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Fungi are ubiquitous. Yet, despite our frequent exposure to commensal fungi of

the normal mammalian microbiota and environmental fungi, serious, systemic fungal

infections are rare in the general population. Few, if any, fungi are obligate pathogens

that rely on infection of mammalian hosts to complete their lifecycle; however, many

fungal species are able to cause disease under select conditions. The distinction between

fungal saprophyte, commensal, and pathogen is artificial and heavily determined by the

ability of an individual host’s immune system to limit infection. Dramatic examples of

commensal fungi acting as opportunistic pathogens are seen in hosts that are immune

compromised due to congenital or acquired immune deficiency. Genetic variants that

lead to immunological susceptibility to fungi have long been sought and recognized.

Decreased myeloperoxidase activity in neutrophils was first reported as a mechanism

for susceptibility to Candida infection in 1969. The ability to detect genetic variants and

mutations that lead to rare or subtle susceptibilities has improved with techniques such

as single nucleotide polymorphism (SNP) microarrays, whole exome sequencing (WES),

and whole genome sequencing (WGS). Still, these approaches have been limited by

logistical considerations and cost, and they have been applied primarily to Mendelian

impairments in anti-fungal responses. For example, loss-of-function mutations in CARD9

were discovered by studying an extended family with a history of fungal infection. While

discovery of such mutations furthers the understanding of human antifungal immunity,

major Mendelian susceptibility loci are unlikely to explain genetic disparities in the rate

or severity of fungal infection on the population level. Recent work using unbiased

techniques has revealed, for example, polygenic mechanisms contributing to candidiasis.

Understanding the genetic underpinnings of susceptibility to fungal infections will be a

powerful tool in the age of personalized medicine. Future application of this knowledge

may enable targeted health interventions for susceptible individuals, and guide clinical

decision making based on a patient’s individual susceptibility profile.
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SUSCEPTIBILITY TO FUNGAL DISEASES

We are constantly exposed to fungi capable of causing disease.
Every human is colonized with a commensal fungal mycobiome
(Huffnagle and Noverr, 2013), and it is nearly impossible to
eliminate the spores of saprophytic environmental fungi even
from the cleanest settings (Oberle et al., 2015). It should not
be surprising, then, that superficial fungal infections are among
the most common infectious diseases worldwide (White et al.,
2014). Yet, remarkably, most people do not regularly get fungal
infections, and invasive fungal infections are rare in the general
population (Bongomin et al., 2017; Li et al., 2017).

One population at high risk of fungal illness is those who
are immunocompromised. This has long been recognized; for
example, Acquired Immunodeficiency Syndrome (AIDS) was
first reported as a case series of opportunistic fungal infections
in homosexual men (Centers for Disease Control, 1981). The
number of “at risk” immunocompromised people is growing
largely due to secondary causes, e.g., immunosuppressive drugs
used in the setting of malignancy, organ transplantation, or
autoimmune disease (Yapar, 2014; Pana et al., 2017).

Primary immunodeficiencies (PIDs) continues to be a threat.
PIDs are inherited defects in the immune response; depending
on the affected pathway(s), PIDs have different severity, onset,
and risks of infection by certain groups of organisms. Perhaps
the most dramatic PID is Severe Combined Immunodeficiency
(SCID), a condition where the absence of an adaptive immune
response uniformly leads to overwhelming infections and death
in the first few years of life in the absence of stem cell
transplantation. SCID was first described in 1950 and soon
recognized as heritable (Buckley, 2004).

A number of monogenic deficits in immunity engender
fungal illness. For example, multiple different loss-of-function
mutations in CARD9 have been associated with autosomal
recessive inheritance of susceptibility to invasive infections by
fungi, including Candida spp., dermatophytes, and fungal plant
pathogens (Vaezi et al., 2018). Understanding the immune
deficits that underlie “idiopathic” fungal disease in otherwise
healthy people has provided valuable insight into human
antifungal immunity, and there is clinical utility to the
diagnosis of these conditions (e.g., genetic counseling, antifungal
prophylaxis) (Li et al., 2017). Attribution of these PIDs to
biological processes has historically relied on a “candidate gene”
approach, where animalmodels of disease and in vitro assays with
patient cells have guided the search for “lesions” in select genes.

While monogenic, “Mendelian” susceptibility variants have
revealed the pathways that are critical for control of different
pathogens, they are unlikely to explain population-level patterns
in risk of fungal disease. Such monogenic “lesions” in non-
redundant immune pathways are overwhelmingly deleterious;
they confer a substantial risk of illness, and as a result there is
strong purifying selection that favors recognition and control of
infection (Netea et al., 2012).

Fine variations in the immune responses that do not result
in susceptibility to overwhelming infection are more likely to
explain population-level trends in fungal illness. Susceptibility
to mild infections may be maintained in a population

because overly exuberant antimicrobial immune responses can
be disadvantageous; they may cause undue tissue pathology
in response to infection (Jaeger et al., 2016), or engender
autoimmunity (Zhernakova et al., 2010; Ramos, 2017). Thus, a
person’s genetic susceptibility is the net result of many variants
that each alter immune function in nearly imperceptible ways.
Such variants are under substantially less selective pressure than
those underlying PIDs andMendelian susceptibility variants, and
are more prone to changes in frequency due to stochastic effects
like genetic drift (Netea et al., 2012).

Advances in bioinformatic approaches have made it more
practical to screen a large number of donors, and to search
widely in the genome for rare variants or mutations. This has
facilitated the discovery of many common variants that confer
a small risk of select infections. High-quality studies seeking
such risk variants will involve a large number of participants
that share a well-defined set of clinical parameters, plus a large
number of well-matched participants serving as controls, and
efforts will be made to validate functional impacts of risk variants.
Validation may not always be possible due to the limitations of
experimental systems, in which case animal models of illness
may provide corroborating evidence to demonstrate biological
feasibility. Consideration must be given to confounding factors
that could introduce error. One notable confounder in the
search for risk variants is ethnic/racial differences between study
group and control. Thus, even a well-conducted study may
have limited generalizability as it only involves participants of
a given genetic background. Replicating studies with cohorts
from different genetic backgrounds is valuable in beginning to
understand how given risk variants may be masked by epistatic
effects. Throughout this review, the ethnic/racial background of
participants in a given study is reported using the demographic
terms used by the authors of the study.

This review addresses genetic susceptibility to fungal
infection, with an emphasis on the growing understanding
of common, subtle variants that underlie population-level
patterns of disease. We present “case studies” of illness caused
by four groups of fungal pathogens: dermatophytes, Candida
spp., Aspergillus spp., and dimorphic fungi endemic to the
United States. Each section begins with an overview of relevant
ecological, evolutionary, and epidemiologic features, then
proceeds to human susceptibility to infection. Fungal diseases
are discussed in order of global prevalence.

DERMATOPHYTOSIS

Dermatophytic fungal diseases are among the most common
infectious diseases worldwide (White et al., 2014; Bongomin
et al., 2017). This group includes fungi with diverse natural
histories and clinical courses. Dermatophytes are a monophyletic
group of ascomycetes of the genera Trichophyton, Microsporum,
and Epidermophyton (White et al., 2014). Anthropophilic species
are found exclusively on humans, zoophilic species are found on a
number of different animal hosts, and geophilic species are found
in the environment (White et al., 2014). Anthropophilic species
are capable of a commensal lifestyle on human hosts, zoophilic
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species generally cause chronic or mild illness in humans, and
geophilic species that are not adapted to live hosts are a rare
cause of acute illness (White et al., 2014). Studies have identified
a number of virulence factors that determine pathogenicity of
dermatophytes (Gnat et al., 2019).

Dermatophyte infection can lead to illness characterized by
scaly, pruritic rashes. These illnesses are often named by the
location; e.g., tinea pedis for infections affecting the feet, and
tinea capitis for infections affecting the scalp. Local prevalence
of dermatophytic illness is reported to be over 70% in some
populations, and up to one billion people are affected globally
(Bongomin et al., 2017). The development of illness is dependent
on environmental factors like hygiene and humidity; thus,
prevalence of illness is lower in developed areas (Bongomin
et al., 2017). Though dermatophytes are primary pathogens in
that they cause illness in otherwise healthy people, disease is
often mild and self-limiting, and exposure to and colonization
with these fungi without associated disease is well-described
(Abdel-Rahman et al., 2006; Gnat et al., 2019).

Superficial Dermatophytosis
Dermatophyte infection was the subject of the first genome wide
association study (GWAS) of fungal infection. Abdel-Rahman
et al. (2006) studied 446 predominantly African-American
children over 2 years in an urban daycare center, documenting
symptoms of tinea capitis and carriage of the most commonly
associated dermatophyte (T. tonsurans). They found that donors
were either exclusive carriers of one strain, predominant carriers
of one strain with occasional other strains recorded, or “random”
carriers who did not appear to have a predilection for one strain
(Abdel-Rahman et al., 2006). Intriguingly, “random” carriers
had the fewest symptomatic infections (Abdel-Rahman et al.,
2006). Abdel-Rahman and Preuett (2012) then did whole genome
genotyping on 20 children who carried T. tonsurans >90% of
the time, and 20 children who carried the fungus <10% of
the time. The authors identified 21 genes whose genotype was
associated with carriage of the fungus, though they did not
study whether this was correlated with symptoms of tinea capitis.
Genes uncovered in this GWAS were associated with various
different functions, including leukocyte function, remodeling of
extracellular matrix, wound repair, and cutaneous permeability
(Abdel-Rahman and Preuett, 2012). Genotyping an additional
115 children, the authors found that genotype at just 8 of these
genes accounted for about 60% of the variance in carriage rate
(Abdel-Rahman and Preuett, 2012).

Few candidate gene studies have been carried out with patients
suffering from superficial dermatophytosis. CLEC7A-Y238X, an
early stop codon variant that impacts recognition of fungal
β-glucan by the receptor Dectin-1, was reported in a Dutch
family where all were affected by onychomycosis (Ferwerda et al.,
2009). Subsequent studies of CLEC7A-Y238X have described
more subtle clinical phenotypes (discussed below), and have not
discussed an association with superficial dermatophytosis. Other
studies of onychomycosis propose a role for variation at the
Human Leukocyte Antigen (HLA) complex, which is involved
with presentation of extracellular antigens to T cells and initiation
of adaptive responses (Sadahiro et al., 2004; Asz-Sigall et al., 2010;

Garcia-Romero et al., 2012; Carrillo-Melendrez et al., 2016).
The keratinized nail is sometimes thought to be out of reach
of the immune system (Gnat et al., 2019), but these studies
suggest a role for both innate and adaptive immune responses
to onychomycosis.

Chronic and Deep Dermatophytosis
Early observations of disparities between those with
dermatophyte illness and those at risk led to the first studies
proposing a genetic contribution to dermatophytosis. Tinea
imbricata, chronic dermatophytosis with a characteristic pattern
of skin lesions caused by infection with T. concentricum, is
common in some tropical areas (Ravine et al., 1980). The rate
of tinea imbricata differs between people of different racial
backgrounds despite similar exposure risk (Ravine et al., 1980).
Illness begins early in life, and either resolves spontaneously or
becomes chronic (Ravine et al., 1980). One study of 228 families
in Papua New Guinea concluded that risk of persistent tinea
imbricata is likely autosomal recessive (Ravine et al., 1980).
A smaller study of a polygamous Mexican family found an
autosomal dominant pattern of infection (Bonifaz et al., 2004).
The differences between these reports may be due to the small
number of people studied, or reflect a different underlying
genetic determinant of susceptibility.

Immune function in patients with chronic widespread
dermatophytosis (CWD) due to T. rubrum is characterized by
selective functional deficits. Phagocytes from immunocompetent
patients with T. rubrum CWD were less effective at killing
T. rubrum, and produced less hydrogen peroxide and pro-
inflammatory cytokines in response to the fungus, compared
to cells from healthy donors (de Sousa Mda et al., 2015). The
same deficits were not noted when comparing cells stimulated
with maximal stimuli (e.g., LPS), or in a cohort of patients
with acute tinea pedis (de Sousa Mda et al., 2015). Although
genetic studies have not been done on patients with CWD, it
is noteworthy that several of these functional deficits are also
seen in patients with CARD9 deficiency (Drummond et al.,
2015; Liang et al., 2015). CARD9 is the intracellular adaptor for
several pattern recognition receptors (PRRs), including several
C-type lectin receptors (CLRs) that are critical for recognition
of fungi (Zhong et al., 2018). Loss-of-function mutations in
CARD9 are the only known genetic etiology underlying deep
dermatophytosis, where dermatophytes invade through skin and
often disseminate (Lanternier et al., 2013; Gnat et al., 2019).
The immune deficits that render patients with CARD9 deficiency
susceptible to fungal infection are discussed at length below, in
the section on “idiopathic” infections by Candida spp.

Summary
Dermatophytosis is one of the most common infectious diseases
globally, often presenting as self-limiting superficial infections.
Environmental factors strongly influence the development of
disease. Still, carriage of dermatophytic fungi is correlated with
illness, and this is influenced strongly by a small number of
genes involved in leukocyte function and other processes (Abdel-
Rahman and Preuett, 2012). Multiple studies have proposed a
role for host genetics in the development of illness, including
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observations of possible Mendelian inheritance patterns for
chronic dermatophytosis (Ravine et al., 1980; Bonifaz et al.,
2004). Candidate gene studies implicate fungal recognition,
especially signaling through the adaptor CARD9, as a critical
component in controlling dermatophytosis (Lanternier et al.,
2013).

CANDIDIASIS

Candida spp. are responsible for an estimated 138 million cases
per year of recurrent vulvovaginal candidiasis (RVVC), in excess
of 3 million cases per year of mucosal candidiasis (including
oropharyngeal and esophageal), and about 750 thousand cases
per year of invasive candidiasis and candidemia (Bongomin
et al., 2017; Denning et al., 2018). Candida spp. are the fourth
leading pathogen, and most common fungal pathogen causing
healthcare-associated infections (Magill et al., 2018). Candidemia
is a feared complication of immunosuppression, with case
mortality rates of over 20% (Pagano et al., 2017). Still, the
most prevalent clinical illness caused by Candida spp. is, by far,
primary infections in immunocompetent women (Sobel, 2007;
Bongomin et al., 2017; Denning et al., 2018).

Colonization with Candida spp. occurs within the first month
of life (Ward et al., 2018), and Candida spp. are known to be
commensal with humans (Soll et al., 1991; Huffnagle and Noverr,
2013; Neville et al., 2015; Nash et al., 2017). There is evidence that
colonization with Candida spp. is important in the development
of antifungal immunity, conferring protection against future
fungal illness (Shao et al., 2019). Yet genetic typing has found that
the Candida strains that cause disease originate from the healthy
mycobiome (Odds et al., 1989; Gouba and Drancourt, 2015).
Fungal biology plays a role in the disease process; the transition
from the “commensal” yeast morphology to a “pathogenic”
filamentous morphology is a well-studied virulence factor for C.
albicans (Cheng et al., 2011; Cassone and Cauda, 2012; Pais et al.,
2019).

Though C. albicans has long been the most common agent of
candidiasis, the number of infections attributed to non-albicans
Candida spp. (NAC) is increasing (Bongomin et al., 2017). This
is concerning since the NAC generally have a higher level of
resistance to clinically important antifungals (Bongomin et al.,
2017).Candida is not amonophyletic genus;C. glabrata, themost
common etiological agent of NAC infections, is more closely
related to Saccharomyces cerevisiae than C. albicans (Fitzpatrick
et al., 2006). One notable difference is that C. glabrata does not
undergo the yeast-to-pseudohyphae transition that is important
for pathogenicity of C. albicans (Pais et al., 2019).

Vulvovaginal Candidiasis (VVC)
VVC affects about 75% of women at least once in their life (Sobel,
2007; Denning et al., 2018). Estimating the prevalence of VVC
is complicated by a lack of diagnostic workup and reporting.
Relying on self-reported data carries a risk of including myriad
other conditions that may be mistaken for VVC. After taking
this into account, Denning et al. estimated that about 138 million
women per year are affected by RVVC (defined as four or more
cases of VVC in 1 year) (Denning et al., 2018).

While most cases of RVVC are not attributable to a known
comorbidity, many conditions are known to increase risk (Sobel,
2007; Denning et al., 2018). These include diabetes, cystic fibrosis,
antibiotic use, pregnancy, and hormone replacement therapy
(Sobel, 2007; Denning et al., 2018). Intriguingly, HIV infection
and immunodeficiency do not confer risk of VVC; this, along
with corroborating studies of a murine model of VVC, suggests
that adaptive immunity is dispensable for prevention of VVC
(Verma et al., 2017; Peters et al., 2019). Some features of the
vaginal microbiome may confer resistance to VVC (Zangl et al.,
2019). There are reported differences in the vaginal microbiomes
of women of different ethnicities, even when donors live in the
same area (Ravel et al., 2011). This may account for some of the
inconsistencies in reported associations between select variants
and risk of VVC when studies are carried out in genetically
distinct populations.

An increasing number of genetic studies of susceptibility to
RVVC support a critical role for innate immunity. Mannose-
binding lectin (MBL, coded by the gene MBL2) is a soluble
CLR that activates the complement cascade, facilitating
opsonophagocytosis of fungi (Brouwer et al., 2008). A meta-
analysis of five candidate gene studies found that a common
loss-of-function variant MBL2 allele B confers risk of RVVC
when compared to the wild-type MBL2 allele A (Nedovic et al.,
2014). The risk of RVVCwithMBL2 genotype B,B was substantial
(MBL2 genotype B,B vs. A,A; odds ratio= 12.68, 95% confidence
interval = 3.74–42.92) (Nedovic et al., 2014). This meta-analysis
included studies in European and East Asian (Chinese) donors,
and findings have since been replicated by studying MBL2
promoter variants in South Asian (Indian) donors (Kalia et al.,
2017). Interestingly, studies with European (Italian) (Milanese
et al., 2008) and Mexican (Velazquez-Hernandez et al., 2017)
donors have failed to find an association between variation
at MBL2 and risk of RVVC. This could reflect either slight
differences in donor characteristics, or unappreciated epistatic
effects masking the role ofMBL2 in these populations.

Risk variants have been identified in other receptors involved
in the innate recognition of Candida spp. Recently, a WES
approach in two independent cohorts of Northern and Southern
Europeans identified variants in SIGLEC15 associated with
RVVC (Jaeger et al., 2019). The authors go on to validate that
SIGLEC15, a lectin that binds sialic acid-containing structures,
binds Candida spp. and is upregulated by immune cells
upon exposure to Candida (Jaeger et al., 2019). They further
demonstrate that risk variants lead to an altered cytokine
profile after stimulation of immune cells with heat-killed C.
albicans yeast, and that SIGLEC15 silencing leads to an increased
inflammatory response and fungal burden in a murine model
of vaginal candidiasis (Jaeger et al., 2019). Recognition of β

glucans in the yeast cell wall may be important in RVVC. A
coding variant in TLR2 is associated with RVVC (Rosentul et al.,
2014a), and multiple studies have proposed a role for Dectin-1.
CLEC7A-Y238X, a variant that decreases the ability of Dectin-
1 to recognize to β glucan, was found to confer risk in studies
of Dutch (Ferwerda et al., 2009) and Caucasian (De Luca et al.,
2013) women, but not in Western-European (Rosentul et al.,
2014a), Turkish (Usluogullari et al., 2014), or Iranian (Zahedi

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4 February 2020 | Volume 10 | Article 69

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Merkhofer and Klein Genetic Variation in Anti-fungal Immunity

et al., 2016) women. A study of Indian women found other
CLEC7A variants to be associated with risk of RVVC (Kalia et al.,
2018). Studies have failed to find associations between RVVC and
polymorphisms in other PRRs (TLR1, TLR4, NOD2) or CARD9
(Morre et al., 2002; van der Graaf et al., 2006a; Rosentul et al.,
2014a).

There are conflicting reports on the role of the inflammasome
and IL-1β signaling in the risk of RVVC, perhaps suggesting
alternative mechanisms for susceptibility to RVVC. NLRP3
encodes one component of the inflammasome, which cleaves
and activates the pro-inflammatory cytokines IL-1β and IL-
18. Intron 4 of NLRP3 contains a variable number tandem
repeats (VNTR). Decreased activity of NLRP3, associated with
NLRP3 allele 7, is associated with RVVC (Lev-Sagie et al., 2009).
Donor cells stimulated with C. albicans produce less IL-1β when
carrying NLRP3 genotype 7,7 vs. 12,12 (Lev-Sagie et al., 2009).
Decreased NLRP3 activity also confers susceptibility to VVC
in a murine model (Bruno et al., 2015). Interestingly, another
study found the opposite association betweenNLRP3 activity and
RVVC. Jaeger et al. (2016) reported that the hyper-active NLRP3
genotype 12,9 is associated with RVVC and the NLRP3 genotype
7,7 is not associated (p = 0.06). In support of their reported
association, the authors noted increased IL-1β production in
response to C. albicans for NLRP3 genotype 12,9 vs. 12,12
(Jaeger et al., 2016). Both genetic studies of NLRP3 involved
several hundred participants of white and Western-European
background, respectively (Lev-Sagie et al., 2009; Jaeger et al.,
2016). Indeed, both models of susceptibility are compatible; it
may be that both over- and under-activity of NLRP3 engender
symptomatic infection depending on the activity of other
components of the immune response. Interestingly, infection is
not a prominent feature of the spectrum of conditions caused
by gain-of-function variants in NLRP3 (Gupta et al., 2019),
suggesting that overactivity of NLRP3 is likely not sufficient to
predispose an individual to RVVC. While properly calibrated
host responses limit pathogenesis, both too much and too little
inflammation can lead to disease (Robinson and Huppler, 2017).

A third avenue of research has implicated variants affecting
cellular immunity in risk of RVVC. De Luca et al. described
variants in IL22A and IDO1 significantly associated with RVVC
(and not VVC) in Caucasian women (De Luca et al., 2013).
They demonstrated that risk variants were associated with
decreased production of IL-22 and IDO1, and downstream
deficits in calprotectin and kynurenine levels, respectively
(De Luca et al., 2013). A study of Latvian women found
that a variant in the IL4 promoter was associated with
higher levels of IL-4 in vaginal lavage and elevated risk
of RVVC (Babula et al., 2005). Considered together, these
reports suggest that IL-22-producing cells, including Th17
cells, are important in RVVC and that responses nurtured
by IL-4, including Th2 cells, confer risk. Interestingly, though
IL17A and IL22 are highly up-regulated during infection in
a murine model of VVC, there was no difference in fungal
burden or neutrophil responses between IL22−/− mice and
wildtype (Peters et al., 2019). Likewise, lack of CD4+ T cells
in humans, for example during AIDS, does not confer risk
of RVVC.

A final mechanism that may confer risk of RVVC involves
glycosylation of the vaginal mucosa. Three small studies have
addressed the relationship between Lewis antigen secretor status
and risk of RVVC in humans (Hilton et al., 1995; Chaim
et al., 1997; Kulkarni and Venkatesh, 2004). Results from the
earliest study are difficult to interpret in light of potential
error due to a small number of African American donors that
could account for observed differences (Hilton et al., 1995).
The other two studies, however, found that non-secretor status
was a risk factor for RVVC in white women (Chaim et al.,
1997) and VVC in Indian women (Kulkarni and Venkatesh,
2004). Compellingly, FUT2−/− mice, a model for non-secretors,
are more susceptible than wild type controls to C. albicans
vaginitis (Hurd and Domino, 2004; Domino et al., 2009).
Underlying mechanisms for this susceptibility have not been
studied. However, a growing body of evidence has related
FUT2 activity and downstream mucosal fucosylation to altered
composition of the gut microbiome, risk of bacterial and
viral infections, and several autoimmune conditions (Kononova,
2017). In addition to differences that exist at steady state,
there is evidence linking IL-22 and FUT2 during infection. In
a mouse model of opportunistic bacterial infection, signaling
through IL-22RA1 was required for Fut2 enzyme activity and the
resultant fucosylation (Pham et al., 2014). Direct replacement of
2′-fucosyllactose, the product of Fut2, restrained the intestinal
infection phenotype in IL22RA1−/− mice (Pham et al., 2014).

Opportunistic Mucosal Infections by

Candida spp.
Oropharyngeal candidiasis (OPC) and esophageal candidiasis
(OEC) are closely associated with the immunocompromised
state. Together, these conditions affect about 5% of HIV-positive
patients on antiretroviral therapy and 20% of those with low
T cell counts (Bongomin et al., 2017). Infection with HIV may
engender candidiasis by targeting and depleting Candida-specific
CD4+ T cells (Liu et al., 2016) and otherwise impacting host
responses in such a way that selects for fungal virulence (Cassone
and Cauda, 2012). Another risk factor for oral candidiasis
is IL-17 blockade used to treat inflammatory diseases (Nash
et al., 2018); this is an interesting corollary to the pathways
implicated in candidate gene studies of chronic mucocutaneous
candidiasis (CMC), as discussed in the section on “idiopathic”
infections by Candida spp. Yet, the population “at risk” is much
greater than the number affected, implying a possible role for
genetic susceptibility.

Studies in animal models of OPC have demonstrated that
CD4+ Th17 cells are involved in the control of infection
(Hernandez-Santos et al., 2013). Compensatory CD8+ Tc17
cells and innate IL-17-producing cells confer protection in the
context of CD4-deficiency (Hernandez-Santos et al., 2013) or
loss of pathways required for Th17 responses (e.g., CARD9−/−

mice) (Bishu et al., 2014). Type 3 innate lymphoid cells cells
(ILC3), natural Th17 cells, and γδT cells are innate sources of
IL-17 in this OPC model. Other models suggest a central role
for IL-22 signaling in protection against OPC (Goupil et al.,
2014), an interesting corollary to observed susceptibilities to
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RVVC in humans (discussed above). Still, multiple studies have
demonstrated that immune responses to Candida spp. at the oral
and vaginal mucosas are fundamentally different (Verma et al.,
2017; Gao et al., 2019), which may account for some of the
differences in the epidemiology of OPC and RVVC.

Attempts to identify human genetic variants associated
with opportunistic mucosal candidiasis have yet to
report significant risk variants. Candidate gene studies
comparing HIV-positive patients who did and did not
develop OPC have failed to find significant risks of
variants in genes involved in fungal recognition [e.g.,
CLEC7A (Dectin-1), TLR2, TLR4, TIRAP, CARD9],
cytokine production (CASP12), and autophagy (ATG16L1
and IRGM) (Plantinga et al., 2010; Rosentul et al., 2011b,
2014b).

Opportunistic Invasive Infections due to

Candida spp.
Bloodstream infection with Candida spp. (candidemia)
and disseminated candidiasis are feared complications of
immunosuppression. Mortality rates of over 20% have been
reported (Pagano et al., 2017), despite improvements in
prevention and treatment (Yapar, 2014). While several non-
genetic risk factors are known (Yapar, 2014), extensive research
has addressed the possibility of genetic susceptibility to
candidemia and disseminated candidiasis.

Multiple studies have addressed the potential for recognition
of Candida ligands to impact risk of invasive disease. Recent
reports have detailed a mechanism whereby decreased Dectin-
1 signaling confers risk of candidemia. CD82 is involved in
the clustering of Dectin-1 receptors, and the efficient activation
of intracellular signaling upon ligand binding (Tam et al.,
2019). Variants in CD82 are associated with both candidemia
risk and decreased cytokine production upon stimulation with
fungal ligands (Tam et al., 2019). It is less clear if there is a
role for variants in CLEC7A, the gene encoding Dectin-1. A
role for CLEC7A-Y238X was proposed after reports that this
variant is associated with increased colonization by Candida
spp. (Plantinga et al., 2009). However, CLEC7A-Y238X is not
associated with risk of invasive infection in studies of patients
with candidemia (Plantinga et al., 2009; Rosentul et al., 2011a).
Vav proteins are involved in signal transduction following CLR
recognition of fungal PAMPs. Roth et al. (2016) report an
association between rate of candidemia in a European cohort
and a block of variants near Vav proteins, which they further
support by demonstrating a critical role for Vav1/2/3 in the
murine response to C. albicans and experimental candidemia.

TLRs are also involved in recognition of Candida spp., and
variants may confer risk of candidemia. A large study identified
three risk variants in TLR1, although these variants were only
significant in white donors (Plantinga et al., 2012). The authors
validated the functional impact of these variants, and proposed
a mechanism for susceptibility involving recognition of Candida
by TLR1/TLR2 heterodimers (Plantinga et al., 2012). This study
did not identify risk variants in TLR2 or TLR4 (Plantinga
et al., 2012), however, earlier studies did report risk variants

in these genes (van der Graaf et al., 2006b; Woehrle et al.,
2008); all three studies were carried out in European-ancestry
donors. Studies have failed to find associations with variants
in other PRRs (TLR6, TLR9, MBL2, NOD2), TLR adaptors
(MyD88, TIRAP), and FCγRs (FCGR2A, FCGR3A, FCGR3B)
(Choi et al., 2005; van der Graaf et al., 2006a; Aydemir et al.,
2011; Plantinga et al., 2012). Studies in the same cohorts have
failed to find risk or protective variants in genes associated
with autophagy (ATG16L1, IRGM), generation of reactive oxygen
species (CYBA), or chitin breakdown (CHIT1) (Choi et al., 2005;
Rosentul et al., 2014b).

While risk variants impacting recognition of fungi are broadly
associated with candidemia, variants impacting phagocyte
function have been more closely related to disseminated
candidiasis following candidemia. Susceptibility variants have
been identified in CXCR1, which is involved with neutrophil
killing of yeast (Swamydas et al., 2016), and CX3CR1, which plays
a role in macrophage chemotaxis and survival (McDermott et al.,
2003; Lionakis et al., 2013; Collar et al., 2018). These studies
have been done in European-ancestry populations; CX3CR1-
M280, the risk variant, is not associated with invasive candidiasis
in African American donors (Lionakis et al., 2013), or RVVC
in European donors (Break et al., 2015). A mouse model
recapitulated the role of CX3CR1 in decreasing macrophage
survival, thereby engendering susceptibility to invasive infection
but not mucosal candidiasis (Lionakis et al., 2013; Break et al.,
2015). Interestingly, CX3CR1-M280 was first recognized as a
protective variant for cardiovascular disease (McDermott et al.,
2003). The diverse findings concerning CX3CR1-M280 provide
a good example of how susceptibility variants may be highly
context specific.

Cell-mediated immunity may play a role in chronic
disseminated candidiasis (CDC) in the context of neutropenia.
Both a protective haplotype and a risk haplotype were identified
in IL4 in neutropenic patients (Choi et al., 2003). The protective
haplotype was associated with decreased IL-4 production,
suggesting that Th2 responses are deleterious in CDC (Choi
et al., 2003). Other polymorphisms that impact cytokine
production are associated with persistent candidemia, although
not studied in the context of neutropenia. Two polymorphisms,
one in IL10 and one in IL12B, are associated with persistent
candidemia, but not candidemia in general (Johnson et al., 2012).
The authors report functional effects from these risk alleles:
increased IL-10 production and decreased IFN-γ production,
respectively (Johnson et al., 2012). This suggests a detrimental
role of Treg cells and a beneficial role of type 1 T cell responses
in limiting the duration of candidemia. Interestingly, there was
no significant association between genotype at IL10 and CDC in
neutropenic patients, although both studies were carried out in
European ancestry populations (Choi et al., 2003; Johnson et al.,
2012). Studies have failed to find significant associations with
CDC or candidemia for several other cytokines (IFNG, IL1B, IL8,
IL12A, IL18, TGFB1, TNF), a cytokine receptor (IL12RB1), and
a gene involved in cytokine processing (CASP12) (Choi et al.,
2003; Johnson et al., 2012; Rosentul et al., 2012).

Unbiased studies that sought to overcome the limitations of
candidate gene studies have implicated viral recognition and
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response pathways in candidemia. One unbiased approach is to
identify novel candidate genes by using a hypothesis-generating
technique such as RNAseq, then applying these findings to the
analysis of a patient cohort. This workflow was used to identify a
linked block of variants at the gene encoding RIG-I-like receptor
(RLR) MDA5 in association with candidemia (Jaeger et al.,
2015). Another study using a similar approach implicated type
I interferon signaling in the response to Candida spp. (Smeekens
et al., 2013). The authors then studied signaling downstream of
type I interferon, and reported that STAT1 polymorphisms are
associated with candidemia (Smeekens et al., 2013).

Another unbiased strategy is to study patient genomes directly
with a GWAS. A GWASwith 217 European-ancestry candidemia
patients reported candidate risk variants near the genes encoding
CD58, TAGAP, and the LCD4A-C1orf68 locus (Kumar et al.,
2014). The authors note that linked variants at theCD58 locus fall
near several non-coding RNAs, and found that genotype at CD58
correlated with cytokine production by macrophages in response
to Candida but not LPS (Kumar et al., 2014). TAGAP contributes
to T cell trafficking in the thymus and negative selection (Duke-
Cohan et al., 2018). All three candidate loci have been associated
with autoimmunity (Kumar et al., 2014). This GWAS dataset has
been used in two further studies. Using a new approach to analyze
the data, Matzaraki et al. (2017) identified 18 candidate risk
variants and 31 candidate susceptibility genes. The authors noted
that 9 of 31 candidate genes are involved with the complement
system or coagulation, and validated a functional variant in
MAP3K8 (Matzaraki et al., 2017). Finally, Li and Oosting et al.
found that variants at Golgi membrane protein 1 (GOLM1) are
cytokine quantitative trait loci (cQTL) for IL-6 (Li et al., 2016);
these cQTL are associated with risk of candidemia and lower
levels of IL-6 in candidemia patient serum (Li et al., 2016).

“Idiopathic” infections by Candida spp.
Candida spp. are a rare cause of serious or invasive fungal
infections in otherwise healthy people. People suffering from
such “idiopathic” infections have been the subject of extensive
research revealing genetic deficits in immunity (Li et al., 2017).
As reviewed above, these deficits are understood to be the
result of rare, monogenic polymorphisms or mutations that
are overwhelmingly deleterious, and thus under strong negative
selection (Netea et al., 2012; Li et al., 2017). These conditions
provide an invaluable glimpse into mechanisms of antifungal
immunity. The clinical manifestation of a given immune deficit
illustrates areas of antifungal immunity that are non-redundant
(Netea et al., 2012). Many monogenic conditions result in
Chronic Mucocutaneous Candidiasis (CMC), which involves
recurrent and persistent Candida spp. infections of the mucosa
and skin (Li et al., 2017). Others result in invasive candidiasis.
This topic has been the subject of recent excellent reviews, and
the treatment here will thus be brief (Li et al., 2017; Lionakis and
Levitz, 2018).

SCID patients, who lack an adaptive immune system, develop
mucosal infection and diarrhea from Candida spp., in addition
to multiple other infections. SCID occurs in about 1/65,000 live
births (Amatuni et al., 2019), and can result from loss-of-function
mutations and variants that affect the development, proliferation,

or survival of T cells and/or B cells (Buckley, 2004; Heimall et al.,
2017; Lionakis and Levitz, 2018; Aluri et al., 2019). Increasingly,
SCID patients are being recognized by newborn screening (before
infection) and are treated with stem cell transplant, which will
likely improve outcomes (Heimall et al., 2017). Even with prompt
diagnosis from newborn screening or family history, Candida
spp. cause infection in 8% of patients with SCID in the first
few months of life, prior to transplant (Heimall et al., 2017).
Untreated, SCID is associated with OPC in∼20% of patients and
chronic diarrhea, whichmay be caused byC. albicans (Aluri et al.,
2019; Parvaneh et al., 2019). Interestingly, patients with untreated
SCID are reported to have C. parapsilosis as a commensal without
apparent symptoms, and to have a higher frequency than healthy
controls of C. parapsilosis culturable from feces (Taylor et al.,
1985).

Patients with severely decreased Th17 cell counts suffer from
CMC, even in the absence of more global T cell or B cell
deficits (Li et al., 2017; Lionakis and Levitz, 2018). Interestingly,
PIDs that selectively impact Th17 cells and IL-17 signaling
are associated with fewer opportunistic bacterial infections (Li
et al., 2017; Lionakis and Levitz, 2018). Patients with Hyper-IgE
Syndrome (HIES), also known as Job’s syndrome, have impaired
STAT3 signaling and diminished Th17 cell responses, and are
vulnerable to CMC (Ma et al., 2008; Milner et al., 2008; Zhang
et al., 2018). While STAT3 is critical in signal transduction
for several cytokines, it appears that the critical deficit that
confers susceptibility to CMC is lack of IL-17-producing cells
per se (Ma et al., 2008; Hillmer et al., 2016; Zhang et al., 2018).
This is illustrated by the clinical presentations of patients with
genetic deficiency in other cytokine-signaling components. Loss-
of-function mutations in IL6ST, which codes a critical subunit
of the receptors for IL-6 and multiple other cytokines that
signal through STAT3, result in elevated IgE and susceptibility
to infections, but IL-17 responses are relatively intact and CMC
is absent (Schwerd et al., 2017; Shahin et al., 2019). Deficiency
in TYK2, an intracellular adaptor for multiple cytokine receptors
that signal via STAT3, is associated with multiple susceptibilities,
but normal Th17 responses and, in most cases, no apparent
increased risk of candidiasis (Kreins et al., 2015). However,
mutations that lead to decreased numbers of IL-17-producing
cells are also associated with CMC susceptibility; these include
gain-of-function mutations affecting STAT1 (Zheng et al., 2015;
Eren Akarcan et al., 2017; Mogensen, 2018) and loss-of-function
mutations affecting RORγ/RORγT (Okada et al., 2015).

Impaired IL-17 signaling due to mutations in cytokines
and cytokine receptors is also associated with susceptibility
to CMC. The six members of the IL-17 cytokine family (IL-
17A through IL-17F) are recognized by dimeric receptors
composed of the five receptor subunits in the IL-17R
family (IL-17RA through IL-17RE), with an intracellular
adaptor (ACT1) (Monin and Gaffen, 2018). Loss-of-function
mutations conferring susceptibility to CMC have been
reported in IL17F, IL17RA, IL17RC, and ACT1 (Li et al.,
2017; Monin and Gaffen, 2018). An interesting corollary is
the high degree of CMC seen patients with Autoimmune
Polyendocrine Syndrome Type 1 (APS-1), who produce
autoantibodies that neutralize IL-17 cytokines due to mutations
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in the autoimmune regulator gene (AIRE) (Humbert et al.,
2018).

Mutations affecting neutrophil function confer susceptibility
to invasive candidiasis, in contrast to the selective susceptibility
to mucosal candidiasis associated with loss of adaptive immunity
and IL-17 signaling. Patients with Chronic Granulomatous
Disease (CGD) suffer from invasive fungal disease due primarily
to filamentous fungi, although invasive candidiasis is also
reported (Wolach et al., 2017; Kanariou et al., 2018; Lionakis
and Levitz, 2018). CGD results from mutations causing defective
NADPH oxidase, which abrogate the oxidative burst required for
phagocytes to kill microorganisms (Wolach et al., 2017; Lionakis
and Levitz, 2018).

A relatively common genetic condition that predisposes
patients to invasive candidiasis is myeloperoxidase (MPO)
deficiency. MPO deficient cells are unable to generate HOCl,
although generation of an oxidative burst is unaffected (Klebanoff
et al., 2013). Neutrophils from patients with MPO deficiency
display delayed killing, unlike those from patients with CGD,
which fail to kill microbes at all (Klebanoff et al., 2013). Patients
with MPO deficiency are narrowly susceptible to Candida spp.;
still, only a small fraction of patients ever develop invasive
candidiasis (Klebanoff et al., 2013; Lionakis and Levitz, 2018).
This may indicate that early killing of phagocytosed pathogens is
critical for control of Candida spp., but only after other defenses
have been overcome (e.g., barrier integrity) (Klebanoff et al.,
2013).

Loss-of-function mutations affecting CARD9 are unique
in their association with susceptibility to both CMC and
invasive candidiasis (Lionakis and Levitz, 2018). CARD9
deficiency abrogates fungal recognition by CLRs and downstream
neutrophil responses, with little or no impact on bacterial
recognition (Drewniak et al., 2013). There are conflicting
reports on whether Th17 responses are impacted by loss
of CARD9 in humans (Drewniak et al., 2013; Drummond
et al., 2015; Vaezi et al., 2018). Over 40% of patients with
CARD9 deficiency present with infections by Candida spp.
(Vaezi et al., 2018); a large portion of those patients present
with Candida spp. infecting their central nervous system
(CNS) (Lanternier et al., 2015; Vaezi et al., 2018). Information
from case reports of CARD9 deficient patients, plus studies
of CNS C. albicans infection in CARD9−/− mice, suggests
that the predilection for CNS infections is due to impaired
recognition of fungi by microglia that in turn leads to
diminished recruitment of neutrophils (Drummond et al., 2018,
2019).

CARD9 has two binding partners, MALT1 and BCL10, that
are required for signal transduction (Zhong et al., 2018). The
few patients reported with loss-of-function mutations in these
proteins presented with combined immunodeficiency, with the
implication that MALT1 and BCL10 are indispensable in the
proper development of memory T cells (Torres et al., 2014;
Punwani et al., 2015). These patients also had histories of mucosal
candidiasis (Torres et al., 2014; Punwani et al., 2015); it is difficult
to distinguish whether fungal susceptibility was due to impaired
CARD9 signaling or secondary to deficits in adaptive immunity
in these patients.

Summary
Candida spp. cause a broad spectrum of infectious diseases, and a
growing body of evidence reveals differences in host response and
susceptibility across this spectrum. RVVC is a primary illness,
largely due to C. albicans. Perturbations of innate immunity,
especially involving events at the mucosa, appear to confer
susceptibility to RVVC. This includes fungal recognition, IL-
22 signaling, and possibly, mucosal fucosylation. Factors that
influence susceptibility to candidiasis at the oral mucosa are
different; in the absence of T cells, patients are highly vulnerable
to OPC and OEC. There is not yet a clear role for genetic
susceptibility in modifying risk of mucosal candidiasis in the
setting of immunosuppression and immunodeficiency.

A number of immune processes have been implicated in
genetic susceptibility to invasive candidiasis. These again include
recognition of fungal ligands, although by different receptors
than those implicated in RVVC. Mild impairment of neutrophil
recruitment may predispose patients to disseminated candidiasis,
and in the absence of neutrophils, defects in the development
of adaptive immunity may also be a risk factor. Recently,
unbiased approaches have uncovered diverse processes that could
contribute to genetic susceptibility, such as antiviral responses
and trans-regulation of cytokine production.

Rare, “idiopathic” infections by Candida spp. have been
extensively studied. Deficits in cellular immunity predispose
patients to CMC, while deficits in innate responses, especially
in the ability of neutrophils to kill yeast, predispose to invasive
disease. CARD9 deficiency is notable in causing both.

ASPERGILLOSIS

Aspergillus spp. are filamentous fungi that are associated with
the ecological niche of saprophyte. They spread by spores, which
reach great density in association with soils or decomposition
and readily become airborne (Williams et al., 2019). In indoor
environments, Aspergillus spores are associated with water-
damaged structures and potted plants (Mousavi et al., 2016).
Even with efforts to limit airborne contaminants, it is difficult to
exclude Aspergillus spores from healthcare environments (Oberle
et al., 2015).

Aspergillus spp. are associated with a number of different
disease states. There are more than 11 million people who
suffer from fungal allergic asthma, associated with Aspergillus
(Bongomin et al., 2017). Genetic predisposition to allergic asthma
will not be discussed here; we instead focus on diseases caused
by Aspergillus infection per se. There are an estimated 3 million
cases of chronic pulmonary aspergillosis (CPA) worldwide
(Bongomin et al., 2017). CPA is often comorbid with chronic
respiratory conditions that affect the structure or function of
the lungs (Bongomin et al., 2017). Invasive aspergillosis (IA)
affects some 300,000 people annually (Bongomin et al., 2017).
IA is typically associated with profoundly immune compromised
states; still, there is growing appreciation that patients with
multiple comorbid conditions, such as chronic obstructive
pulmonary disease (COPD) plus diabetes, are predisposed to IA
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and undercounted in estimates of prevalence of this infection
(Bao et al., 2017; Bongomin et al., 2017).

Further complicating an understanding of these infections
is the fact that multiple Aspergillus species are capable of
causing illness. Biological differences between these species, plus
subtle differences in the immunosuppressed states of different
patient populations may contribute to the relative likelihood
that IA is caused by A. fumigatus vs. other Aspergillus spp.; for
example, IA in neutropenic patients is predominantly caused by
non-fumigatus Aspergillus spp., but in bone marrow transplant
patients, A. fumigatus was the most common species (Torres
et al., 2003). This distinction has clinical relevance, as the
species causing non-fumigatus aspergillosis tend to have higher
minimum inhibitory concentration and minimum fungicidal
concentration for clinically important antifungals (Torres et al.,
2003).

Chronic Pulmonary Aspergillosis (CPA)
Studying genetic predisposition to CPA is complicated by the
heterogeneity of the patient populations and presentation of
illness. The clinical spectrum of CPA includes aspergilloma
and chronic cavitary pulmonary aspergillosis (CCPA), and
at-risk patients include those with COPD, sarcoidosis, and
chronic pulmonary infections that cavitate such as tuberculosis
(Bongomin et al., 2017). While these conditions may have
a component of immune dysregulation, patients with these
conditions are usually not immune compromised in the
classic sense.

Studies in a cohort of patients in Manchester, UK, suggest
that CCPA is associated with an overly-active immune response
to fungi. Macrophages from CCPA patients showed greater up-
regulation of cytokines at the experiment’s endpoint as compared
to healthy donor cells, though CCPA patient cells also had greater
lag time in their response to fungal stimuli (Smith et al., 2014a).
CCPA patient cells had different PRR expression profiles as
compared to healthy donor cells (Smith et al., 2014a). These
authors identified risk variants in genes encoding cytokines
(IL1B, IL1RN, IL15), PRRs [TLR1, CLEC7A (Dectin-1)], and the
genes DENND1B, PLAT (plasminogen activator), and VEGFA
(Smith et al., 2014a,b). The association between CPA and hyper-
inflammatory states is supported by a study of CPA patients in
Shanghai, China, which found that greater levels of IL-1β are
correlated with markers of advanced illness such as aspergilloma
size (Zhan et al., 2018).

A study of COPD patients with CPA suggests that infection
in this context may be associated with decreased recognition of
fungi. A variant in the gene encoding the PRR pentraxin 3 (PTX3)
is associated with the development of CPA in a cohort of Chinese
COPD patients (He et al., 2018). This risk variant is associated
with decreased pentraxin 3 in patient plasma, but this association
was not found in the group with CPA alone (He et al., 2018).
Variants in PTX3 have been extensively studied in relation to
invasive aspergillosis and are discussed further below.

Invasive Aspergillosis (IA)
Immune compromise is almost essential for IA. IA is most often
associated with allogeneic hematopoietic stem cell transplant

(HSCT), and almost a quarter of HSCT patients develop IA in
some studies (Robin et al., 2019). Patients undergoing allo-HSCT
experience an initial risk at transplant, as well as a late risk
associated with milder immunosuppression from graft-versus-
host disease (GVHD) (Robin et al., 2019). In all cases, studying
genetic risk in allo-HSCT patient populations is complicated by
the presence of both donor and recipient genetics.

Mounting evidence suggests that variants associated with
weaker recognition of fungi by the innate immune system are
associated with greater risk of IA. Perhaps the best studied gene
in this regard is pentraxin 3, a soluble PRR that recognizes
Aspergillus conidia (Garlanda et al., 2002). PTX3−/− mice are
unable to control Aspergillus infection, with deficits noted in
phagocyte function, as compared to wildtype mice (Garlanda
et al., 2002). Multiple studies have associated PTX3 variants that
result in decreased expression with risk of IA in HSCT patients
(Cunha et al., 2014; Fisher et al., 2017; Herrero-Sanchez et al.,
2018). Donor PTX3 genotype determined risk, and recipient
PTX3 genotype had no significant effect (Cunha et al., 2014;
Fisher et al., 2017).

Linked TLR4 coding variants D299G-T399I, which result in
decreased signaling by TLR4 (Arbour et al., 2000), have also
been implicated in IA risk following allo-HSCT. Risk variants
are either significant only considering donor TLR4 genotype
(Bochud et al., 2008; de Boer et al., 2011), or, in one study,
considering either donor or recipient TLR4 genotype (Koldehoff
et al., 2013). Several studies, including the largest study of genetic
risk of IA in allo-HSCT patients, have failed to detect a significant
risk of the TLR4-D299G-T399I genotype (Kesh et al., 2005; Grube
et al., 2013; Fisher et al., 2017); at least in some studies, this may
be attributable to low frequency of the risk genotype (Fisher et al.,
2017). HSCT recipients with the TLR5-Stop variant, missense
variant TLR1-R80T, or both missense variants TLR1-N248S and
TLR6-S249P together are at increased risk of IA (Kesh et al.,
2005; Grube et al., 2013). These associations seem to arise from
fungal recognition by non-hematopoietic-lineage cells, as there
is no significant effect on risk of IA by HSCT donor genotype at
variants in TLR1, TLR5, and TLR6 (Kesh et al., 2005; Grube et al.,
2013). Variants in the genes S100B and RAGE also predispose
allo-HSCT patients to IA by a mechanism thought to involve
hyperactivity of this innate recognition pathway, which results
in TLR2 blockade and TLR3 and TLR9 activation (Cunha et al.,
2011; Sorci et al., 2011). Variants associated with risk were found
either in HSCT donors (S100B and RAGE), or recipients (S100B)
(Cunha et al., 2011). There are conflicting reports as to the
association of CLEC7A-Y238X with IA risk in HSCT; two studies
have correlated risk of IA with either recipient or donor carrying
this variant (Cunha et al., 2010; Fisher et al., 2017), while others
have failed to detect an effect (Chai et al., 2011; Herrero-Sanchez
et al., 2018).

Several other innate receptor variants increase the risk of IA in
the setting of HSCT. The CLR MelLec, which recognizes fungal
DHN-melanin, has been implicated in IA risk upon HSCT.
HSCT donor genotype at MelLec is associated with risk, while
recipient genotype is not (Stappers et al., 2018). Macrophages
of the risk MelLec genotype produce less pro-inflammatory
cytokine in response to A. fumigatus conidia than do cells of the
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alternate genotype (Stappers et al., 2018). In contrast, IA rates are
higher in HSCT donors that harbor a pro-inflammatory variant
of NOD2, an intracellular PRR, whereas genetic deficiency of
NOD2 confers resistance to IA (Gresnigt et al., 2018). While not
innate fungal recognition per se, a coding variant in plasminogen
has been implicated in IA risk; the risk is significant when
considering HSCT recipient genotype and not donor genotype,
which is consistent with the hepatic origin of plasminogen (Zaas
et al., 2008). The authors suggest that differences in interaction
between plasminogen and Aspergillus conidia could lead to
differences in local inflammation and pathogen entry (Zaas et al.,
2008). Considered intracellular signaling downstream of PRRs,
one study of variants in multiple NF-κB-related genes failed
to uncover significant associations with risk of IA in HSCT
patients, although there may have been a weak association with
a haplotype at IRF4 (Lupianez et al., 2016).

Multiple variants associated with risk of IA following HSCT
have been identified in genes involved in the development
of appropriate T cell responses. A haplotype in CXCL10 is
associated with risk of IA following HSCT (Mezger et al.,
2008). Cells with the risk haplotype were found to produce
less CXCL10 upon stimulation with A. fumigatus germlings
than cells with the alternate haplotype (Mezger et al., 2008).
One role of CXCL10 is recruitment of Th1 cells, thus the
risk haplotype may be associated with a relatively weaker
Th1 response. The AspBIOmics Consortium uncovered several
IA risk variants that could be associated with altered T
cell responses; these associations were stronger in HSCT
patients than in the larger pool of at-risk hematology patients
(Lupianez et al., 2016). Risk variants were identified in
IL4R, IL8, IL12B, and IFNG, with experiments demonstrating
functional effects of the IFNG variant on IFNγ production and
related endpoints (Lupianez et al., 2016). A risk variant that
increases IL-10 production would suppress T cell responses.
Donor genotype at a variant upstream of IL10 is associated
with development of IA, and the risk genotype leads to
increased production of the anti-inflammatory cytokine IL-10
(Cunha et al., 2017). Mouse models of Aspergillus infection
support this finding; IL10−/− animals are more resistant
to experimental aspergillosis (Clemons et al., 2000). Taken
together, these findings suggest that variants that lead to
relatively weaker Th1 responses may predispose HSCT patients
to IA.

Much of what is known about genetic predisposition to
IA following HSCT has been reiterated in studies of other
vulnerable populations. PTX3 variants are associated with
risk of IA in patients with COPD (He et al., 2018), or
following solid organ transplant (Wojtowicz et al., 2015b). A
small study of patients with hematologic malignancies found
that expression of S100B was significantly associated with
IA (Dix et al., 2016). Three studies have demonstrated that
CLEC7A (Dectin-1) orCD209 (DC-SIGN) variants are associated
with the development of IA in patients with hematologic
malignancies (Oberhofer, 1979; Sainz et al., 2010b, 2012),
and this is further supported by a study finding decreased
CLEC7A expression in hematologic malignancy patients with
IA (Camargo et al., 2015). While genetic studies have not

been done, MBL levels are lower in immunocompromised
patients with IA vs. febrile immunocompromised controls
(Lambourne et al., 2009). As discussed in the section on
candidiasis, loss-of-function MBL variants predispose patients
to RVVC, but no association has been found for candidemia.
The risk associated with relatively greater production of IL-
10 was reiterated in a study of patients with hematologic
malignancies, including some that had undergone HSCT (Sainz
et al., 2007a).

Recent work has also addressed the role of early responses,
especially cytokine signaling, in predisposition to IA in high-
risk populations aside from HSCT patients. Variants impacting
IL-1β are reported to influence risk of IA in patients with
hematologic malignancies, and following solid organ transplant;
the genes harboring risk variants include IL1A, IL1B, IL1RA,
and IL1RN (Sainz et al., 2008; Wojtowicz et al., 2015a).
When stimulated with A. fumigatus conidia, cells harboring
these variants produce less of several cytokines, including
IL-1β and TNF-α, than do control cells (Wojtowicz et al.,
2015a). Signaling through TNF has also been implicated in
two studies of patients with hematologic malignancies, some
of whom underwent HSCT; these studies report significantly
higher rates of IA in patients with genetic variants that
decrease expression of TNFR1 and TNFR2 (Sainz et al., 2007b,
2010a; Li and Anderson, 2018). One report also identified a
variant in the promoter of DEFB1, encoding β-defensin 1,
associated with IA in solid organ transplant patients (Wojtowicz
et al., 2015a). As with IL-1β and TNF-α, β-defensin 1 helps
coordinate the early immune response by acting as a chemotactic
signal. Direct anti-Aspergillus activity of β-defensin 1 has not
been investigated.

“Idiopathic” Aspergillosis
Aspergillus infection in otherwise healthy people is rare, and
generally associated with monogenic susceptibility. The best
example of this is Aspergillus infections in patients with
ineffective neutrophil oxidative bursts due to CGD; these
patients are at risk for both pulmonary and disseminated
aspergillosis (Wolach et al., 2017). CARD9 deficiency has also
been identified in patients who present with extrapulmonary
Aspergillus infection without evidence of pulmonary aspergillosis
(Rieber et al., 2016). HIES, which is STAT3 deficiency, is
associated with susceptibility to invasive aspergillosis (Vinh et al.,
2010; Dureault et al., 2019). Interestingly, CARD9- and STAT3-
deficient patients are similar to control donors in terms of
neutrophil responses to A. fumigatus (Vinh et al., 2010; Rieber
et al., 2016).

It is not clear whether STAT3 deficiency alone is sufficient
to predispose patients to aspergillosis. HIES patients develop
aspergillosis later in life, after suffering other structural insults to
the lung (Dureault et al., 2019). Extrapulmonary aspergillosis is
reported, however, in association with STAT3 haploinsufficiency
that did not appear to impact antifungal Th17 responses
(Natarajan et al., 2018). STAT3 is pleiotropic, and dozens of
mutations in STAT3 are associated with varied impacts on the
final gene product (Vogel et al., 2015); future reports may clarify
the spectrum of disease that results from select mutations.
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Summary
Aspergillosis encompasses varied clinical manifestations, and the
differences are manifest in the genetic predisposition to different
forms of Aspergillus infection; from hyper-inflammatory
responses that predispose to CPA to ineffective fungal
recognition that predispose to IA. Despite the difficulty of
studying these varied illnesses, progress has been made toward
identifying and validating risk variants, especially in the context
of HSCT. In the coming years, this avenue of research holds
great promise for improving HSCT outcomes, both by informing
donor selection and by proactively identifying those recipients at
the highest risk of IA.

ENDEMIC DIMORPHIC FUNGAL

INFECTIONS

Dimorphic fungal pathogens that are native to North America,
including the genera Histoplasma, Coccidioides, and Blastomyces,
infect hundreds of thousands of people per year (Bongomin et al.,
2017). Yet, the majority of these infections are asymptomatic.
Puzzlingly, many of those who develop symptoms do not appear
to be at increased risk for fungal infection; they are young and
seemingly healthy. Additionally, each of these fungal infections
has a higher incidence in select groups, especially people of
African, Native American, or Asian ancestry. On the basis of
these two observations, a significant role for host genetics has
long been supposed for these infections.

Histoplasmosis
Histoplasmosis is the most prevalent of the dimorphic fungal
infections, with an estimated 500,000 infections per year
(Bongomin et al., 2017). As with the other dimorphic fungi,
Histoplasma capsulatum grows in organic soils; outbreaks have
been associated with disturbances that lead to aerosolization
of infectious spores, e.g., construction in both rural and urban
settings (Deepe, 2018). H. capsulatum is also associated with
bird and bat droppings; thus, outbreaks have been associated
with clearing bird waste and disturbing bat guano in caves and
tunnels (Deepe, 2018). Although the geographic distribution of
H. capsulatum is often quoted to be the Ohio River Valley,
suitable environmental conditions exist to support the fungus
throughout the upper Midwest (Maiga et al., 2018).

The vast majority of exposures to H. capsulatum do not
result in clinical illness. In fact, virtually the entire population
in some highly endemic areas may be repeatedly exposed
(Goodwin et al., 1981). Pulmonary nodules are a common
incidental finding on medical imaging of patients living in
endemic areas; in highly endemic areas, up to 12% of these
nodules may be associated with infection with H. capsulatum
(Benedict et al., 2019; Deppen et al., 2019). Such latent infections
are usually asymptomatic, although they may present as invasive
disease decades later upon immunosuppression (Bourgeois et al.,
2011). In immunocompetent individuals, histoplasmosis most
commonly manifests as isolated fungal pneumonia (Ouellette
et al., 2018), and acute illness is often associated with high
levels of exposure to infectious spores (Deepe, 2018). There is

a noted racial health disparity, with historical reports of higher
incidences of histoplasmosis amongst black people in outbreaks
(Wheat et al., 1981); however, these reports may be confounded
by geographical factors.

Histoplasmosis poses a threat to organ transplant recipients
(Tanveer et al., 2019) and patients with AIDS (Assi et al.,
2006; Wheat et al., 2018). Disseminated histoplasmosis is most
commonly associated with the immunocompromised patient,
and rare in immunocompetent patients (Ouellette et al., 2018).
Sites of dissemination include the central nervous system (Wheat
et al., 2018) and gastrointestinal tract (Assi et al., 2006).
Another recognized risk of disseminated histoplasmosis is TNF-
α blockade, for example in the treatment of inflammatory bowel
disease (Smith and Kauffman, 2009; Vergidis et al., 2015). As
with overall risk of infection, black race has been associated with
increased risk of severe histoplasmosis in AIDS patients (Wheat
et al., 2000). There are currently no reports addressing genetic
determinants of racial disparities in histoplasmosis pneumonia
or disseminated histoplasmosis.

Mouse models of histoplasmosis have recapitulated many
of the features of human susceptibility. TNF-α is required for
the establishment of memory and control of infection (Zhou
et al., 1998; Deepe, 2006). Type 1 cytokines are indispensable to
control of infection (Allendoerfer and Deepe, 1997), and Th17
cells contribute to protective immunity (Deepe et al., 2018).
However, IL-17 responses are ultimately not required for survival
of infection in the mouse model (Deepe and Gibbons, 2009). Th2
responses prolong illness, perhaps by delaying the development
protective Th1 cells (Gildea et al., 2003).

Case reports concerning patients with mutations that affect
immunity further elucidate the immune responses that are
required for control ofH. capsulatum. Patients with deficient type
1 cytokine responses are at risk for disseminated histoplasmosis;
such deficiencies include loss-of-function mutations impacting
IFNγR1 (Zerbe and Holland, 2005) and IL12Rβ1 (Rosain et al.,
2018). Histoplasmosis is reported in patients with HIES resulting
from loss-of-function mutations in STAT3 (Robinson et al., 2011;
Odio et al., 2015), as well as gain-of-function mutations in
STAT1 (Sampaio et al., 2013); this could be related to impaired
Th17 responses, other perterbations resulting from loss of these
transcription factors, or a combination of Th17-dependent and
Th17-independent factors. Patients lacking NEMO, a component
of NF-κB signaling (Lovell et al., 2016), or GATA2, a transcription
factor involved in the differentiation ofmyeloid cells (Collin et al.,
2015) are also very susceptible to disseminated histoplasmosis.
This could be due in part to impaired macrophage and monocyte
responses, including signaling downstream of TNF-α; however,
loss of NEMO or GATA2 result in very complicated immune
disturbances, so it is not possible to attribute this susceptibility
to any one mechanism.

Coccidioidomycosis
While coccidioidomycosis is a clinical entity similar to
histoplasmosis and blastomycosis, the genus Coccidioides is
more closely related to the causative agents of dermatophytosis
than to other dimorphic fungal pathogens (White et al., 2014;
Whiston and Taylor, 2015). This may account for subtle
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differences in environmental niche and antifungal immunity
against Coccidioides spp., compared to Histoplasma spp., and
Blastomyces spp. Coccidioidomycosis is mainly reported in the
southwestern United States, and is associated with a complex set
of climactic conditions including alternating wet and dry periods
(Shriber et al., 2017).

There are an estimated 25,000 cases of coccidioidomycosis
that require medical treatment per year (Bongomin et al.,
2017), with an incidence of more than 40 cases per year
per 100,000 population in endemic states (Centers for Disease
Control Prevention, 2013). Up to 29% of community-acquired
pneumonia may be due to Coccidioides spp. in highly endemic
areas (Valdivia et al., 2006). Still, a minority of those who
are exposed to Coccidioides spp. develop acute illness; the
seropositivity rate to the fungus is about 30% in endemic areas
(Dodge et al., 1985), with reports of over half of the population
being reactive to Coccidioides antigen in some areas (Nguyen
et al., 2013). Chronic infection is common, with up to 29% of
lung nodules being attributable to Coccidioides spp. in endemic
areas (Forseth et al., 1986).

Progression to disseminated coccidioidomycosis is rare,
occurring in fewer than 1% of infections (Stevens, 1995).
Immunosuppression increases risk of dissemination, as does use
of TNF-α inhibitors (Bergstrom et al., 2004; Blair et al., 2019).
It has long been recognized that the risk of dissemination is
not equal across people of different races and ethnicities. Native
American (McCotter et al., 2019), African American (Ruddy
et al., 2011), and Pacific Islander (Drake and Adam, 2009)
ancestry all confer increased risk of dissemination.

In mouse models of coccidioidomycosis, recognition of the
fungus by Dectin-1 is required to control infection (Viriyakosol
et al., 2013; Feriotti et al., 2015), as is downstream signaling
by CARD9 (Hung et al., 2014). MyD88 is also required for
the induction of protective T cell responses (Hung et al., 2014;
Viriyakosol et al., 2018). Considering the critical role of MyD88,
it is surprising that TLR recognition of fungal ligands is largely
dispensable; instead, the role of MyD88 may reflect signaling
downstream of the IL-1β receptor (Hung et al., 2014; Viriyakosol
et al., 2018). Th1 and Th17 responses contribute to control
of infection (Hung et al., 2011). While Th1 responses are
dispensable, Th17 responses are not (Hung et al., 2011).

Many of the same genetic deficits in immunity that predispose
patients to disseminated histoplasmosis also confer risk of
disseminated coccidioidomycosis. There are case reports to this
effect for loss-of-function mutations impacting IFNγR1 (Vinh
et al., 2009), IL12Rβ1 (Vinh et al., 2011), STAT3 (Odio et al.,
2015), and gain-of-function in STAT1 (Sampaio et al., 2013).
Interestingly, based on a small number of cases reported to date, it
appears that the fungus may disseminate preferentially to distinct
sites depending on which component of immunity is impaired.
STAT3 mutations are associated with dissemination to the CNS,
while mutations that more directly impact Th1 responses are
associated with dissemination to bone and lymph node (Odio
et al., 2015).

A few reports have addressed population-level patterns of
susceptibility to disseminated coccidioidomycosis. Some of the
risk may be attributable to differences in antigen presentation,

as certain HLA alleles are associated with dissemination in
specific populations (Louie et al., 1999). More recently, a
preliminary description of a genomic study of 58 patients with
disseminated coccidioidomycosis identified 103 rare variants in
21 genes associated with antifungal immunity (Hung et al.,
2019). Affected pathways included IL-17 signaling, IL-12-IFN-
γ signaling, and NF-κB signaling (Hung et al., 2019). Two
thirds of patients had functionally relevant variants with a
population frequency of <0.1%, including several patients
with biallelic deleterious variants in key genes (Hung et al.,
2019).

Blastomycosis
The ecology of Blastomyces spp. is somewhat enigmatic, due
largely to difficulty in isolating the fungus from the environment
(Reed et al., 2008). The microbial physiology of Blastomyces
spp. suggests they are adapted for woody substrates and
possibly animal waste (Baumgardner and Laundre, 2001).
Blastomyces dermatitidis and the closely related B. gilchristii
are classically associated with waterways (Reed et al., 2008;
McTaggart et al., 2016). The two species have somewhat
different distributions, with B. dermatitidis found throughout
eastern North America and B. gilchristii largely restricted to
Canada (McTaggart et al., 2016). Blastomyces strains isolated
from patients cluster by clinical presentation, suggesting a
contribution of fungal genetics to clinical outcomes (Meece et al.,
2013).

Most cases of blastomycosis are associated with outdoor
activities involving exposure to soil (Klein et al., 1986;
Choptiany et al., 2009). While outdoor recreation or such
activities as forestry are a common source of exposure,
blastomycosis is also reported from the urban setting (Pfister
et al., 2011). Periodic outbreaks of blastomycosis are associated
with a point source where multiple people are exposed
to the infectious spores (Pfister et al., 2011); multifocal
outbreaks have also been described, and may be associated
with environmental factors that produce ideal conditions for
sporulation or aerosolization of spores (Roy et al., 2013). As
with the other dimorphic fungal infections, evidence suggests
that exposure to Blastomyces spp. is more common than
appreciated in endemic areas, and that the majority of these
exposures do not lead to clinical presentation (Vaaler et al.,
1990).

The majority of blastomycosis cases present as fungal
pneumonia (Baumgardner et al., 1992; Castillo et al., 2016).
Though blastomycosis is comparatively uncommon, with
perhaps only 3000 cases reported annually (Bongomin
et al., 2017), in highly endemic areas, the incidence may
reach 40 cases per year per 100,000 population at risk
(Baumgardner and Brockman, 1998). The majority of cases
are in people under the age of 50 who are immunocompetent
(Baumgardner et al., 1992). Blastomycosis is more common
in people of African American, Native American, and Asian,
especially Hmong, ancestry (Howard, 1984; Baumgardner
et al., 2002; Roy et al., 2013; Khuu et al., 2014). During
outbreaks, the incidence of blastomycosis in these select
populations is reported to be as high as 277 cases per year
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per 100,000 populaton at risk (Baumgardner et al., 2002).
Some of these associations may be due to a combination
of genetic and non-genetic factors. However, comorbidity
and exposure risk were recently excluded as contributors
to a greatly increased incidence rate of blastomycosis
during investigation of a large Wisconsin outbreak that
included Asian people, strongly implying a genetic risk
(Roy et al., 2013).

There is substantial heterogeneity in the clinical presentation
of blastomycosis. A minority of patients present with severe
pneumonia, even Acute Respiratory Distress Syndrome (ARDS);
this is thought to be a function of exposure to an especially
large inoculum in many of the cases (Castillo et al., 2016).
From 15 to 40% of patients develop blastomycosis outside
of the lung, with the most common site of dissemination
being the skin (Baumgardner et al., 1992; Castillo et al.,
2016). Immunosuppression is a risk factor for both ARDS
and dissemination, although there is not an apparent, overall
increased risk of infection (Choptiany et al., 2009; Castillo et al.,
2016). Limited data suggest that patients on TNF-α inhibitors
may be more susceptible to infection (Castillo et al., 2016).

Studies in a mouse model of blastomycosis have revealed
a critical role for early responses by lung epithelial cells
(Hernandez-Santos et al., 2018). MyD88 is indispensable in the
response to B. dermatitidis; MyD88−/− mice succumb to lethal
infection even by an attenuated vaccine strain that is non-lethal
in wild-type mice (Wang et al., 2016). Signaling through IL-1R1
drives protective Th17 immunity (Wuthrich et al., 2013; Wang
et al., 2014; Hernandez-Santos et al., 2018). Interestingly,
Tc17 cells confer durable protection in CD4-deficient
animals (Nanjappa et al., 2012). Innate, IL-17-producing
lymphocytes also play an important role (Hernandez-Santos
et al., 2018). As with the other dimorphic fungal infections,
TNF-α coordinates antifungal immunity to blastomycosis
(Finkel-Jimenez et al., 2001).

Recently, work has addressed the genetic underpinning
of health disparities in rates of blastomycosis in otherwise
healthy individuals. A homozygosity mapping approach was
used to study 9 Hmong blastomycosis patient genomes, and
candidate susceptibility variants were identified on the basis
of their rarity in European populations and other features
that may indicate that a given variant influences susceptibility
(Merkhofer et al., 2019). This approach revealed 113 candidate
susceptibility variants. The authors validated the impact of a
block of variants near IL6 that is nearly fixed in Wisconsin
Hmong at large but rare in European populations (Merkhofer
et al., 2019). Among other readouts, the authors found that
healthy Wisconsin Hmong donors had relatively hypoactive IL-
6 and antifungal Th17 responses compared to healthy European
donors (Merkhofer et al., 2019). The latter finding is consistent
with differences in IL-6 responses, which could also explain
several as-yet unstudied population differences that impact
T cell development. To date, the only reported monogenic
condition associated with blastomycosis is GATA2 deficiency
(Spinner et al., 2016).

Summary
A genetic basis for susceptibility to endemic dimorphic fungi
has long been hypothesized, due to their propensity for causing
disease in otherwise healthy people, and to their predilection for
people of certain genetic backgrounds. Extensive experiments in
mouse models have highlighted similarities and differences in
the immune responses to this diverse group of pathogens. Only
in the past few years have studies in patients begun to reveal
those processes that are critical to human immunity. The role
of Th1 and Th17 responses is evinced by the severe infections
seen in patients with monogenic deficits in those pathways.
More recently, studies of disseminated coccidioidomycosis and
pulmonary blastomycosis have revealed subtle variants in these
pathways. The identification of these variants represents progress
toward understanding the genetic underpinnings of observed
health disparities in these pathogens.

APPLYING WHAT IS UNDERSTOOD OF

GENETIC SUSCEPTIBILITY TO FUNGAL

DISEASES

While an increasing number of mutations and variants
are reported to confer risk of fungal diseases, only PIDs
and Mendelian susceptibility variants are currently clinically
actionable. This is partially because there are substantial
challenges in translating these findings to clinical applications.
By necessity, most studies of susceptibility to fungal diseases have
limited their donor population to one ethnic/racial background,
which may limit generalizability of findings or, at the very
least, necessitate extensive validation of variants in diverse
patient populations. Still, the availability of next-gen sequencing
technologies may soon make it feasible to incorporate testing for
subtle risk variants into clinical practice, and guidelines will be
developed for how to incorporate an individual’s susceptibility
profile into patient care. Future efforts may seek to develop
tools to stratify patients by risk based on susceptibility variants;
for example, IA susceptibility variants could be incorporated
into a tool to stratifying potential HSCT donors by risk of
invasive molds.
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