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Purpose: We assessed the performance of metagenomic next-generation sequencing

(mNGS) in the diagnosis of infectious encephalitis and meningitis.

Methods: This was a prospective multicenter study. Cerebrospinal fluid samples

from patients with viral encephalitis and/or meningitis, tuberculous meningitis, bacterial

meningitis, fungal meningitis, and non-central nervous system (CNS) infections were

subjected to mNGS.

Results: In total, 213 patients with infectious and non-infectious CNS diseases were

finally enrolled from November 2016 to May 2019; the mNGS-positive detection rate

of definite CNS infections was 57.0%. At a species-specific read number (SSRN) ≥2,

mNGS performance in the diagnosis of definite viral encephalitis and/or meningitis

was optimal (area under the curve [AUC] = 0.659, 95% confidence interval [CI] =

0.566–0.751); the positivity rate was 42.6%. At a genus-specific read number≥1, mNGS

performance in the diagnosis of tuberculous meningitis (definite or probable) was optimal

(AUC=0.619, 95% CI=0.516–0.721); the positivity rate was 27.3%. At SSRNs ≥5 or 10,

the diagnostic performance was optimal for definite bacterial meningitis (AUC=0.846,

95% CI = 0.711–0.981); the sensitivity was 73.3%. The sensitivities of mNGS (at SSRN

≥2) in the diagnosis of cryptococcal meningitis and cerebral aspergillosis were 76.92

and 80%, respectively.

Conclusion: mNGS of cerebrospinal fluid effectively identifies pathogens causing

infectious CNS diseases. mNGS should be used in conjunction with conventional

microbiological testing.

Trial Registration: Chinese Clinical Trial Registry, ChiCTR1800020442.
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INTRODUCTION

Infectious encephalitis and meningitis are severe clinical
conditions associated with high rates of morbidity and mortality
worldwide (Venkatesan et al., 2013). However, the specific
pathogens are not identified in >50% of patients with acute
encephalitis cases (Glaser et al., 2006) because the volumes
of available cerebrospinal fluid (CSF) may be low, and the
blood-brain barrier causes pathogens to be retained in the
brain. Conventional microbiological tests (smears, culture,
immunological tests, and polymerase chain reaction) often fail to
detect pathogens that cause encephalitis and meningitis. If early
tests do not accurately identify the pathogen, treatment is often
inappropriate, potentially triggering severe complications or
death. Viral encephalitis and meningitis, tuberculous meningitis
(TBM), bacterial meningitis, and fungal meningitis constitute
most cases of infectious encephalitis and meningitis. However,
these four types of infections may exhibit similar clinical
manifestations and CSF findings (e.g., intracranial pressures, as
well as white blood cell, glucose, and protein levels). Compared
with the traditional method, there is lack of a reliable approach
for the simultaneous identification of microorganisms, including
various viruses, bacteria, fungi, etc.

Metagenomic next-generation sequencing (mNGS), a novel
and promising approach, allows simultaneous and unbiased
identification of all microorganisms in human samples (Goldberg
et al., 2015; Forbes et al., 2017). Some studies have used mNGS
to diagnose infectious central nervous system (CNS) diseases,
but most of them included small sample sizes and were focused
on specific viruses, bacteria, fungi or prokaryotes (Wilson et al.,
2014; Guan et al., 2016; Yao et al., 2016; Xing et al., 2019).
Recently, a somewhat larger study (58 patients) found that
mNGS improved the diagnosis of neurological infections, but
the mNGS-positivity rate was only 22% (Wilson et al., 2019).
Thus, the performance of mNGS in diagnosis of infectious
encephalitis and meningitis should be studied using a larger
sample. Furthermore, because microbial genome sizes and
lifestyles differ, interpretation of mNGS data requires careful
analysis. Thus, we performed a large prospective study to evaluate
mNGS performance in the diagnosis of infectious encephalitis
and meningitis.

METHODS

Study Design
This prospective multicenter study used clinical information to
diagnose infectious encephalitis and/or meningitis in six teaching
hospitals in Beijing, China. The inclusion criteria were as
follows: high-level clinical suspicion of CNS infectious diseases;
and lumbar puncture in uninfected patients. The exclusion
criteria were as follows: refusal to undergo lumbar puncture;
any contraindication for such puncture; and a diagnosis of
autoimmune encephalitis. Eligible patients were divided into
five groups according to their final diagnoses: viral encephalitis
and/or meningitis, TBM, bacterial meningitis, fungal meningitis,
and CNS non-infection. We included patients with definite
or probable diagnoses of CNS viral infections (Jeffery et al.,

1997), TBM (Marais et al., 2010) and bacterial meningitis
(Mudaliar et al., 2006). Fungal meningitis was confirmed via
conventional microbiological testing. Cryptococcal meningitis
was confirmed via India ink staining or fungal culture, as well as
histopathological evidence of cerebral aspergillosis. All patients
had undergone at least 3 months of follow-up. Figure 1 shows
the flow chart of study enrolment.

mNGS of CSF
CSF specimens were collected in accordance with standard
aseptic procedures, snap frozen, stored at −20◦C, and subjected
to mNGS within 24 h. The DNA of blood samples collected from
healthy volunteers was fragmented and mixed with water in a
certain proportions (negative controls). Glass beads were added
to CSF samples, followed by vigorous agitation; DNA extraction;
and DNA library construction. Quality-controlled libraries were
sequenced on a BGISEQ-500/50 platform (BGI-Tianjin, Tianjin,
China); an average of 20 million reads was obtained for each
sample. After removal of human sequences, the remaining data
were aligned to bacterial, virus, fungal and protozoan databases,
as described in detail elsewhere (Xing et al., 2018, 2019).

Interpretation of mNGS Data
A final sequencing list of suspected pathogenic microorganisms
was obtained after removal of common background
microorganisms and those that had appeared in >50% of
samples during the past 3 months, compared to the negative
controls. Next, the sequencing data list was analyzed in terms of
species-specific read number (SSRN), genome coverage (%), and
depth. Instead of SSRN, genus-specific read number was used for
theMycobacterium tuberculosis complex, becauseM. tuberculosis
complex members exhibit >99.99% genomic sequence similarity
(Supply and Brosch, 2017). Probable causative microorganisms
were identified with reference to the literature and when the
pathogenicity was consistent with the clinical manifestations;
they were verified using traditional methods (serological tests,
smears, cultures, and/or polymerase chain reaction assay).
Herpes simplex virus (HSV), varicella zoster virus, Epstein–
Barr virus, and cytomegalovirus were considered to be mNGS
false-positives in patients with non-viral infections. Common
pathogens of bacterial meningitis (Streptococcus pneumoniae,
Staphylococcus aureus, Haemophilus influenzae, Klebsiella
pneumoniae, and Neisseria meningitidis) were considered to be
mNGS false-positives in patients with non-bacterial meningitis.
Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, and
Aspergillus terreus (Supply and Brosch, 2017) were considered
to be mNGS false-positives in patients who did not have
CNS aspergillosis.

Statistical Analysis
Continuous data were considered to be nonparametric.
Quantitative variables are expressed as medians (ranges) and
qualitative variables are expressed as percentages. We drew
receiver operating characteristic curves to compare diagnostic
tests; test accuracies were represented by the area under the
curve (AUC), such that a larger area implied a better test. Data
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FIGURE 1 | Flowchart of study participants.

processing was performed using SPSS Statistics version 21.0
(IBM Corp., Armonk, NY, USA).

RESULTS

Patient Characteristics
In total, 213 patients treated in six hospitals were finally enrolled,
including 75 with presumed viral encephalitis and/or meningitis,
44 with presumed TBM, 43 with presumed bacterial meningitis,
18 with fungal meningitis, and 33 with presumed non-
infectious CNS diseases (Figure 1). All patients with infectious
encephalitis and/or meningitis were screened by a single
investigator (X.-W. X.) to determine diagnostic classification.
Most patients (178/213, 83.57%) were treated in the First
Medical Center of the PLA General Hospital. Non-infectious
CNS conditions included meningeal carcinoma (6/33, 18%),
encephalopathy associated with connective tissue disease (6/33,
18.18%), metabolic encephalopathy (5/33, 15.15%), and other
non-infectious diseases (16/33, 48.48%). The clinical data are
summarized in Table 1.

Use of mNGS to Diagnose Viral
Encephalitis and/or Meningitis
Seventy-five patients with viral encephalitis and/or meningitis
(54 definite and 21 probable) were enrolled. An mNGS result
was considered positive if the CSF sample exhibited SSRNs ≥1,
2, 3, 5, or 10; the diagnostic probability consistencies for viral
encephalitis and/or meningitis were 32, 30.7, 29.3, 26.7, and
22.7%, respectively. The negative consistency rates were 84.8,
89.1, 89.9, 89.9, and 92.8%, respectively; the total consistency
rates were 66.2, 68.5, 68.5, 67.6, and 68.1%, respectively. The
AUCs for the five positive mNGS criteria were 0.584, 0.599, 0.596,
0.583, and 0.577, respectively. When an SSRN≥2 was considered

positive, the corresponding AUC (0.599) was relatively larger
than when other SSRNs were considered positive. For the 54
patients with definite viral encephalitis and/or meningitis, if an
SSRN ≥2 was considered positive, the AUC was largest (0.659,
95% confidence interval [CI] = 0.566–0.751; Figure 2A); the
positive, negative, and total consistency rates were 42.6, 89.1, and
76.0%, respectively (Table 2, Table S1).

Use of mNGS to Diagnose TBM
Forty-four patients were diagnosed with TBM (six definite and
38 probable). An mNGS result was considered positive if the CSF
samples exhibited genus-specific read numbers ≥1, 2, 3, 5, and
10; the associated positive consistency rates were 27.3, 20.5, 18.2,
13.6, and 6.8%, respectively. The negative consistency rates were
96.4, 97.6, 98.2, 99.4, and 100%, respectively; the total consistency
rates were 82.2, 81.7, 81.7, 81.2, and 80.8%, respectively. When
a genus-specific read number ≥1 was considered positive, the
AUC (0.619, 95% CI = 0.516–0.721) was largest. Among the six
patients with definite TBM (including five who were positive on
XpertMTB/RIF and one who was positive on acid-fast staining of
nerve tissue), the sensitivity and specificity of mNGSwere 66.67%
(4/6) and 96.45% (163/169), respectively. Among the 44 patients
with presumed TBM (six definite and 39 probable), the CSF
Xpert MTB/RIF positivity rate was 16.13% (5/31) and the mNGS
positivity rate was 27.27% (12/44) (Table S2); the combined
mNGS and Xpert MTB/RIF positivity rate was 29.55% (13/44)
(Figure 2B1). Unfortunately, acid-fast bacillus staining and M.
tuberculosis culture results were negative for all CSF samples.

Use of mNGS to Diagnose Bacterial
Meningitis
Forty-three patients were diagnosed with bacterial meningitis
(15 definite and 28 probable). An mNGS result was considered
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TABLE 1 | Demographic and clinical characteristics of the 213 patients.

Demographic and

clinical

characteristics

Viral infections of CNS

(n = 75)

TBM (n = 44) Bacterial meningitis

(n = 43)

Fungal meningitis

(n = 18)

CNS non-infection

(n = 33)

P-value

Age, year 30 (14–64) 41 (14–76) 44 (14–76) 54.5 (15–80) 41 (14–72) p < 0.001

Male no. 46 (61.33%) 25 (56.82%) 29 (67.44%) 13 (72.22%) 23 (69.70%) p > 0.05

Time from onset to CSF

collection, day

12 (2–441) 35 (11–790) 17 (1–201) 64 (6–351) 50 (5–714) p < 0.001

Fever 72 (96.00%) 43 (97.73%) 41 (95.35%) 14 (77.78%) 20 (60.61%) p < 0.001

Headache 60 (85.71%) 36 (92.31%) 35 (92.11%) 22 (91.67%) 19 (63.33%) p < 0.01

Neck stiffness 46 (65.71%) 34 (87.18%) 31 (81.58%) 11 (45.83%) 7 (23.33%) p < 0.001

Pressure, mmH2O 210 (100–550) 240 (110–500) 295 (120–400) 275 (75–330) 195 (80–330) p < 0.01

WBC, ×106/L 76 (0–720) 180 (4–2500) 1020 (1–68400) 95 (0–530) 8 (0–1131) p < 0.001

Glucose, mmol/L 3.4 (0.9–5.5) 2.1 (0.4–5.55) 1.12 (0.01–3.7) 1.565 (0.58–5.0) 3.1 (1.2–5.9) p < 0.001

Protein, g/L 0.775 (0.1–4.76) 1.65 (0.191–10) 1.914 (0.166–5.618) 1.189 (0.2–3.9) 0.652 (0.15–2.49) p < 0.05

CSF, cerebrospinal fluid; CNS, central nervous system; WBC, white blood cell; TBM, tuberculous meningitis.

FIGURE 2 | The positive rates of mNGS combined with conventional gold microbiologic testing. (A) Receiver operating characteristic (ROC) curves for diagnosing

defined viral encephalitis by mNGS. (B) Comparison of pathogens detected by mNGS compared to conventional gold standard.

positive if the SSRNs were ≥2, 3, 5, 10, and 15; the positive
consistency rates were 62.8, 62.8, 55.8, 55.8, and 51.2%,
respectively. The negative consistency rates were 82.9, 87.6, 95.9,
95.9, and 95.9%, respectively; total consistency rates were 78.9,
82.6, 87.8, 87.8, and 86.9%, respectively. The AUCs for the five
positive mNGS criteria were 0.729, 0.752, 0.758, 0.758, and 0.735,
respectively. When SSRNs≥5 or 10 were considered positive, the
AUC (0.758, 95% CI = 0.663–0.854) was largest. The sensitivity,
specificity, positive predictive value, and negative predictive
value of mNGS in the diagnosis of 15 patients with definite
bacterial meningitis were 73.3, 95.9, 61.1, and 97.6%, respectively

(Table S3) and the AUC was largest (0.846, 95% CI = 0.711–
0.981). In brief, among the 43 patients with presumed bacterial
meningitis (15 definite and 28 probable), mNGS identified a
bacterial pathogen in 24 (55.8%, 24/43); conversely, the CSF
combined Gram stain/culture-positive rate was only 32.56%
(14/43). Combination of the two methods increased the positive
rate to 62.79% (27/43) (Figure 2B2). In the 24 patients with
positive mNGS results (SSRNs≥5 or 10), the top three pathogens
were S. pneumoniae (41.7%, 10/24), K. pneumoniae (12.5%,
3/24), and Listeria monocytogenes (8.3%, 2/24). Of note, among
the patients with non-bacterial meningitis, 4.1% (7/170) were
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TABLE 2 | Comparison of the diagnostic efficacy of five positive mNGS criteria for

viral encephalitis and/or meningitis (Definite, n = 54).

SSRN Positive

consistent

rate

Negative

consistent

rate

Total

consistent

rate

AUC SE 95% CI

≥1 0.444 0.848 0.734 0.646 0.047 0.554–0.738

≥2 0.426 0.891 0.760 0.659 0.047 0.566–0.751

≥3 0.407 0.899 0.760 0.653 0.047 0.560–0.746

≥5 0.370 0.899 0.760 0.634 0.048 0.541–0.728

≥10 0.315 0.928 0.755 0.621 0.048 0.527–0.715

SSRN, species-specific read number; AUC, area under the curve; SE, standard error; CI,

confidence interval.

false-positive on mNGS for S. aureus (57.1%, 4/7), S. pneumoniae
(28.6%, 2/7), and H. influenzae (14.3%, 1/7).

Use of mNGS to Diagnose Fungal
Meningitis
Among the 13 patients with definite cryptococcal meningitis,
the first-time-positive rates of CSF India ink staining and
fungal culture were 0 and 38.4%, respectively. After multiple
stainings/cultures, the positive rate of the above two methods
were 84.62%. Cryptococcal antigen was detected in all (12/12)
CSF samples. When an SSRN ≥2 was considered mNGS-
positive, the sensitivity, specificity, positive predictive value, and
negative predictive value were 76.92% (10/13), 99.52% (1/207),
90.91% (10/11), and 98.56% (206/209), respectively (Table S4).
In addition, among the 13 patients, five were co-infected with
Cryptococcus neoformans sensu lato and Cryptococcus gattii
sensu lato, as has been described in detail elsewhere (Xing
et al., 2019). Among the five patients with confirmed cerebral
aspergillosis, when an SSRN ≥2 was considered mNGS-positive,
the sensitivity, specificity, positive predictive value, and negative
predictive value were 80% (4/5), 79.3% (165/208), 8.5% (4/47),
and 99.40% (165/166), respectively (Table S5).

Use of mNGS to Diagnose Four Types of
CNS Infection
The mNGS-positive rate for diagnosis of the four types of
definite or probable infectious encephalitis and meningitis,
including viral encephalitis and/or meningitis, TBM, bacterial
meningitis, and fungal meningitis, was 40.6% (73/180) (Table 3).
The positivity rate for the four types of definite CNS infectious
diseases was 57.0% (52/93).

DISCUSSION

We explored whether mNGS, combined with conventional
microbiological testing, aided in the diagnosis of infectious
encephalitis and meningitis. All patients met the criteria for
definite or probable diagnosis of CNS infection. We made two
important observations. First, different CNS infections were
associated with different positive diagnostic criteria because of
variations in genomic sequences and lifestyles. Second, mNGS
is more effective for detection of CNS infections, compared
to conventional methods (Figure 2B). Furthermore, mNGS

combined with conventional microbiological testing improved
detection of CNS infections.

Among the 75 patients with presumed encephalitis and/or
meningitis (54 definite and 21 probable), all pathogens identified
via mNGS were DNA viruses (mostly HSV-1, HSV-2, and
varicella zoster virus), consistent with the findings of other
studies (Steiner et al., 2007; Tyler, 2018). However, tumors and
HSV infection can both trigger autoimmune encephalitis (Pruss
et al., 2012). Thus, in the viral encephalitis and/or meningitis
group, all patients with suspected autoimmune disorders were
excluded. Identification of specific viral encephalitis/meningitis
pathogens is difficult; the gold standard pathogen-specific
polymerase chain reaction assays fail to identify many viral
families that infect the CNS (Koyuncu et al., 2013). In theory,
mNGS is useful for detection of all pathogens in clinical
samples. We found that mNGS did not significantly predict
viral encephalitis and/or meningitis (0.5 < AUC < 0.7), possibly
attributable in part to the absence of RNA detection. RNA
viruses, such as enteroviruses and Japanese encephalitis virus, are
common causes of viral encephalitis and meningitis (Le et al.,
2010; Ai et al., 2017). Thus, DNA/RNA co-extraction methods
must be improved and DNA and RNA sequenced simultaneously
to improve virus detection rates.

There were 10 million new cases of tuberculosis worldwide
in 2017, of which 558,000 were rifampicin-resistant. Although
only 1% of all tuberculosis infections involve the CNS, TBM
is the most serious manifestation of TB; over 50% of affected
patients become disabled or die (Thwaites et al., 2013). However,
early accurate diagnosis of TBM remains challenging, which
greatly affects patient outcomes. The pathogen complex is
termedM. tuberculosis complex;M. tuberculosis, Mycobacterium
africanum, Mycobacterium bovis, and Mycobacterium canettii
were all detected in the present study. Thus, mNGS is of great
utility in terms of TBM diagnosis when at least one specific
read is matched to the M. tuberculosis complex, consistent with
the findings of previous studies (Miao et al., 2018; Wang et al.,
2019). Although the diagnostic utility of mNGS for TBM is not
high (0.619), mNGS is undoubtedly very useful given the current
diagnostic predicament. Of note is that the specificity of mNGS
in the diagnosis of tuberculous meningitis is 96.4%, which allows
a negative mNGS test to be used as one of the diagnostic methods
to exclude TBM.

Bacterial meningitis is a considerable burden worldwide,
associated with high-level morbidity, mortality, and disability
(Chaudhuri, 2004). S. pneumoniae, N. meningitidis, H.
influenzae, and L. monocytogenes are the most common
pathogens of community-acquired suppurative meningitis
(Bijlsma et al., 2016). We found that S. pneumoniae was the
principal causative pathogen in this study. When SSRNs ≥5 or
10 were considered positive, mNGS performance was optimal in
terms of bacterial meningitis diagnosis (AUC = 0.846); mNGS
may be very useful in this context. However, S. aureus is a
very common pathogen that may cause a false-positive result if
present in CSF.

We found that that the diagnostic utility of mNGS for
cryptococcal meningitis was poorer than the utility of traditional
methods (India ink staining, culture, and cryptococcal antigen
detection). The thick cryptococcal capsule may not have been
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TABLE 3 | Positive mNGS results of the four types of CNS infection (73/180).

Results of mNGS Confirmatory data

Pathogen SSRN Coverage, % Depth

Viral encephalitis and/or meningitis (n = 23), SSRN ≥ 2

Herpes simplex virus 1 (n = 9) 2,764 (2–27639) 57.9066 (0.0412–91) 2.99

(1–7.5)

PCR (n = 5), Positive HSV antibody (CLIA)

(n = 9)

Herpes simplex virus 2 (n = 1) 4,311 90 6.5 Positive HSV antibody (CLIA)

Varicella-zoster virus (n = 5) 77 (6–3626) 4.3204

(0.2258–95.6227)

1

(1–2.47)

Skin herpes zoster (n = 4), PCR (n = 1)

Epstein-Barr virus (n = 6) 124.5 (4–3807) 6.8258

(0.1022–71.6965)

1

(1–2.39)

PCR (n = 3); Neuropathology (n = 1,

DLBCL); Positive EBV antibody (n = 4)

Cytomegalovirus (n = 1) 4 0.081 1 CSF cytomegalovirus IgG (122.0 U/mL)

Human adenovirus B1 (n = 1) 2,467 62.309 9.84 Clinical evidence

Tuberculous meningitis (n = 12), GSRN ≥ 1

Mycobacterium tuberculosis complex 4 (1–1046) ND ND Xpert MTB/RIF (n = 3); A. TB or

T-SPOT.TB (n = 4); Tuberculosis antibody

(n = 1); Clinical evidence (n = 4)

Bacterial meningitis (n = 24), SSRN ≥ 5 or 10

Streptococcus pneumoniae (n = 10) 2,488 (19–34711) 6.0112

(0.2236–66.8601)

1.31

(1–4.56)

Smear/culture (n = 4),

Streptococcus pyogenes (n = 1) 453 3.7 1 Smear

Streptococcus intermedius (n = 1) 592 5.2651 1 Clinical evidence

Klebsiella pneumoniae (n = 3) 15 (12–70) 0.0241

(0.0127–0.2979)

1

(1–1.59)

Culture (n = 3)

Listeria monocytogenes (n = 2) 43.5 (36–51) 0.1167

(0.0418–0.1915)

1.01

(1–1.02)

Culture (n = 2)

Nocardia farcinica (n = 1) 277 0.2631 1.16 Clinical evidence

Brucella (n = 1) 18 (GSRN) ND ND RBPT(+) and SAT(+)

Stenotrophomonas maltophilia (n = 1) 288 0.7879 1 Clinical evidence

Haemophilus influenzae (n = 1) 12 0.1478 1 Clinical evidence

Escherichia coli (n = 1) 58 1.2399 1 Culture

Aggregatibacter aphrophilus (n = 1) 256 0.7625 4.61 Clinical evidence

Neisseria meningitidis (n = 1) 4543 44.2621 1.82 Clinical evidence

Fungal meningitis (n = 14), SSRN or GSRN≥2

C. neoformans s.l. (n = 10) 40.5 (2–177203) 0.01445 (0.0019–71) 1 (1–24) India ink staining or culture for fungi

C. gattii s.l. (n = 5) 334 (7–71743) 0.1885 (0.0136–20) 1.02

(1–8.7)

India ink staining or culture for fungi

Aspergillus (n = 4) 6 (3–9) (GSRN) ND ND Histopathology

CLIA, chemiluminescence immunoassay; CNS, central nerve system; DLBCL, diffused large b-cell lymphoma; GSRN, genus-specific reads number; mNGS, metagenomic next-

generation sequencing; PCR, polymerase chain reaction; RBPT, rose bengal plate agglutination test; SAT, serum agglutination test; s.l., sensu lato; SSRN, species-specific

read number.

Positive HSV antibody: a 4-fold or more increase in CSF virus-specific antibody titer, or CSF virus-specific IgM antibody.

Positive EBV antibody: VCA (viral capsid antigens)-IgG ≥1:640, EA (early antigens)-IgG ≥1: 160, or EBNA (EB nuclear antigens) ≥1: 2; [Proposed Guidelines for Diagnosing Chronic

Active Epstein-Barr Virus Infection].

Clinical evidence: patient’s history, clinical presentation, imaging finding, routine laboratory CSF results and response to antibiotic treatment.

adequately breached, and DNA could not exit. Cell wall breakage
must be improved. We found that five patients had been
infected with C. neoformans s.l. and C. gattii s.l., and thus
required prolonged courses of antifungal therapy (Perfect et al.,
2010; Chen et al., 2013). mNGS of CSF can be used to
identify Cryptococcus species, facilitating cryptococcal meningitis
diagnosis and management. It is difficult to identify the source
of cerebral aspergillosis; histopathology is the gold standard
diagnostic method (Bao et al., 2014). Although there were few
patients with cerebral aspergillosis in this study, we presume
that mNGS may serve as a future, frontline diagnostic test
for cerebral aspergillosis because of the non-invasive nature
of mNGS.

We analyzed the diagnostic utility of mNGS in patients
with four common forms of infectious encephalitis and/or
meningitis; we speculate that mNGS could be used in
diagnosis of all infectious CNS diseases, including those
caused by rare or new pathogens. mNGS was better
than conventional methods in the diagnosis of infectious
encephalitis and/or meningitis, especially in terms of species
identification. However, this novel approach should be used
in conjunction with conventional microbiological testing.
The data should be interpreted differently, depending on the
pathogen involved.

Our study had some strength. The principal strength
was that we divided eligible patients into groups with
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different CNS infections, rather than pooling all patients
with CNS infections. The mNGS results were interpreted
with reference to the different types of infections. Moreover,
the study was prospective in nature. However, there were
also several limitations in this study. Firstly, RNA-Seq
data were not tested in parallel with DNA sequencing,
which might provide valuable complementary information.
Furthermore, because DNA extraction efficiency is critical
in terms of mNGS results, a comparison of the extraction
efficiencies of the various kits must be performed in
future studies. Finally, our sample size was relatively small,
especially after stratification of patients according to the types
of infections.

As a novel form of microbiological testing, mNGS affords
certain advantages over traditional tests when identifying
pathogens causing infectious encephalitis and meningitis. The
new technology exhibits great potential. Careful attention
is needed with respect to DNA and RNA co-extraction
methods, extraction efficiency, differentiation of colonization
from infection, and method standardization (Kennedy et al.,
2017; Simner et al., 2018).
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