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Candida species are common colonizers of the human skin, vagina, and the gut. As

human commensals, Candida species do not cause any notable damage in healthy

individuals; however, in certain conditions they can initiate a wide range of diseases

such as chronic disseminated candidiasis, endocarditis, vaginitis, meningitis, and

endophthalmitis. The incidence of Candida caused infections has increased worldwide,

with mortality rates exceeding 70% in certain patient populations. C. albicans, C.

glabrata,C. tropicalis,C. parapsilosis, andC. krusei are responsible for more than 90% of

Candida-related infections. Interestingly, the host immune response against these closely

related fungi varies. As part of the innate immune system, complement proteins play a

crucial role in host defense, protecting the host by lysing pathogens or by increasing their

phagocytosis by phagocytes through opsonization. This review summarizes interactions

of host complement proteins with pathogenicCandida species, includingC. albicans and

non-albicans Candida species such as C. parapsilosis. We will also highlight the various

ways of complement activation, describe the antifungal effects of complement cascades

and explore the mechanisms adopted by members of pathogenic Candida species for

evading complement attack.

Keywords: Candida, secreted proteases, complement system, fungal infection, innate immune response,

pathogenesis

INFECTIONS CAUSED BY CANDIDA SPECIES

Candida species are common colonizers of various mucosal surfaces, including that of the oral
cavity, gut or vagina; however, in the setting of certain predisposing conditions they are able to
disseminate throughout the host. The increasing incidence of invasive fungal diseases is a global
phenomenon (Park et al., 2009; Thomas et al., 2010; Vallabhaneni et al., 2016; Tóth et al., 2019).

C. albicans, as the most common cause of candidiasis, is studied more extensively than any other
Candida species. Nonetheless, increasing incidence of candidemia caused by non- albicans Candida
(NAC) species has also been reported in the latest decade, that led to the rise of NAC investigations
(Andes et al., 2016; Strollo et al., 2016). Their potential to cause outbreaks, higher resistance to
antifungal drugs, and the ability to cause recurrent infections has led to this higher scrutiny (Lee
et al., 2018). According to the Centers for Disease Control and Prevention (CDC), ∼25,000 cases
of candidemia occur each year in the USA (Mehta et al., 2018). Current annual burden rates in the
United Kingdom for invasive candidiasis is∼5,000 cases (Pegorie et al., 2017). For other countries
in Europe, the incidences for invasive candidiasis have been reported as 3.9 /100,000 in Norway,
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8.6/100,000 in Denmark, and 8.1/100,000 cases in Spain, which
also has had a 1.88-fold increase in incidence in the last decade
(Rodriguez-Tudela et al., 2015; Lamoth et al., 2018). The average
incidence of candidemia in Australia is 2.4/100,000, whereas
regionally the range varied from 1.6 to 7.2/100,000 population
(Chapman et al., 2017). A recent review summarized data from
39 papers containing reports from across the globe and estimated
a total of 159,253 candidemia episodes by August 2017, including
a high prevalence in Pakistan followed by Brazil and Russia
with the lowest incidence in Jamaica, Austria, and Portugal
(Bongomin et al., 2017). Among NAC species, C. parapsilosis,
C. glabrata, and C. tropicalis have been commonly associated
with candidemia among cancer patients in the USA, Portugal
and Australia (Sipsas et al., 2009; Pammi et al., 2013; Pfaller
et al., 2014; Wu et al., 2017). In Asian countries, higher mortality
rates are associated with NAC species (Ma et al., 2013; Pinhati
et al., 2016). In general, cases of candidemia increased nearly 5-
fold in the last 10 years, with the highest increase of 4–15-fold
recorded in developing countries in which recurrent episodes
were frequent (Kaur and Chakrabarti, 2017). Crude mortality
rates among patients with invasive candidiasis or candidemia
generally range between 40 to 60%, depending on the underlining
conditions (Wu et al., 2017). Increasing incidences of candidemia
have occurred in pediatric ICUs, particularly in developing
countries in which there are limited resources, a dearth of
advanced diagnostics, high patient loads, and a potential limited
awareness about fungal diseases (Kaur and Chakrabarti, 2017).
Given that Candida infections contribute to a relatively high
morbidity and mortality, especially among patients admitted to
ICUs, much attention has been paid on understanding the basics
of their pathobiology, virulence factors, predisposing conditions
along with the immune responses of both healthy and immune
compromised individuals. Besides the cellular components of
both the innate and adaptive immune system, the complement
system has also been shown to play a fundamental role in
fungal pathogen clearance, similarly to that of invading bacteria.
Although the thick cell wall of pathogenic fungi builds a certain
level of resistance to direct lysis due to complement activation,
binding of complement factors to the fungal surface facilitates
their phagocytosis and alters inflammatory responses from host
immune cells (Kozel, 1996; Cheng et al., 2012; van Strijp et al.,
2015). In the followings we summarize how various complement
proteins shape defense mechanisms to prevent the development
of disseminated candidiasis and how such mechanisms could be
avoided by Candida species.

OVERVIEW OF THE COMPLEMENT
CASCADE

During infections, complement proteins facilitate the
phagocytosis of invading pathogens by opsonization, initiate
inflammatory responses and modify the behavior of B and T cells
(Killick et al., 2017). The complement cascade is activated by
three distinct routes.

The classical pathway (CP) is initiated by binding components
of the C1 complex (C1q) with antigen bound IgM or IgG

or by binding with other recognition molecules such as
phosphatidylserine, C type reactive protein, pentraxins, serum
amyloid P component, and various receptors including integrin
α2β1 (Roy et al., 2017). C1q and antigen-carrier immunoglobulin
binding ultimately leads to the activation C1s that cleaves
C2 and C4 into C2a and C2b and C4a and C4b fragments,
respectively. C4b then binds to cell surfaces and to C2a to
form the C3 convertase (C4bC2a) (Figure 1). C3 convertase
converts complement protein 3 (C3), the central component
of the complement attack, into C3a (anaphylatoxin) and C3b
(opsonin). Further attachment of C3b to the C4bC2a complex
generates the C5 convertase. Binding of C3b to the surface of
pathogenic species facilitates their phagocytosis (van Lookeren
Campagne et al., 2007). C3b also undergoes internal cleavage to
produce (inactive) iC3b and C3d. Both of these C3b fragments
act as opsonins and further bind and label (opsonize) pathogens
to facilitate phagocytosis (van Lookeren Campagne et al., 2007;
Hostetter, 2008). Deposition of iC3b facilitates recognition by
complement receptor 3 (CR3), that enhances phagocytosis,
reactive oxygen species (ROS) production, leukocyte trafficking,
and migration of macrophages and neutrophils (Hostetter, 2008;
Netea et al., 2008). Macrophages in the kidney and liver are also
involved in the clearance of pathogenic fungi (Lionakis et al.,
2013; Coelho and Drummond, 2019; Sun et al., 2019). CR3
activation also leads to enhanced NET formation and pro- and
anti-inflammatory cytokine production by both neutrophils and
macrophages (Löfgren et al., 1999; Huang et al., 2015; Lukácsi
et al., 2017). Proteolytic cleavage of surface-bound iC3b further
creates the opsonizing fragment C3d and C3dg.

The previously mentioned C5 convertase, or C4bC2a(C3b)n,
will initiate the formation of the membrane attack complex
(MAC), thus the terminal pathway (Ali et al., 2012). C5
convertase cleaves C5, a terminal component of the complement
cascade into C5a and C5b. C5a is an anaphylatoxin and a
powerful mediator of inflammation, while C5b together with
C6-C7-C8 and C9 is required for the formation of the terminal
complement complex. C5a through C5aR receptor signaling also
recruits and activates monocytes, macrophages, and neutrophils
(Roumenina, 2015).

The second activation route is via the lectin pathway (LP).
This pathway is triggered by the binding of mannan-binding
lectins (MBL), collectin and ficolins to a bacterial/fungal
membrane that express pathogen-associated molecular patterns
(PAMPs) such as lipoteichoic acid and lipopolysaccharides
(Gram-positive bacteria and Gram-negative bacteria,
respectively), or β-glucan (fungi). Binding of MBL or ficolins
to the pathogenic surface activates the MBL-associated serine
proteases (MASP-1, MASP-2, andMASP-3). MASP2 then cleaves
C4 and C2 to generate C4bC2a (C3 convertase) in order to
initiate the terminal complement cascade (Fujita, 2002). MBL
acts as an opsonin signal for immune cells bearing complement
or lectin receptors (Takahashi and Ezekowitz, 2005).

The third pathway for activation is by the alternative pathway
(AP), which is constitutively active in the host at low levels.
Spontaneous low-level hydrolysis of a thioester bond of C3
forms C3(H2O), which functions analogous to C3b. C3(H2O)
further binds to complement factor B (CFB), that is ultimately
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FIGURE 1 | Complement cascade initiation after Candida recognition. The three distinct pathways of the complement cascade are referred to as classical, lectin and

alternative. C. albicans can efficiently regulate complement cascades either by secreting aspartyl proteases or by binding with complement regulators on its surface.

cleaved by serine protease factor D (CFD), generating a different
C3 convertase (C3(H2O)Bb) characteristic of the alternative
pathway. This C3 convertase complex, similarly to the classical
C3 convertase, cleaves C3 to C3a and C3b fragments. Formation
of C3 convertase leads to the assembly of the C5 convertase
(C3bBb3b) initiating the assembly of the MAC complex on the
surface of foreign cells, similar to that of the CP (Dunkelberger
and Song, 2009; Ricklin et al., 2010; Merle et al., 2015).

To avoid the destruction of self-components, complement
activation needs to be tightly regulated and must be confined to
the surfaces of pathogens or dying cells. Complement regulatory

proteins serve as crucial factors to regulate complement
activation at two stages: at the level of convertases (by cleaving the
C3 and C5 convertase components), and during MAC assembly.
Some known complement inhibitors such as decay-accelerating
factor (DAF; CD55), CR1, Factor H (FH), C4-binding protein
(C4BP), and vitronectin, are crucial for restricting complement
activation. The mechanism of action of these inhibitors has been
summarized in previous reviews (Dunkelberger and Song, 2009;
Zipfel and Skerka, 2009). Complement protein factor H, C3b,
and iC3b also modulate the neutrophil extracellular trap (NET)
released from neutrophils (de Bont et al., 2018).
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COMPLEMENT CASCADE INITIATION AND
ITS ANTI-CANDIDA EFFECTS

Several of the fungal cell wall components (chitin, glucans, and
mannans) are recognized by host innate immune components,
including complement proteins. In the followings we shortly
discuss how each pathway may be involved in anti-Candida
immune responses based on the currently available information,
followed by discussing the role of certain complement proteins
(C3 and C5), the terminal clearance system and finally a
complement regulator (FH) in Candida clearance.

To characterize the chitin-induced complement pathway,
neutralizing antibodies against factor B and C1q were used
to inhibit the alternative and classical complement pathways.
This revealed that antibodies against complement factor B but
not against C1q inhibit the cascade induced by purified chitin,
suggesting that mainly the AP is activated by this cell wall
component (Roy et al., 2013).

The C. albicans cell wall component glucan is another potent
activator of the AP. Incubation of purified alternative pathway
proteins with glucan-displaying C. albicans cells effectively
initiates the AP (Boxx et al., 2010). Boxx et al. also revealed
the importance of anti-mannan antibodies in the ingestion of
the mannan-displaying fungal cells and complement proteins
in the uptake of glucan-displaying cells by polymorphonuclear
leukocytes (PMNs) (Boxx et al., 2010).

MBLs recognize pathogens through their carbohydrate
recognition domains (Takahashi and Ezekowitz, 2005; Auriti
et al., 2017). MBLs efficiently bind to C. albicansmannose and N-
acetylglucosamine molecules to activate the lectin pathway (Van
Asbeck et al., 2008). Binding of lectins to the C. albicans cell wall
inhibits growth independent of complement activation (Ip and
Lau, 2004).

Deposition of C3 fragments on C. albicans activates the
complement cascade and enhances opsonophagocytosis by
PMNs (Van Asbeck et al., 2008). Mice lacking C3 (C57BL/6
C3−/−) are highly susceptible to fungal infections (Tsoni et al.,
2009). Another study showed that co-incubation of chitin with
human sera or its intratracheal injection in mice induces C3a
production (Roy et al., 2013).

B cells are also activated (through B cell receptor complex
assembly) upon binding of CR2 (CD21) with C3d-opsonized
yeasts on their surface. This assembly not only lowers the
activation threshold but also stimulates the production of
antibodies via a complement-dependent process (Lyubchenko
et al., 2005; Carroll and Isenman, 2012). Affinity of complement
proteins also varies for the various cell wall components of
the fungus. For instance, complement factors C3b/C3d are
more rapidly deposited on β-1,6-glucan compared to β-1,3-
glucan. In the same study, unlike β-1,3-glucan, β-1,6-glucan was
shown to enhance neutrophil activation, through increased ROS
production and uptake, suggesting that deposition of C3d/C3d
to β-1,6-glucan on the surface of C. albicans could also promote
anti-Candida effects (Rubin-Bejerano et al., 2007).

C5 convertase cleaves C5, a terminal component of the
complement cascade into C5a and C5b. Mice lacking a functional
copy of C5 are susceptible to invasive C. albicans infection
(Mullick et al., 2004). Previously it has been shown that during

C. albicans infection, C5a activates human monocytes and also
induces the production of pro-inflammatory cytokines IL-1β and
IL-6 (Yan and Gao, 2012). C5a enhances the C. albicans-induced
inflammatory response from monocytes through C5a-C5aR
signaling, that implies the importance of anaphylatoxins against
candidiasis (Cheng et al., 2012). Furthermore, C5a enhances the
expression of CR3 (CD11b) on PMNs and C5a-C5aR signaling is
also required for neutrophils to migrate to fungal cells (Hünniger
et al., 2015; Sun et al., 2015).

Previous studies also revealed a direct anti-Candida effect of
the terminal complement system. According to Lukasser-Vogl
et al. (2000) the presence of opsonized C. albicans cells markedly
induced the release of C6 and C7 proteins from PMNs, but
not that of C8 and C9, suggesting an enhanced assembly of the
initial membrane attack complex (Lukasser-Vogl et al., 2000).
Another study revealed that the presence of C6/C7 proteins in
normal human serum reduced growth, Sap-release and adhesion
capabilities of Candida cells when compared to C6/C7-depleted
conditions. Increased phagocytosis was also detected, suggesting
the terminal complex’s active inclusion in the augmentation of
anti-Candida effects (Triebel et al., 2003).

Regarding complement regulators, as mentioned above,
complement factor H modulates NET formation. NETs, which
consist of chromatin fibers, proteolytic enzymes, and host defense
proteins, are able to kill C. albicans cells (Urban et al., 2006). FH
also acts as a bridge between C. albicans and CR3, that further
enhances pathogen elimination (Losse et al., 2010).

REGULATION OF THE HOST
COMPLEMENT CASCADE BY CANDIDA

Recruitment of Complement Regulators on
the Cell Surface
According to Meri et al., besides C. albicans, NAC species such
as C. glabrata, C. parapsilosis, C. lusitanae and C. tropicalis
also bind complement proteins (Figure 2) (Meri et al., 2002).
Activation of the host complement cascade by sensing Candida
inhibits the growth or facilitates the killing of yeast cells by
opsonization. Previous studies suggested that C. albicans escapes
complement attack by two possible routes: either by recruiting
complement regulators [Factor H, FH-like protein (FHL-1),
C4BP, plasminogen] on their surface (Table 1) or by degrading
complement proteins by proteases (Figure 1) (Meri et al.,
2002, 2004; Gropp et al., 2009; Losse et al., 2010; Luo et al.,
2013b). Attached to the C. albicans cell surface, complement
regulator proteins retain their function, and let the fungus
regulate and avoid the complement attack (Luo et al., 2013b).
The C. albicans cell wall-associated proteins Phosphoglycerate
mutase (Gpm1p), Glyceraldehyde-3-phosphate dehydrogenase
(Gapdh/Gpd), and pH regulated antigen 1 (Pra1p)
are confirmed to have a strong binding affinity to
complement regulators.

Phosphoglycerate mutase (Gpm1p), a cytoplasmic protein,
is involved in glycolysis and converts 3-phosphoglyerate to 2-
phosphoglycerate (Lopez et al., 2014). The C. albicans gpm1
deletion mutant has reduced binding of FH and plasminogen
compared to the wild-type strain. Attached to C. albicans gpm1p,
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FIGURE 2 | Candida-mediated host complement cascade regulation. C. albicans regulates the complement attack by two mechanisms: recruiting complement

regulators on its surface or secreting aspartyl proteases to cleave complement proteins. C. albicans cell surface proteins bind to C3b and CCP domains of

complement regulators. C. albicans and C. parapsilosis can also secrete aspartyl proteases to cleave human complement proteins.

TABLE 1 | C. albicans cell surface associated proteins important for binding with

host complement proteins.

C. albicans protein Binds with

complement protein

References

Phosphoglycerate mutase

(Gpm1p/GPM1)

Factor H, FHL-1,

and plasminogen

(Poltermann et al.,

2007; Lopez et al.,

2014)

pH-regulated antigen 1 (Pra1) C4BP, C3 (Luo et al., 2010,

2011, 2018)

Translation elongation factor 1

(Tef1p)

FH, C4BP, C3d, C3dg (Lopez, 2013)

Glyceraldehyde-3-phosphate

dehydrogenase (Gapdh)

FH and FHL-1, (Luo et al., 2013a)

High-affinity glucose transporter

1(CaHgt1p)

FH and C4BP (Lesiak-Markowicz

et al., 2011; Kenno

et al., 2019)

FH and plasminogen remain functional and retain their protease
activity (Poltermann et al., 2007). FH serves as a cofactor
of factor I (FI). FI, a serine protease, cleaves C3b, and thus
inactivates the complement alternative pathway. Surprisingly,
NAC members such a C. krusei, C. glabrata, C. parapsilosis,
and C. tropicalis also bind FH and FHL-1 with similar affinity
to C. albicans, indicating that NAC species could also evade

the complement mediated anti-Candida host immune response
(Meri et al., 2004). In addition to FH on the cell surface of
C. albicans, gpm1p binds to FHL-1. FH, which consists of
20 complement control protein (CCP) domains, binds to C.
albicans through its CCP6-7 domain and C terminus CCP19-
20 domain (Meri et al., 2002). Similar to FH, CCP-6-7 of
FHL-1 can also bind to C. albicans (Figure 2). Binding of
FH and FHL-1 with NAC members also occurs; however,
their binding sites on NAC cell surface are not well-known
(Figure 2).

Glyceraldehyde-3-phosphate dehydrogenase (Gapdh/Gpd),
which is present on the C. albicans cell surface, also appears
to bind FH and FHL-1 (Luo et al., 2013a). On the C.
albicans surface, FH and FHL-1 attached with Gpd retain their
complement regulatory activity, thereby inhibiting complement
activation (Luo et al., 2013a). Additionally, C. albicans binds with
plasminogen via Gpd2. Surface-bound plasminogen contributes
to complement inhibition and degradation of extracellular
matrices to help C. albicans in tissue invasion (Luo et al.,
2013a). pH regulated antigen 1 (Pra1p) is either secreted from
C. albicans or is cell wall-associated. Hyphae associated Pra1p
is highly glycosylated and induces a strong immune response
(Marcil et al., 2008; Soloviev et al., 2011; Bergfeld et al., 2017).
Pra1p also binds with FH and FH-related protein1 (FHR-
1) (Luo et al., 2009). As it is bound to the cell surface of
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C. albicans, Pra1p helps in plasminogen-mediated complement
evasion and extra-cellular matrix interaction and/or degradation
(Luo et al., 2009). As a secreted protein, it regulates complement
activation by binding complement proteins. Pra1 binds to
host C3 and blocks the conversion of C3 to C3a and C3b,
leading to the inhibition of the complement cascade (Luo
et al., 2010). It also helps C. albicans evade the complement
attack through binding to C4bp, another classical pathway
inhibitor. The same study also revealed that pra1 deletion
mutants have a significant but not a complete reduction
in C4bp binding. This suggests that other C4bp binding
proteins might be present on the cell surface of this species
(Luo et al., 2010).

In case of certain pathogens (e.g., parasites and viruses)
the “Trojan horse” principle has been previously described,
meaning that the pathogen initiates its own uptake by host
cells via complement proteins or complement receptors as an
alternative immune evasion strategy. Such an event has also
been associated with a milder host response, compared to the
response followed by a normal opsonization process, enabling
intracellular survival and avoiding the hostile extracellular niche
(Würzner and Zipfel, 2004). To date, it is still unclear whether
C. albicans uses a Trojan horse-like mechanism for host cell
invasion, let alone if such an event would take place with the
help of host complement receptors (Swidergall, 2019). Molecular
mimicry of host complement proteins is another potential route
of host response evasion. Previously, the presence of human
CR3-like proteins was described on the surface of Candida
cells with C3 binding affinity (Edwards et al., 1986). CR-like
molecules of the fungus were also shown to be required for iron
acquisition from complement coated red blood cells (Moors et al.,
1992). Besides binding C3 in a non-opsonizing manner, CR3-
like proteins also enhance host adhesion and invasion (Gustafson
et al., 1991).

C. albicans also possesses an αvβ3 integrin-like protein similar
to the vertebrate αvβ3 integrin receptor (Hostetter, 1999). This
protein recruits vitronectin, a terminal complement pathway
inhibitor on the surface of this fungus, thereby inhibiting MAC
formation (Spreghini et al., 1999).

Degradation of Complement Proteins
Aspartyl proteases share a common catalytic apparatus, and
have a conserved “Asp-Gly-Thr” sequence at their active site.
The number of aspartyl acid protease (Sap) encoding genes
varies among Candida species, as C. albicans possesses 10 known
SAP genes, grouped into 6 subfamilies (SAP1-3, SAP4-6, SAP7,
SAP8, SAP9, and SAP10), while in C. tropicalis there is 1
subfamily of four genes (SAPT1–SAPT4) and C. parapsilosis
has three genes (SAPP1–SAPP3) that have been identified and
functionally characterized (Pichová et al., 2001; Naglik et al.,
2003). Most studies related to pathogenic Candida species
are mainly centered on strains either isolated from the oral
cavity, vaginal lumen or immunocompromised patients in ICUs.
Interestingly, activities of SAPs were reported to be variable
among these isolates. For instance, strains derived from HIV
patients with oral candidiasis or with vaginitis were shown

to secrete aspartyl proteases at higher quantities compared to
asymptomatic carriers (De Bernardis et al., 1992, 1996). C.
parapsilosis isolates from skin display higher Sap activity in vitro
compared to the blood isolates (De Bernardis et al., 1999; Trofa
et al., 2008). Research supports the notion of a strong correlation
between expansions of SAP gene family with pathogenicity of
Candida species.

Within a host, fungi are able to regulate the complement
attack using secreted aspartyl proteases. A previous study
showed that Saps, specially Sap1, Sap2, and Sap3 secreted
by C. albicans cleave C3b, C4b, and C5 proteins, and
also block MAC assembly (Gropp et al., 2009). Other
Saps, such as Sap9, are not able to cleave complement
proteins, only antimicrobial peptides such as histatin5
(Gropp et al., 2009). Sap2 of C. albicans also cleaves FH,
and FH binding complement receptors CR3 and CR4 on
macrophages (Svoboda et al., 2015). C. albicans aspartyl
proteases also efficiently cleave most immunoglobulins
including IgG (Fc portion) and IgA, which are important
for complement activation.

Recently, we have shown that secreted aspartyl proteases in C.
parapsilosis, especially Sapp1p and Sapp2p can also cleave C4b,
C3b, and FH, however their specificity and cleavage capacity
differs. Sapp1p has a higher cleavage capacity against C3b
compared to Sapp2p, whereas only Sapp2p but not Sapp1p
cleaves FHR-5 (Singh et al., 2019).

In addition to complement proteins, aspartyl proteases of C.
albicans can efficiently hydrolyze, cleave or activate other host
defense proteins, including salivary lactoferrin, lactoperoxidase,
immunoglobulins, cathepsin D, IL-1β, human big endothelin-
1, α2-macroglobulin, etc. (Germaine et al., 1978; Ruchel, 1984;
Kaminishi et al., 1990).

CONCLUSION

Neonates, the elderly, and patients with an acquired or
inherited underlying immunocompromised status are the
most vulnerable to invasive candidiasis. To effectively
combat Candida infections, the complement system is of
particular importance due to its direct interaction with
fungal cells and, consequently, an effective innate or adaptive
immune response. Such responses include the activation of
macrophages, neutrophils and dendritic cells or B cells as a
result of pathogen opsonization. Chemotactic recruitment
of immune cells at the site of infection is mediated by
anaphylotoxins (C3a, C5a), concomitantly resulting in
enhanced internalization, oxidative burst and the secretion
of proinflammatory cytokines by activating the complement
receptors on immune cells are common complement-mediated
defense mechanisms.

Highly virulent Candida species have evolved mechanisms
to evade the host’s complement attack. These processes
include the binding of complement regulators on their
surface and secretion of proteases to degrade complement
cascade initiating components. Therefore, insights into
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the multifaceted interactions between human complement
proteins and pathogenic Candida species may allow us to
develop promising approaches for therapeutic strategies
targeting complement proteins involved in the pathogenesis of
Candida infections.
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