0019 0.04

Bacteroidetes Prevotellaceae Prevotella Unclassified 2.66 3.5 × 10−7 4.5 × 10−5

Bacteroidetes Paraprevotellaceae g__94otu4655 Unclassified 1.96 0.0011 0.03

Bacteroidetes 91otu4650 g__94otu10519 Unclassified 2.87 2.2 × 10−8 1.7 × 10−5

Bacteroidetes f__Rikenellaceae g__94otu34056 Unclassified 1.50 0.0017 0.04

In bold are shown the 6 significantly different OTUs with strain level annotation.
#Annotates OTUs with the largest fold change (FC) and lower in cases compared to controls.

Second, beta-diversity was associated with T2D but with no
distinct clustering when all the phylogenic taxa were used to
visualize the data. This suggests that identified correlations are
driven by a subset of OTU at lower taxonomic levels as shown by
the univariate differential abundance analysis (feature selection).

Firmicutes were decreased in cases compared to controls with
Clostridiaceae and Peptostreptococcus explaining most of the
difference. A study from Denmark also showed that Firmicutes
and Clostridiales were significantly reduced in T2D (Larsen et al.,
2010). In contrast, a study from China showed an increase
in the abundance of Firmicutes in T2D (Zhang et al., 2013).
While conflicting findings regarding the direction of change in
the abundance of Firmicutes in relation to diabetes has been

attributed to difference in ancestry, geographic regions, eating
habits, and research methods (Han and Lin, 2014), it should be
noted that these two studies had small numbers (fewer than 20
each) of cases.

Several OTUs at the genus level were differentially abundant
between cases and controls. These OTUs included Clostridium
and Anaerostipes species (e.g., Clostridium paraputrificum, and
Clostridium butyricum) that were significantly decreased in cases
compared to controls. It is known that T2D patients have
decreased butyrate-producing bacteria and that reduced butyrate
production is associated with insulin resistance (Gao et al., 2009;
Qin et al., 2012). In fact, most Clostridium and Anaerostipes
spp. are butyrate producers in the colon (Rivière et al., 2016).
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FIGURE 5 | Proportional abundance of the top inferred genes (A) and pathways (B) for controls and cases gut microbiome: the AADM study.

TABLE 5 | Feature selection analysis for inferred genes in cases vs. controls: list of 16 genes with significant unadjusted p < 0.05 and log2FC≥1.

KO Gene log2FC Unadjusted p-value

K07033 Uncharacterized protein 1.34 7.3 × 10−5

K06989 nadX, ASPDH; aspartate dehydrogenase [EC:1.4.1.21] 1.27 0.010

K02230 cobN; cobaltochelatase CobN [EC:6.6.1.2] 1.22 0.007

K01802 peptidylprolyl isomerase [EC:5.2.1.8] 1.13 0.008

K16323 yxjA, nupG; purine nucleoside transport protein 1.12 0.002

K01858 INO1, ISYNA1; myo-inositol-1-phosphate synthase [EC:5.5.1.4] 1.11 0.013

K00641 metX; homoserine O-acetyltransferase/O-succinyltransferase [EC:2.3.1.31 2.3.1.46] 1.09 0.001

K01278 DPP4, CD26; dipeptidyl-peptidase 4 [EC:3.4.14.5] 1.08 0.042

K03658 helD; DNA helicase IV [EC:3.6.4.12] 1.07 0.014

K09005 Uncharacterized protein 1.07 0.002

K02977 RP-S27Ae, RPS27A; small subunit ribosomal protein S27Ae 1.06 0.013

K02303 cobA; uroporphyrin-III C-methyltransferase [EC:2.1.1.107] 1.06 0.004

K11031 slo; thiol-activated cytolysin 1.05 0.006

K02076 zurR, zur; Fur family transcriptional regulator, zinc uptake regulator 1.05 0.004

K06988 fno; 8-hydroxy-5-deazaflavin: NADPH oxidoreductase [EC:1.5.1.40] 1.03 0.005

K08170 norB, norC; MFS transporter, DHA2 family, multidrug resistance protein 1.02 0.001

The C. butyricum, a strictly anaerobic spore-forming bacillus, is
a common human and animal gut commensal bacterium that
produces a high amount of butyrate. Certain C. butyricum strains
have been shown to have probiotic properties and are used
as probiotics in Asia (Cassir et al., 2016). In murine study, a
daily oral gavage with C. butyricum improved glycemic indexes
(fasting glucose, glucose tolerance, insulin tolerance, GLP-1, and
insulin secretion), and decreased blood lipids and inflammatory
tone providing early evidence for the anti-diabetic effect of C.
butyricum (Jia et al., 2017).

Our study also found Desulfovibrio piger, a sulfate-reducing
spp., to be enriched in T2D. Desulfovibrionaceae were
significantly abundant in animal model of metabolic syndrome
and in animals on high-fat diet (Zhang et al., 2010). Sulfate-
reducing spp. produce hydrogen sulfide (H2S), an essential signal
transmitter that influence several biological systems including
endocrine, cardiovascular, and nervous systems. H2S directly
activates the secretion of glucagon-like peptide−1 (GLP-1) and

increasing sulfate-reducing spp. in mice using a prebiotic diet
led to enhanced GLP-1 secretion, enhanced insulin secretion,
improved glucose tolerance, and reduced feeding (Pichette
et al., 2017). Interestingly, it has been shown that metformin
induce GLP-1 secretion (Sharma and Tripathi, 2019), but
the relationship between diabetes treatment e.g., metformin
and increased abundance of Desulfovibrionaceae is currently
unclear. In this study, we did not find any significant association
between metformin treatment and the relative abundance of
Desulfovibrionaceae, an observation that could be due to small
sample size. Therefore, it will be important to determine if
treatment plays a role in the increase of sulfate-reducing spp.
or if the increased in sulfate-reducing spp. as seen in our study
is an intrinsic part of the pathogenesis of T2D. In contrast to
the studies that found increased opportunistic pathogens (e.g.,
Clostridium hatheway, Bacteroides caccae, Escherichia Coli,
and Eggerthella lenta) in diabetes or in mucin-degrading spp.
(e.g., Akkermansia) in metformin-treated diabetics (Qin et al.,
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2012), we did not find any evidence of such enrichment in this
study. However, we found that metformin may contribute to the
increase of the mean relative abundance of Verrumicrobiaceae
which includes Akkermansia spp.

We inferred genes and pathways abundance that may be
related to the observed compositional changes. Piphillin analysis
revealed an enrichment in proteasome pathway in diabetic
patients compared to controls; decreased proteasome activity
has been implicated in T2D pathology through apoptosis of
beta-pancreatic cells in glucotoxic environment in murine
models. However, GLP-1-receptor agonist Exendin-4 preserves
proteasome activity from the deleterious effects of chronic high
glucose (Broca et al., 2014). In light to this later evidence and
the relationship between Desulfovibrionaceae and the activation
of GLP-1 via H2S as discussed above, one can hypothesize that
the increased in sulfate-reducing spp. in these diabetic patients
may play a role in preserving proteasome activity.

The strengths of this study include the population studied;
that is a sub-Saharan urban and adult sample which contrast
with previous GM African studies in rural, hunter-gatherer, or
pediatric cohorts. Additionally, the design of the study (case-
control) allowed us to simultaneously investigate the microbial
composition in controls as a proxy of the population and to
conduct a comparative microbial study between normoglycemic
individuals (controls) and individuals with T2D (cases). One
limitation of the study is the inability to properly evaluate the
bi-directional relationship between diabetes, diabetes treatment
and microbial composition. This was due to the cross-sectional
study design which would not allow for inference of longitudinal
relationships. In addition, the small number of cases that had
no treatment (only 3) and in some treatment groups meant
low statistical power to evaluate the potential effect of a specific
medication (e.g., SU-only) on GM in this population.

In conclusion, we have shown that non-T2D adults living in a
Nigerian city have a characteristic microbial composition that is
mainly composed of Firmicutes (Clostridiales) andActinobacteria
(∼90%). The GM of cases have a bacterial signature consisting
of increased sulfate-reducing spp. Desulfovibrio piger, Prevotella,
Peptostreptococcus, and Eubacterium and is characterized by
a moderate dysbiosis which features a decrease in Firmicutes.
We also confirmed some previously reported findings such as
the decrease in butyrate-producing bacteria seen in diabetes
in other populations. Our findings illustrate the importance
of studying the microbiome of all human populations. Many
factors affect microbial diversity and composition in health
and disease,—including genetic background, diet, travel, and

co-existence of other microorganisms. Therefore, a better
understanding of the relationship between these different factors
in developing countries, where the prevalence of cardio-
metabolic diseases is steadily increasing, remains critical for
a more comprehensive identification of risk factors and in
developing preventive strategies.

DATA AVAILABILITY STATEMENT

Sequence data are available from SRA BioProject PRJNA607849
(http://www.ncbi.nlm.nih.gov/bioproject/607849).

ETHICS STATEMENT

The study was performed in accordance with relevant guidelines
and regulations and approved by the National Health Research
Ethics of Nigeria and the National Institutes of Health
Institutional Review Boards.

AUTHOR CONTRIBUTIONS

AD designed the study, analyzed data, interpreted the results, and
drafted the manuscript. AA designed the study, analyzed data,
reviewed the results, and edited the manuscript. JZ performed
data cleaning and management. LL managed samples and
assisted with laboratory procedures. SA contributed to study
design, did study implementation, and collected clinical data. CA
contributed to study design, study implementation, and reviewed
the manuscript. CR conceived of the study, did study design,
provided the resources to conduct the study, and reviewed
the manuscript.

FUNDING

The Africa America Diabetes Mellitus (AADM) study was
supported by NIH Grant No. 3T37TW00041-03S2 from the
National Institute on Minority Health and Health Disparities.
This study was also supported by the Intramural Research
Program of the Center for Research on Genomics and Global
Health with funding from NHGRI and NIDDK.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcimb.
2020.00063/full#supplementary-material

REFERENCES

Adeyemo, A. A., Tekola-Ayele, F., Doumatey, A. P., Bentley, A. R., Chen, G.,

Huang, H., et al. (2015). Evaluation of genomewide association study associated

type 2 diabetes susceptibility loci in sub Saharan Africans. Front. Genet. 6:335.

doi: 10.3389/fgene.2015.00335

Bech-Nielsen, G. V., Hansen, C. H., Hufeldt, M. R., Nielsen, D. S., Aasted, B.,

Vogensen, F. K., et al. (2012). Manipulation of the gut microbiota in C57BL/6

mice changes glucose tolerance without affecting weight development and gut

mucosal immunity. Res. Vet. Sci. 92, 501–508. doi: 10.1016/j.rvsc.2011.04.005

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B

57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Binda, C., Lopetuso, L. R., Rizzatti, G., Gibiino, G., Cennamo, V., and Gasbarrini,

A. (2018). Actinobacteria: a relevant minority for the maintenance of gut

homeostasis. Dig. Liver Dis. 50, 421–428. doi: 10.1016/j.dld.2018.02.012

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11 February 2020 | Volume 10 | Article 63

http://www.ncbi.nlm.nih.gov/bioproject/607849
https://www.frontiersin.org/articles/10.3389/fcimb.2020.00063/full#supplementary-material
https://doi.org/10.3389/fgene.2015.00335
https://doi.org/10.1016/j.rvsc.2011.04.005
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.dld.2018.02.012
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Doumatey et al. Microbial Composition in T2D and Controls in West Africa

Bray, J., and Curtis, J. (1957). An ordination of the upland forest communities of

Southern Wisconsin. Ecol. Monogr. 27, 325–349. doi: 10.2307/1942268

Broca, C., Varin, E., Armanet, M., Tourrel-Cuzin, C., Bosco, D., Dalle,

S., et al. (2014). Proteasome dysfunction mediates high glucose-induced

apoptosis in rodent beta cells and human islets. PLoS ONE 9:e92066.

doi: 10.1371/journal.pone.0092066

Brunkwall, L., and Orho-Melander, M. (2017). The gut microbiome as a target

for prevention and treatment of hyperglycaemia in type 2 diabetes: from

current human evidence to future possibilities. Diabetologia 60, 943–951.

doi: 10.1007/s00125-017-4278-3

Cassir, N., Benamar, S., and La Scola, B. (2016). Clostridium butyricum: from

beneficial to a new emerging pathogen. Clin. Microbiol. Infect. 22, 37–45.

doi: 10.1016/j.cmi.2015.10.014

Ce, S. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27,

623–656. doi: 10.1002/j.1538-7305.1948.tb00917.x

Cheung, Y. B., Xu, Y., Mangani, C., Fan, Y. M., Dewey, K. G., Salminen, S. J., et al.

(2016). Gut microbiota in Malawian infants in a nutritional supplementation

trial. Trop. Med. Int. Health 21, 283–290. doi: 10.1111/tmi.12650

Costea, P. I., Hildebrand, F., Arumugam, M., Backhed, F., Blaser, M. J., Bushman,

F. D., et al. (2018). Enterotypes in the landscape of gut microbial community

composition. Nat. Microbiol. 3, 8–16. doi: 10.1038/s41564-017-0072-8

Davis, J. C., Lewis, Z. T., Krishnan, S., Bernstein, R. M., Moore, S. E., Prentice,

A. M., et al. (2017). Growth and morbidity of gambian infants are influenced

by maternal milk oligosaccharides and infant gut microbiota. Sci. Rep. 7:40466.

doi: 10.1038/srep40466

De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S.,

et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative

study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A.

107, 14691–14696. doi: 10.1073/pnas.1005963107

De Filippo, C., Di Paola, M., Ramazzotti, M., Albanese, D., Pieraccini, G., Banci,

E., et al. (2017). Diet, environments, and gut microbiota. A preliminary

investigation in children living in Rural and Urban Burkina Faso and Italy.

Front. Microbiol. 8:1979. doi: 10.3389/fmicb.2017.01979

Dhariwal, A., Chong, J., Habib, S., King, I. L., Agellon, L. B., and Xia, J. (2017).

MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual

and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188.

doi: 10.1093/nar/gkx295

Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., and Blaser, M. J.

(2019). Role of the microbiome in human development. Gut 68, 1108–1114.

doi: 10.1136/gutjnl-2018-317503

Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial

amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/nmeth.2604

Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S.,

et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures

in the human gut microbiota. Nature 528, 262–266. doi: 10.1038/nature15766

Gao, Z., Yin, J., Zhang, J., Ward, R. E., Martin, R. J., Lefevre, M., et al. (2009).

Butyrate improves insulin sensitivity and increases energy expenditure in mice.

Diabetes 58, 1509–1517. doi: 10.2337/db08-1637

Gomez-Arango, L. F., Barrett, H. L., Wilkinson, S. A., Callaway, L. K., Mcintyre,

H. D., Morrison, M., et al. (2018). Low dietary fiber intake increases Collinsella

abundance in the gutmicrobiota of overweight and obese pregnant women.Gut

Microbes 9, 189–201. doi: 10.1080/19490976.2017.1406584
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