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Sepsis is caused by a dysregulated host response to infection, and characterized by

uncontrolled inflammation together with immunosuppression, impaired innate immune

functions of phagocytes and complement activation. Septic patients develop fever or

hypothermia, being the last one characteristic of severe cases. Both lipopolysaccharide

(LPS) and Tumor Necrosis Factor (TNF)-α- induced septic shock in mice is dependent

on the time of administration. In this study, we aimed to further characterize the

circadian response to high doses of LPS. First, we found that mice injected with LPS

at ZT11 developed a higher hypothermia than those inoculated at ZT19. This response

was accompanied by higher neuronal activation of the preoptic, suprachiasmatic,

and paraventricular nuclei of the hypothalamus. However, LPS-induced Tnf-α and

Tnf-α type 1 receptor (TNFR1) expression in the preoptic area was time-independent.

We also analyzed peritoneal and spleen macrophages, and observed an exacerbated

response after ZT11 stimulation. The serum of mice inoculated with LPS at ZT11 induced

deeper hypothermia in naïve animals than the one coming from ZT19-inoculated mice,

related to higher TNF-α serum levels during the day. We also analyzed the response in

TNFR1-deficient mice, and found that both the daily difference in the mortality rate, the

hypothermic response and neuronal activation were lost. Moreover, mice subjected to

circadian desynchronization showed no differences in the mortality rate throughout the

day, and developed lower minimum temperatures than mice under light-dark conditions.

Also, those injected at ZT11 showed increased levels of TNF-α in serum compared to

standard light conditions. These results suggest a circadian dependency of the central

thermoregulatory and peripheral inflammatory response to septic-shock, with TNF-α

playing a central role in this circadian response.

Keywords: sepsis, circadian rhythms, immune system, Tumor Necrosis Factor-α, hypothermia

INTRODUCTION

Sepsis is a syndrome characterized by a dysregulated host response to a pathogen and is the primary
cause of death from infection (Singer et al., 2016). In the United States, the incidence of severe
sepsis is more than 3 per 1,000 persons (Kumar et al., 2011) and the in-hospital mortality rate
is about 25–30% of septic patients worldwide (Vincent et al., 2014). Therefore, it is important
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to recognize early signs to treat this syndrome and to
avoid its progression, as there is still no effective treatment
available. Sepsis symptoms include: body temperature alterations
(fever or hypothermia), elevated heart and respiratory rate,
hyperglycemia, alterations of inflammatory and hemodynamic
variables, among others (Angus and van der Poll, 2013). Septic
shock is defined as the septic condition worsened by metabolic
and circulatory alterations, as hypotension, which increase the
mortality rate (Singer et al., 2016).

As it is a complex and multi-symptomatic pathology, it may
be important to differentiate between those symptoms related
with more severe cases from those compatible with a better
prognosis. For example, it has been shown that hypothermia is
related to a worse prognosis than fever (Remick and Xioa, 2006;
Rumbus et al., 2017). Body temperature is controlled by neuronal
circuits present, mainly, in the hypothalamus (Morrison, 2016).
Particularly, the hypothalamic preoptic area (POA) is the main
integrative brain site for thermoregulation, controlling brain
and peripheral body temperature (Boulant, 1998; Morrison and
Nakamura, 2018).

Pathogen infection also triggers an important inflammatory
response. The innate immune response induces an increase
of pro-inflammatory cytokine release known as “cytokine
storm” (Bosmann and Ward, 2013). On the other hand, an
anti-inflammatory response, including glucocorticoid secretion
(Marik, 2011), is also elicited. The pro-inflammatorymechanisms
contribute to clear the infection while the anti-inflammatory ones
respond to tissue healing. However, an excess of inflammation
can cause tissue damage while an excess of anti-inflammatory
responses can produce secondary infections (van der Poll and
Opal, 2008).

One of the main cytokines secreted in response to sepsis
is Tumor Necrosis Factor (TNF)-α. In animal models, TNF-
α administration induces most of septic symptoms and signs
(Tracey et al., 1988). Moreover, lack of TNF-α signaling, as in
TNF-α receptor (TNFR) deficient (KO) mice or generated by
soluble TNFR administration, induces higher resistance to sepsis
(Tracey et al., 1987; Mohler et al., 1993; Pfeffer et al., 1993; Guo
et al., 2009).

One of the most studied animal models of sepsis is induced
by the administration of high doses (close to 20 mg/kg) of the
bacterial endotoxin lipopolysaccharide (LPS), producing high
mortality rates (Li et al., 2014; Liao and Lin, 2015; Ramos-
Benitez et al., 2018) and the characteristic signs of sepsis: pro-
inflammatory cytokine induction (Ogawa et al., 2016; Ramos-
Benitez et al., 2018), hypothermia (Saito et al., 2003; Nautiyal
et al., 2009), hypotension (Chuaiphichai et al., 2016) and
immunosuppressive response development (Córdoba-Moreno
et al., 2018), among others.

In addition, there is a daily variation in the mortality rate
due to septic shock: mice intraperitoneally injected with high
doses of LPS at the end of the day show a higher mortality rate
than those injected in the middle of the night (Halberg et al.,
1960; Marpegan et al., 2009). Similar results were obtained when
TNF-α was administered intravenously (Hrushesky et al., 1994).
These experiments indicated that the response triggered by sepsis
is related to the circadian system, linked to a central biological

clock in the hypothalamic suprachiasmatic nuclei (SCN) which is
mainly synchronized by the light-dark (LD) cycle (Golombek and
Rosenstein, 2010). Moreover, mice deficient for the clock genes
Period 2 (PER2) or Clock are more resistant to septic shock (Liu
et al., 2006b; Wang et al., 2016). Finally, several studies observed
that animals subjected to circadian desynchronization, such as
SCN lesions or experimental protocols of chronic jet-lag (CJL),
exhibit an increase in the inflammatory response triggered after
LPS administration (Castanon-Cervantes et al., 2010; Adams
et al., 2013; Guerrero-Vargas et al., 2014).

Despite the numerous evidences that show a circadian
component of the septic response, the causes that generate this
differential response are still unknown. The aim of this study was
to further analyze the interaction between the circadian system
and themechanisms triggered during sepsis, to better understand
and differentiate lethal and survival responses.

MATERIALS AND METHODS

Animals
Adult (2-month old) C57BL/6J wild type (WT) and TNFR1-
deficient (TNFR1 KO) male mice (Mus musculus) were raised
in our colony. TNFR1 KO mice (originally from The Jackson

Laboratory—B6.129-Tnfrsf1atm1Mak/J—raised in a C57BL/6J
background) were kindly provided by Dr. Silvia Di Genaro (San
Luis National University, Argentina). The neomycin cassette
present in KO mice in the position 535 of the coding sequence
of Tnfr1 was detected by polymerase chain reaction (PCR)
following the instructions described by The Jackson Laboratory
(data not shown). All mice were housed in groups under a
12:12-h LD photoperiod (with lights on at 7 a.m. and lights
off at 7 p.m.) with food and water ad libitum. This study was
carried out in accordance with the National Institutes of Health’s
Guide for Care and Use of Laboratory Animals and the Animal
Research: Reporting in vivo Experiments (ARRIVE) Guidelines.
The protocol was approved by the Institutional Animal Care and
Use Committee of the National University of Quilmes.

Experimental Design
In the experiments conducted under LD conditions, animals
were injected at ZT11 or ZT19 (ZT: zeitgeber time; ZT0: time of
lights on; ZT12: time of lights off) with a dose of 20 mg/kg of
LPS (Escherichia coli 0111:B4 serotype, Sigma-Aldrich, St. Louis,
USA) or vehicle (VEH; saline solution). Mice were weighted
24 h before treatment, immediately before the injection and 24 h
after treatment. For survival analyses mice were observed for 10
days after treatment, three times a day. Samples were collected
2 h after inoculation with LPS or VEH [except for the serum
transfer experiment; see below]. Blood extraction was done under
isofluorane anesthesia (5%; USP, Piramal Healthcare, India),
using an equipment of gas anesthesia (SurgiVet R©, USA). Tissue
collection was done after euthanizing by rapid decapitation
under isofluorane anesthesia, and all efforts were made to
minimize suffering.

For experiments performed under circadian
desynchronization, LPS or VEH was administered 3 weeks after
the beginning of the CJL6/2 protocol (see below). Inoculation at
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ZT11 was done during the day (lights on) before the 6-h night,
while ZT19 inoculation was done during the 12-h night before
the mentioned day.

Chronic Jet-Lag Protocol
The CJL schedule was previously designed by our group
(Casiraghi et al., 2012) and consisted in a 6 h advance of the LD
cycle every 2 days (CJL6/2); which was accomplished through a
6 h shortening of every second dark phase. Effective circadian
desynchronization was evaluated by observation of a particular
activity pattern which included two components of activity
rhythms with periods of about 21 and 24.7 h. General activity was
detected by infrared sensors connected to a computer interface
that records activity counts every 5min for posterior time-series
analysis (Archron, Buenos Aires, Argentina).

Body Temperature Analysis
For body temperature studies, individual photographs were taken
using the FlirOne R© Thermal Camera (Flir Systems, Oregón,
USA) coupled to a Samsung S7 SmartPhone (Samsung, Seoul,
South Corea). This camera provides thermal images in a range
of −20 to 120◦C, with a 0.1◦C resolution. Pictures were taken
1 h before, at the time of inoculation and then every 2 h, for 20 h.
For taking the picture, the animal was taken out of the cage and
the camera was fixed at the same height for all the experiments.
Pictures were then analyzed with an algorithm programmed in
the software Matlab, for automatic calculation of the maximum,
minimum and average temperature, and localization of the
maximum temperature inside the image. Curve analysis was
done using the maximum temperature obtained for each time
point, which was always observed in the head of the animal.

Animal Perfusion and Brain Sections
Obtaining
Mice were deeply anesthetized under gas isofluorane anesthesia
(5%; USP, Piramal Healthcare, India) and perfused intracardially
first with cold 0.01M phosphate buffer saline (PBS) and then
with cold 4% paraformaldehyde in PBS. Brains were removed
carefully, post-fixed overnight in 4% paraformaldehyde in PBS,
cryoprotected in 10%, 20% and 30% sucrose in PBS for 24 h each
solution; 30µm thick coronal sections were cut with a freezing
cryostat and collected in PBS.

Immunohistochemistry for cFos in the
Hypothalamus
Mice were perfused 2 h after LPS or VEH treatment as explained
before. Free-floating brain coronal sections containing POA,
SCN, and paraventricular nuclei (PVN) (15 sections/mouse) were
blocked with 10% non-fat milk in PBS containing 0.4% Triton X-
100 (PBS-T) and incubated with primary antisera raised in rabbit
against cFos (Millipore, Massachusetts, USA; 1:1,000) diluted
in PBS-T, for 24 h at 4◦C. Sections were then treated using
the avidin–biotin method with a Vectastain Elite Universal kit
containing a biotin-conjugated secondary antibody, avidin and
biotin-conjugated horseradish peroxidase (Vector Laboratories,
Burlingame, CA) and Vector-VIP peroxidase substrate (SK-
4600; Vector Laboratories, Burlingame, CA). Cell counting was

performed with the Fiji-ImageJ 1.51n software (NIH, Maryland,
USA) in hypothalamic sections, using the regions shown in
Figures 2E–G.

RNA Extraction and Real-Time PCR
Tissue from POA was carefully dissected 2 h after LPS
injection under magnifying glass observation and collected
in 100 µl of TRIzol R© reagent (Thermo Fisher Scientific,
Massachusetts, USA). RNA was extracted according to the
manufacturer’s instructions. RNA solutions were quantified
using a NanoDrop1000 equipment (Thermo Fisher Scientific,
Massachusetts, USA) and their integrity was evaluated by
electrophoresis in a 1.2% agarose gel. cDNA was synthesized
using 1,000 ng of total RNA, oligo(dT) primers and the
SuperScriptTM III First-Strand Synthesis System (Thermo Fisher
Scientific, Massachusetts, USA). Gene amplification was
performed on a SmartCycler II Thermal Cycler Automated
Real-Time PCR System (Cepheid R©, California, USA), using 25 µl
of final reaction volume containing 1 µl of cDNA as template,
1X of Master Mix qPCR (Productos BioLógicos, Buenos Aires,
Argentina) and the corresponding primers: TNFR1-F 5′-ACC
AAG TGC CAC AAA GGA AC-3′, TNFR1-R 5′-ATT CTG
GGA AGC CGT AAA GG-3′, TNF-F 5′-GAC AGT GAC CTG
GAC TGT GG-3′, TNF-R 5′-GAG ACA GAG GCA ACC TGA
CC-3′, HPRT-F 5′- TGT TGG ATA CAG GCC AGA C-3′,
HPRT-R 5′ TGG CAA CAT CAA CAG GAC TC-3′. HPRT was
used as the reference gene. The cDNA template was amplified
in duplicate, with the following conditions: 95◦C for 10min,
followed by 40 cycles of 95◦C for 15 s and 60◦C for 1min. Then
the melting curve was obtained between 60 and 95◦C. Relative
gene expression was analyzed using the 2−11Ct method.

Flow Cytometry Analysis
Peritoneal exudate harvest was done 2 h after LPS injection.
The peritoneal membrane was separated from the skin and 3ml
of cold Dulbecco’s Modified Eagle’s Medium (DMEM; Sigma-
Aldrich, St. Louis, USA) was injected in the midline of the
peritoneal cavity (separating the peritoneal membrane from the
other tissues and organs). The fluid was gently agitated and then
aspirated inserting the gauge in the left flank of the mouse. Spleen
tissue was collected in DMEM (Sigma-Aldrich, St. Louis, USA).
Following mechanical disruption, tissues were incubated with 1
mg/ml Colagenase IV (Thermo Fisher Scientific, Massachusetts,
USA) in a shaker for 20min at 37◦C. Then, the collagenase
activity was inhibited with 15% of fetal bovine serum (FBS;
Internegocios, Buenos Aires, Argentina). The spleen cells were
filtered with a 70µm filter and red cells were lysed twice
by incubation with ACK lysing buffer (NH4Cl 8,290 mg/L,
KHCO3 1,000 mg/L and EDTA 1mM) in relation 1:9 for 7min,
and centrifuged at 400 g for 10min at 4◦C. The supernatant
was discarded and 106 cells were incubated for 40min at
room temperature with the antibodies for the corresponding
surface antigen: F4/80 (catalog 123127), CD11b (catalog 557396),
CD86 (catalog 105011), and CD206 (catalog 141705), or the
corresponding isotype controls (PE rat IgG2a catalog 400507; PE
IgG2b catalog 400607; PerCP7cy5.5 rat IgG2a catalog 4005312;
APC rat IgG2a catalog 400511). All the antibodies were obtained
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from Biolegend, California, USA. Then, cells were washed with
PBS-FBS 3%, centrifuged at 400 g for 7min and maintained
at 4◦C protected from light until fluorescence detection by
BD FACSCalibur R© Flow Cytometer (BD Biosciences, California,
USA). Data was analyzed using the software FlowJo 7.6 (BD
Biosciences, California, USA).

Serum Collection
Serum was collected 2 h after LPS injection. When the mouse
lost its motor reflex due to the anesthesia, it was placed with its
abdominal region upwards and blood was collected by cardiac
puncture introducing a 25G gauge at 45◦ in the left ventricle.
Then, blood was centrifuged for 10min at 6,000 g, and serumwas
collected and immediately stored at−80◦C.

Serum Transfer Experiment
Mice were inoculated with 20 mg/kg of LPS at ZT11 or ZT19
or VEH at ZT11, and 2 h later (ZT13 or ZT21, respectively),
blood was extracted and serum obtained, as explained before.
The serum was filtered using a 0.45µm syringe filter (Minisart R©,
Sartorius, Germany), and then injected intraperitoneally in naïve
mice at ZT13. Each animal received 500 µl of serum, which
resulted from serum extracted from two different mice.

Cytokine Quantification Using Flow
Cytometry
The serum concentration of the cytokines TNF-α, Interleuquin
(IL)-6, IL-12p70, Interferon-γ (IFN-γ), IL-10 and the chemokine
CCL2 were determined using the Cytometric Bead Array
Mouse Inflammation kit (BD Biosciences, California, USA)
according to the manufacturer’s protocol. Samples were analyzed
using a BD FACSCalibur R© Flow Cytometer (BD Biosciences,
California, USA).

Quantification of the Levels of
Corticosterone in Serum
Serum samples coming from mice injected with VEH were
diluted 1/10 and the ones coming from LPS injected mice were
diluted 1/25 (so the assay was not saturated). Then, they were
subjected to two successive extractions with dichloromethane,
and analyzed by Radioimmunoassay (RIA).

Quantification of the Levels of
Endocannabinoids in Serum
The analysis was done using 500 µl of mice serum placed in
a glass vial, to which 60 pmol of the 2-arachidonoyl glycerol
(2-AG) standard (2-AGd5, Cayman Chemical, Michigan, USA)
and 30 pmol of the Anandamide (AEA) standard (AEAd8,
Cayman Chemical, Michigan, USA) were added. The standard
mass was calculated doing a curve and obtaining the limits of
detection (LOD) and quantification (LOQ). Two ml of ethyl
acetate (HPLC quality) were added and mixed for 1min using
a vortex mixer. Then the sample was centrifuged at 1,400 g
for 10min. The organic phase was obtained and evaporated
at room temperature under a stream of gas nitrogen. The
samples were analyzed at the Inmet Mass Spectrometry Service
(Ingeniería Metabólica SA, Santa Fé, Argentina), where they were

resuspended in a 1:1 water:methanol solution, and analyzed using
an LC-MS/MS equipment.

Tissue Protein Extraction
Liver and spleen were dissected 2 h after LPS injection, and placed
in 0.01M PBS containing a protease inhibitor cocktail (P8340-
Sigma Aldrich, St. Louis, USA). The tissue was homogenized
and placed in ice for 15min. Then, the sample was centrifuged
for 15min at 14,000 g, the supernatant was collected and stored
at−80◦C.

Quantification of TNF-α Levels by ELISA
The levels of TNF-α in liver, spleen and serum (from mice
subjected to the CJL6/2 protocol) were quantified using the
Mouse TNF (Mono/Mono) ELISA Set BD OptEIA (BD Bioscience,
California, USA). Liver proteins were diluted 1/20, spleen
proteins 1/10 and serum samples 1/2 in dilution buffer prepared
with FBS (Internegocios, Buenos Aires, Argentina). The assay
was conducted according to the manufacturer’s instructions,
except for sample incubation which was done overnight. Plate
absorbance was measured using Cytation 5 Imaging Reader
(BioTek Instruments, Vermont, USA).

Statistical Analysis
Data is presented as mean ± standard error of the mean (SEM).
Differences between two groups were analyzed by unpaired
Student’s t-tests. The difference between more than two groups
was analyzed by one or two-way analysis of variance (ANOVA)
or the non-parametric Kruskal Wallis test. For temperature
curves analysis two-way ANOVA repeated measures was used.
Post-hoc pairwise comparisons were performed by means of a
Bonferroni’s test (after ANOVA) or Dunn’s test (after Kruskal
Wallis). Parametric tests were only used for data that fulfilled
the assumptions of normality and homogeneity of the variances
tests. P-values of 0.05 or less were considered to be statistically
significant. GraphPad Prism7 and Infostat were used to perform
these analyzes. El Temps software was used for cosinor analyzes.
The complete statistical data is shown in the figure legends.

RESULTS

Differential Thermoregulatory Response to
High Doses of LPS
As we previously described, the mortality rate caused by high
doses of LPS administered at the end of the day (ZT11) is
higher than at the middle of the night (ZT19; Halberg et al.,
1960; Marpegan et al., 2009). In order to further characterize
the mechanisms responsible for this daily variation, we induced
septic shock in mice by the intraperitoneal administration of 20
mg/kg of LPS. First of all, we confirmed that the inoculation at
ZT11 induced a 77.66% of mortality while the administration at
ZT19 led to 18.18% of mortality (Figure 1A; p = 0.0085). One
characteristic of septic shock is the loss of appetite or anorexia
(Granger et al., 2013). Indeed, we observed a higher weight loss
in those animals injected at ZT11 (Supplementary Figure 1).

Another main feature of septic shock is the change in body
temperature. Hypothermia is correlated with a poor prognosis
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FIGURE 1 | Daily differences in the thermoregulatory response to high doses of LPS. (A) Survival curves of animals injected intraperitoneally with 20 mg/kg of LPS or

VEH at ZT11 or ZT19. (B) Temperature curves as a function of ZT of stimulated animals, (C) mean ± SEM of the area under each curve calculated since the time of

inoculation to 20 h after treatment, and (D) mean ± SEM of the minimum temperature developed by each animal. **p < 0.01, ***p < 0.001, ****p < 0.0001. (A)

Log-rank (Mantel Cox) test: p = 0.0085 (n = 12 per group). (B) Two-way ANOVA repeated measures (using the data since ZT19): p < 0.0001 for all the factors. (C)

Two-way ANOVA: p < 0.0001 for time and treatment factors, p = 0.035 for interaction; followed by post-test: p < 0.001 LPS ZT11 vs. all groups, p < 0.002 LPS

ZT19 vs. VEH ZT19, p = 0.022 VEH ZT11 vs. VEH ZT19. (D) Two-way ANOVA: p < 0.0001 for treatment factor, p = 0.0002 for time factor, p = 0.007 for interaction

factor; followed by post-test: p < 0.0001 LPS ZT11 vs. VEH ZT11/19, p = 0.0004 LPS ZT11 vs. LPS ZT19, p = 0.0003 LPS ZT19 vs. VEH ZT19, p = 0.002 LPS

ZT19 vs. VEH ZT11. B-D: n = 4 per group.

in humans and in animal models (Fairchild et al., 2004; Peres
Bota et al., 2004; Fonseca et al., 2016; Rumbus et al., 2017).
Therefore, we analyzed the thermoregulatory response in animals
injected with high doses of LPS at both times, using FlirOne R©

thermal camera. The obtained temperature curves using the
maximum values, which was always observed in the head of
the animal, are shown in Figure 1B. Interestingly, those animals
that received LPS at ZT11 developed a deeper hypothermia than
those that were inoculated at ZT19 (p < 0.0001). As expected,
the area under the temperature curve for animals stimulated at
ZT11 was smaller than the ones inoculated at ZT19 (Figure 1C;
p < 0.0001). Finally, we analyzed the minimum temperature
attained by each animal and found that those injected at ZT11
showed a lower minimum temperature than those stimulated
at ZT19 (Figure 1D; p < 0.0001). For both ZT11 and ZT19,
inoculated animals reached the minimum temperature between
10 and 12 h after the stimulus. Supplementary Figure 2 shows
representative thermal images obtained with FlirOne R© camera,
for the groups injected with LPS (A) or VEH (B) at ZT11.

We can conclude that the daily difference in mortality
rate is accompanied by a deeper hypothermia and higher
weight loss, when septic shock is induced at the end of the
day (ZT11).

Central Nervous System Response to High
Doses of LPS
The POA is one of the main brain regions involved in
thermoregulation (Boulant, 1998; Morrison, 2016) even
though other hypothalamic regions, as the PVN and SCN
nuclei also participate in this response (Lu et al., 2001;
Wanner et al., 2013; Guzmán-Ruiz et al., 2015). Moreover,
we and others have found SCN and PVN activation in
response to immune peripheral stimuli (Belevych et al., 2010;
Paladino et al., 2014). In order to study if the peripheral
signal triggered after LPS administration at ZT11 or ZT19
induced a differential hypothalamic activation, we analyzed
the number of cFos positive cells (neuronal activation) in
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FIGURE 2 | Central nervous system activation following LPS treatment. Mean ± SEM of the number of cFos immunoreactive (Ir) cells in (A) POA, (B) shell and (C) core

of the SCN and (D) PVN of mice inoculated with 20 mg/kg of LPS or VEH at ZT11 or ZT19. Representative pictures of the immunohistochemistry showing (E) POA,

(F) SCN, and (G) PVN regions. *p < 0.05, **p < 0.01, ***p < 0.001. (A) Two-way ANOVA: p < 0.0001 for treatment factor, p = 0.0116 for time factor, and p = 0.0077

for interaction; followed by post-test: p < 0.001 LPS ZT11 vs. VEH ZT11, p = 0.0003 LPS ZT11 vs. LPS ZT19, p = 0.0001 LPS ZT11 vs. VEH ZT19. (B) Two-way

ANOVA: p = 0.0004 for treatment factor; followed by post-test: p = 0.0036 LPS ZT11 vs. VEH ZT11, p = 0.008 LPS ZT11 vs. VEH ZT19. (C) Two-way ANOVA:

p = 0.018 for time factor and p = 0.005 for treatment factor; followed by post-test: p = 0.028 LPS ZT11 vs. VEH ZT11, p = 0.042 LPS ZT11 vs. LPS ZT19, p = 0.007

LPS ZT11 vs. VEH ZT19. (D) Two-way ANOVA: p < 0.0001 for treatment factor, and p = 0.005 for time factor; followed by post-test: p < 0.0001 LPS ZT11 vs. VEH

ZT11, p = 0.002 LPS ZT11 vs. LPS ZT19, p = 0.0002 LPS ZT19 vs. VEH ZT19. n = 10 for LPS groups, n = 7 for VEH ZT11 and n = 4 for VEH ZT19. 3V: third

ventricle. OC: optic chiasm. Solid lines delimit regions consider as POA (E), SCN shell (F), and PVN (G). The dotted line delimits the region consider as SCN core (F).

POA, SCN (core and shell regions) and PVN after septic
shock induction.

LPS administration at ZT11 induced an increase in the
number of cFos inmunoreactive cells in POA (Figure 2A;
p < 0.001) and in both core and shell regions of the SCN
(Figures 2B,C; p = 0.0036 and p = 0.028). However, ZT19
inoculation did not significantly increase cFos expression in these

brain regions. Additionally, in PVN, while LPS activated neurons
at both times, cFos expression was higher at ZT11 compared
to ZT19 (Figure 2D; p = 0.002). Representative images of the
immunohistochemistries are shown in Figures 2E–G.

This central activation evidenced a differential hypothalamic
response to peripheral LPS administration. TNF-α and its type
1 receptor TNFR1 are expressed in the brain (Botchkina et al.,
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FIGURE 3 | Tnf-α and Tnfr1 mRNA levels in POA. Mean ± SEM of (A) Tnf-α and (B) Tnfr1 mRNA expression in POA, in mice injected with 20 mg/kg of LPS or VEH at

ZT11 or ZT19. ***p < 0.001, ****p < 0.0001. (A) Two-way ANOVA: p < 0.0001 for treatment factor; followed by post-test: p = 0.0001 LPS ZT11 vs. VEH ZT11,

p < 0.0001 LPS ZT19 vs. VEH ZT19. (B) Two-way ANOVA: p = 0.014 for treatment factor. n = 6 for all groups, except LPS ZT19 n = 5.

1997; Sadki et al., 2007; Camara et al., 2015) and its expression
increase after LPS injection (Gatti and Bartfai, 1993; Layé et al.,
1994). Furthermore, there are many evidences of the role of
these molecules, both in the immune-circadian communication
(Cavadini et al., 2007; Duhart et al., 2013; Paladino et al., 2014)
and in the hypothermic response to high doses of LPS (Leon
et al., 1998; Nautiyal et al., 2009). In order to study if the
TNF-α pathway is related to the daily variation observed in the
hypothermic response and the hypothalamic neuronal activation,
we hypothesized that the peripheral inflammatory signal induces
a differential expression of this cytokine or its receptor in the
POA according to the time of LPS inoculation. Indeed, we found
that both the expression of TNF-α and TNFR1 was induced
in the POA, but this induction was independent on the time
when LPS was administered (Figures 3A,B; A: p < 0.0001; B:
p < 0.0143).

In conclusion, these results show that the signal elicited by
peripheral administration of LPS at ZT11 triggers activation of
hypothalamic regions in a time-dependent manner. However,
Tnf-α and Tnfr1 expression in POA was induced by LPS
independently of the time of administration.

Inflammatory Response in Peritoneum and
Peripheral Tissues
Macrophages are an essential component of the immune
response to infections, including sepsis (Dahdah et al., 2014;
Cheng et al., 2018). In order to analyze if this immune response
is related to the differences described above, we studied the
percentage and the activation levels of peritoneal macrophages,
which may be directly affected by the inoculation, and
macrophages present in the spleen, that is one of the secondary
immune organs which acts as the main filter of pathogens and
antigens present in blood (Bronte and Pittet, 2013).

As expected, we observed two different peritoneal
macrophages subsets: small peritoneal macrophages (SPMs) and
large peritoneal macrophages (LPMs). These subsets differ in
their size and in the complexity of their membranes, among
other features, as it is shown in the dot plot of Figure 4A.

We found that the cell percentage of LPMs decreased after
inoculation of LPS at ZT11, but not at ZT19 (Figure 4B;
p = 0.019). Additionally, we specifically analyzed the percentage
of macrophages in the LPM subset, identified by the surface
markers F4/80 and CD11b, and found a reduction of this subset
after inoculation with LPS at both times (Figure 4C; p= 0.0151).
We also studied activation of the macrophage subset analyzing
the expression of the surface molecule CD86, and observed
that it was decreased only after ZT11 stimulation (Figure 4D;
p= 0.0119).

When we analyzed the SPM subset, we found that there
was no alteration in cell percentage due to the treatment, but
there was a daily variation of the basal (vehicle) percentages,
showing higher levels at ZT11 compared to ZT19 (Figure 4E;
p = 0.0346). A similar result was observed when we studied the
percentage of macrophages (F4/80+-CD11b+) in the SPM subset
(Figure 4F; p = 0.0280). However, we did not observe time-
dependent differences in the activation (CD86+) of this subset
of macrophages (Figure 4G).

Regarding the spleen (Figure 5A), the cell percentage in the
analyzed subset was similar in response to treatment and time
(Figure 5B). We observed that in this cell subset, treatment with
LPS at ZT11, but not at ZT19, induced an increase in total
macrophage percentage, identified as F4/80+ cells (Figure 5C;
p< 0.05), as well as in the activated (F4/80+CD86+) macrophage
percentage (Figure 5D; p < 0.05). Nevertheless we did not
find differences in CD86 expression, calculated as the mean
fluorescence intensity (MFI; data not shown).

We also studied the percentage and level of activation
of type M2 macrophages (associated with anti-inflammatory
and homeostatic functions), which are identified by the
surface marker CD206. Despite we did not find differences
in cell percentage of type M2 macrophages (F4/80+-CD206+;

Figure 5E), we observed a significant activation (F4/80+ CD206+

CD86+) after stimulation with LPS at both times, evidenced by
the percentage of cells (Figure 5F; p= 0.0028), and by an increase
of CD86 MFI (Figure 5G; p < 0.0001). Interestingly, the MFI
of CD86 was higher after inoculation at ZT11 than at ZT19
(p= 0.0007).
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FIGURE 4 | Macrophage percentage and activation level in peritoneal exudate. (A) Dot plot showing size (FSC) vs. membrane complexity (SSC) of peritoneal cells

from mice injected with 20 mg/kg of LPS or VEH at ZT11 or ZT19. Mean ± SEM of (B,E) total cell percentage, (C,F) F4/80+-CD11b+ cell percentage and

(D,G) CD86+-F4/80+-CD11b+ cell percentage, in the LPM (B–D) and the SPM (E–G) subset. (A) The orange line delimits cells consider as LPMs and the violet line

delimits cells consider as SPMs. *p < 0.05. (B) Kruskal Wallis test p = 0.019, followed by post-test: p < 0.05 LPS ZT11 vs. VEH ZT11. Two-way ANOVA: (C)

p = 0.015 for treatment factor; (D) p = 0.004 for treatment factor, followed by post-test: p = 0.012 LPS ZT11 vs. VEH ZT11; (E) p = 0.004 for time factor, followed by

post-test: p = 0.035 LPS ZT11 vs. LPS ZT19; (F) p = 0.028 for time factor. n = 5 for LPS ZT11, n = 4 for VEH ZT11 and n = 3 for ZT19 groups.

FIGURE 5 | Macrophage percentage and activation level in spleen. (A) Dot plot showing size (FSC) vs. membrane complexity (SSC) of spleen cells isolated from mice

injected with 20 mg/kg of LPS or VEH at ZT11 or ZT19. Mean ± SEM of (B) total cell percentage, (C) F4/80+ cell percentage, (D) F4/80+-CD86+ cell percentage,

(E) F4/80+-CD206+ cell percentage, (F) CD86+-F4/80+-CD206+ cell percentage, and (G) mean fluorescence intensity of CD86 in F4/80+-D206+ cells, in the spleen

subset studied. (A) The red line delimits the cell subset studied. *p < 0.05, ***p < 0.001, ****p < 0.0001. Kruskal Wallis test: (C) p = 0.0003, followed by post-test:

p < 0.05 LPS ZT11 vs. VEH ZT11; (D) p = 0.001, followed by post-test: p < 0.05 LPS ZT11 vs. VEH ZT11; (F) p = 0.003, followed by post-test: p < 0.05 LPS ZT11

vs. VEH ZT11 and LPS ZT19 vs. VEH ZT19. (G) Two-way ANOVA: p < 0.0001 for treatment factor, p = 0.0002 for time factor and p = 0.040 for interaction, followed

by post-test: p < 0.0001 LPS ZT11 vs. VEH ZT11, p = 0.0007 LPS ZT11 vs. LPS ZT19, and p = 0.0004 LPS ZT19 vs. VEH ZT19; n = 6 per group.

Moreover, we analyzed TNF-α levels in spleen and liver
tissue. As mentioned before, the spleen has an important role
in innate immunity, while the liver participates in many innate
immune functions, as the acute phase response, in which
TNF-α has an important role (Parker and Picut, 2005; Kubes,
2016). TNF-α protein levels in both liver and spleen were
not modified by the treatment nor the time of administration
(Supplementary Figures 3A,B).

In conclusion, once again we observed differences between
the response elicited by LPS at ZT11 or ZT19. In the
peritoneum we found that both total cell percentage and
macrophage activation in the LPM subset decreased after LPS
stimulation at ZT11. In spleen, we observed an increase in
total and activated macrophage percentage in response to LPS
administration at ZT11, and increased activation levels of
M2 macrophages.
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FIGURE 6 | Thermoregulatory response to inoculation with serum from LPS injected animals. Animals were inoculated at ZT13 with serum from animals stimulated

with LPS at ZT11 or ZT19, or VEH at ZT11. (A) Temperature curves as a function of ZT, mean ± SEM of (B) the area under each curve calculated since the time of

inoculation to 20 h after treatment, and (C) the minimum temperature developed by each animal. *p < 0.05, **p < 0.01, ****p < 0.0001. (A) Two-way ANOVA

repeated measures: p < 0.0001 for time factor and interaction and p = 0.0001 for treatment factor. One-way ANOVA: (B) p < 0.0001, followed by post-test:

p < 0.001 LPS ZT11 vs. VEH ZT11, p = 0.0023 VEH ZT11 vs. LPS ZT19 and p = 0.0086 LPS ZT11 vs. LPS ZT19; (C) p = 0.0325, followed by post-test:

p = 0.0467 LPS ZT11 vs. VEH ZT11; n = 6 per group.

Differences in Serum Composition of
Animals Stimulated at ZT11 or ZT19
As we found daily differences both in the immune and the
thermic response, we decided to evaluate changes in serum
composition in septic animals which could be related to this time-
dependent response. With this purpose animals were inoculated
with 20 mg/kg of LPS at ZT11 or ZT19, and 2 h later (ZT13
or ZT21, respectively), blood was collected to obtain the serum.
Then, these sera were injected to naïve animals at ZT13 and
body temperature was monitored. As shown in the temperature
curves and the area under the curve, animals which received
the serum coming from animals stimulated at ZT11 developed
a deeper hypothermia than those that received the serum of

animals injected at ZT19 (Figure 6A: p = 0.0001; Figure 6B:
p < 0.0001). Additionally, mice injected with the serum of those
inoculated at ZT11 developed a lower minimum temperature
(Figure 6C, p = 0.0325). These results show that the differential
hypothermic response is due to some molecule or molecules
present in the serum of septic animals.

Therefore, we analyzed serum composition of mice inoculated

at both times. One the main characteristics of septic shock
is the development of an exacerbated inflammatory response

characterized, among other things, by an increase of cytokines

levels (Cinel and Opal, 2009). Indeed, the levels of the pro-
inflammatory cytokines TNF-α and IL-12, and of the anti-
inflammatory cytokine IL-10, were increased 2 h after treatment
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FIGURE 7 | Serum composition of septic mice. Mean ± SEM of (A) TNF-α, (B) IL-12, (C) IL-10, and (D) corticosterone levels in the serum of mice injected with 20

mg/kg of LPS or VEH at ZT11 or ZT19. **p < 0.01, ***p < 0.001, ****p < 0.0001. Two-way ANOVA: (A) p < 0.0001 for treatment factor, p = 0.0011 for time factor

and p = 0.0012 for interaction, followed by post-test: p < 0.0001 LPS ZT11 vs. VEH ZT11, p = 0.0005 LPS ZT11 vs. LPS ZT19, p = 0.0059 LPS ZT19 vs. VEH

ZT19; (B) p < 0.0001 for treatment factor, followed by post-test: p = 0.0008 LPS ZT11 vs. VEH ZT11 and p = 0.0011 LPS ZT19 vs. VEH ZT19; (C) p < 0.0001 for

treatment factor, followed by post-test: p < 0.0001 LPS vs. VEH for both times. (A–C): n = 5 for ZT11 groups, n = 3 for LPS ZT19 and n = 4 for VEH ZT19. (D)

Two-way ANOVA: p < 0.0001 for treatment factor, followed by post-test: p < 0.0001 for LPS ZT11/19 vs. VEH ZT11/ZT19; n = 7 per group.

with LPS at both times (Figures 7A–C; p < 0.0001). It is striking
that only the levels of TNF-α were higher in those mice treated
at ZT11 compared to the ones inoculated at ZT19 (p = 0.0005).
IFN-γ was not detectable in none of the groups.

In addition, the levels of glucocorticoids, such as
corticosterone, which have immunosuppressant functions
(Stahn and Buttgereit, 2008), are increased in sepsis (Kwon
et al., 2007; Yamashita et al., 2017). We found that the levels
of corticosterone in serum were increased after LPS treatment,
independently of inoculation time (Figure 7D, p < 0.0001).

An alteration of endocannabinoid levels in response to
inflammatory processes, including sepsis, has been reported
(Szafran et al., 2015; Turcotte et al., 2015). Furthermore,
they were also related to the hypothermia induced by high
doses of LPS (Schindler et al., 2017). However, serum
levels of the endocannabinoid 2-AG (which was reported
to be altered in sepsis models) were not modified after
stimulation at both times (Supplementary Figure 4). Moreover,
the endocannabinoid AEA was not detectable in none of
the conditions.

All together, these results show that the composition of the

serum of animals injected with LPS at the end of the day (ZT11)
is different from the one of mice stimulated in the middle of the
night (ZT19), and elicits a different response in naïve animals.

Surprisingly, when we studied serum composition we found
that the only molecule that increased differentially was TNF-α,
making it a strong candidate for the time-dependent modulation
of septic responses.

Response to High Doses of LPS in TNFR1
KO Animals
As we found a difference in the levels of TNF-α in serum of
animals stimulated with LPS at ZT11 compared to the ones
inoculated at ZT19, we studied the response to high doses of LPS
in animals deficient for the TNF-α receptor type 1 (TNFR1 KO).

When we compared the survival curves obtained after the
inoculation with LPS of TNFR1 KO animals at ZT11 or ZT19,
we found that TNFR1 deficiency significantly decreased the daily
difference in the mortality rate, with a ≈50% of mortality rate
for the ZT11 group and ≈30% for the ZT19 group (Figure 8A,
p= ns).

Before analyzing the thermic response to high doses of
LPS, we studied the temperature rhythms of these animals,
because we did not have any data available. WT mice exhibit
a body temperature rhythm with higher temperatures during
the night (Supplementary Figures 5A,B; ANOVA p < 0.0001;
Cosinor p = 0.003). However, body temperature values in
TNFR1 KO mice did not adjust to a 24 h cosine waveform
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FIGURE 8 | TNFR1 KO mice daily response to high doses of LPS. (A) Survival curves of TNFR1 KO animals injected intraperitoneally with 20 mg/kg of LPS at ZT11 or

ZT19. (B) Temperature curves as a function of ZT of stimulated animals, mean ± SEM (C) of the area under each curve calculated since the time of inoculation to 20 h

after treatment, and (D) of the minimum temperature developed by each animal. *p < 0.05, **p < 0.01, ****p < 0.0001. (A) Log-rank (Mantel Cox) test:

non-significant. (B) Two-way ANOVA repeated measures: p < 0.0001 for all the factors. Two-way ANOVA: (C) p = 0.0163 for strain factor, followed by post-test:

p = 0.0163 WT ZT11 vs. KO ZT11, p = 0.0447 for WT ZT11 vs. WT ZT19, p = 0.0176 for WT ZT11 vs. KO ZT19; (D) p < 0.0001 for time and strain factor, followed

by post-test: p < 0.0001 WT ZT11 vs. WT/KO ZT19 and KO ZT11 vs. KO ZT19, p = 0.0064 WT ZT11 vs. KO ZT11, p = 0.0058 WT ZT19 vs. KO ZT19. (A) n = 10

for both groups. (B–D): n = 12 for WT ZT11, n = 11 for WT ZT19, n = 10 for both KO groups.

(Supplementary Figure 5D), although there were significant
differences among time points (Supplementary Figure 5C;
ANOVA p= 0.0078).

When we analyzed the thermic response to high doses of
LPS, we found that TNFR1 KO mice developed hypothermia,
but once again the time-of-day dependency observed in WT
was lost in KO animals for both temperature curves (Figure 8B)
and area under the curve (Figure 8C; p = 0.0163). Finally,
Figure 8D shows that TNFR1 KO mice inoculated at ZT11 did
develop a lower minimum temperature than those stimulated at
ZT19, although WT animals reached even lower temperatures
compared to the corresponding KO group (p < 0.0001), with
lower values at ZT11 (p <0.01). Moreover, cFos levels in POA,
SCN core and shell, and PVN regions of TNFR1KOmice injected
at both times were lower than those fromWT animals inoculated
at ZT11 (Supplementary Figure 6; p < 0.05). Moreover, we did
not observe differences between the levels of those TNFR1 KO
mice injected at ZT11 and ZT19.

These results show once again that the TNF-α signaling
pathway is involved in the differential response to high doses
of LPS. However, TNFR1 KO mice still present some daily

differences in response to endotoxin, evidencing that TNF-
α signaling through TNFR1 is not the only modulatory
pathway responsible for the daily variation in the response
to sepsis.

Effects of Circadian Desynchronization on
the Response to High Doses of LPS
Previous studies have shown that circadian desynchronization
conditions lead to an increased susceptibility to LPS (Castanon-
Cervantes et al., 2010; Fonken et al., 2013; Guerrero-Vargas et al.,
2014). This highlights the influence of the circadian system in the
response to high doses of LPS. To deepen this idea, we analyzed
the daily response to high doses of LPS in animals maintained
under a protocol of experimental chronic jet-lag (CJL6/2).

Interestingly, desynchronized animals exhibited an 80% of
mortality rate, independently of time of inoculation (ZT11 or
ZT19), showing very similar survival curves (Figure 9A). This
mortality rate is similar to the one observed in mice maintained
under LD conditions injected at ZT11. We also studied weight
loss after LPS treatment of desynchronized animals and found no
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FIGURE 9 | Effects of circadian desynchronization on the response to high doses of LPS. (A) Survival curves of animals subjected to CJL injected intraperitoneally

with 20 mg/kg of LPS at ZT11 or ZT19. (B) Temperature curves as a function of ZT of stimulated animals. Mean ± SEM of (C) the area under each curve calculated

since the time of inoculation to 20 h after treatment, (D) the minimum temperature developed by each animal, (E) TNF-α levels in the serum of animals subjected to

CJL or LD conditions, injected with 20 mg/kg of LPS at ZT11. *p < 0.05, ***p < 0.001, ****p < 0.0001. (A) Log-rank (Mantel Cox) test: non-significant; n = 10 for

both groups. (B) Two-way ANOVA repeated measures: p < 0.0001 for all the factors. Two-way ANOVA: (C) p < 0.0001 for time and treatment factors, p = 0.0099 for

interaction, followed by post-test: p < 0.0001 LPS ZT11 vs. all groups and LPS ZT19/VEH ZT11 vs. VEH ZT19; (D) p < 0.0001 for time factor, p = 0.0049 for

treatment factor, p = 0.0109 for interaction, followed by post-test: p < 0.0001 LPS vs. VEH for both times, p = 0.0002 LPS ZT11 vs. LPS ZT19. (B–D) n = 10 for

LPS groups and n = 5 for VEH groups. (E) Unpaired T-test: p = 0.0142; n = 5 for CJL and n = 6 for LD.

difference between both groups of mice maintained under CJL
(Supplementary Figure 7).

Mice kept under CJL conditions showed an
arrhythmic pattern in the daily variation of body
temperature (Supplementary Figure 5E). Additionally,
as expected, the cosinor adjustment was not significant
(Supplementary Figure 5F). When we studied the hypothermic
response to immune stimulation, we observed that
desynchronized animals which received LPS at ZT11 developed
again a deeper response than those injected at ZT19 (Figure 9B,
p < 0.0001). Furthermore, the area under the curve and
minimum temperature were lower in mice inoculated at ZT11
compared to those inoculated at ZT19 (Figures 9C,D; C:
p = 0.0099; D: p = 0.0109). Interestingly, when we compared
these values with the ones observed in animals maintained in
LD conditions, we found that animals in CJL developed lower
minimum temperatures (LD ZT11: 28.06 ± 0.73, n = 10; LD
ZT19: 31.36 ± 0.5, n = 10; CJL ZT11: 25.08 ± 0.6; CJL ZT19:
28.48 ± 0.53; two-way ANOVA: p < 0.0001 for light condition
and p < 0.0001 for time; data not shown).

We also measured TNF-α levels in the serum of
desynchronized animals injected at ZT11, and we found

that those mice had increased levels of this cytokine compared
to animals inoculated at ZT11 in LD conditions (Figure 9E; p
= 0.014).

In conclusion, circadian desynchronization worsens the
response to high doses of LPS and the differential response in
the mortality rate is lost under this condition. Furthermore, we
observed again that TNF-α is related to the circadian response
in sepsis.

DISCUSSION

In the present study we have shown the importance of the
circadian clock and its synchronization in the strength of the
septic response. Figure 10 summarizes the main findings of this
work. We found that LPS administered intraperitoneally may
act on macrophages inducing the secretion of inflammatory
cytokines, such as TNF-α, which pass to blood. Interestingly, the
levels of TNF-α in serum are higher in those mice inoculated at
ZT11 compared to ZT19, and in those subjected to CJL. TNF-
α can signal to the central nervous system through receptors
present in the brain-blood barrier (Mallard, 2012; Johnson et al.,
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FIGURE 10 | Daily differences in the response to LPS induced septic-shock. Intraperitoneal LPS administration acts through TLR4 on macrophages which can

secrete cytokines to circulation, especially TNF-α; with higher levels of it after injection at ZT11 compared to ZT19 and also in animals subjected to CJL. Additionally,

either LPS or cytokines can signal to the central nervous system through LPS or cytokine receptors present in the brain-blood barrier or through receptors present in

the vagus nerve. This signaling can be responsible for hypothalamic activation (studied as cFos inmunoreactive cells), which again is higher at ZT11. Finally, this

activation may induce the hypothermic response that is differential at ZT11 compared to ZT19, and again deeper in those mice kept in CJL conditions. Interestingly,

TNFR1 KO mice did not show daily differences in the mortality rate, hypothermia levels and hypothalamic activation, which demonstrates that TNF-α signaling

pathway is related to the septic daily response.

2018) or by nervous pathways, as the vagus nerve (Bonaz et al.,
2017), activating hypothalamic structures, as the POA, SCN and
PVN, and the HPA axis (glucocorticoid secretion). Hypothalamic
activation (cFos expression), again, was exacerbated at ZT11 and
we hypothesized that it may be related to the development of
hypothermia which was also deeper after administration of LPS at
this time. Therefore, the differential mortality rate observed after
inoculation of high doses of LPS at ZT11 or ZT19 is accompanied
by a differential hypothermic response and induction of TNF-α
levels. These results are consistent with data from other groups

that showed that high doses of LPS induced hypothermia, which
corresponds to more severe forms of inflammation (Nautiyal
et al., 2009; Stewart et al., 2010; Garami et al., 2018). In line with
our results, Silver et al. observed a deeper hypothermia in mice
subjected to cecal ligation and puncture at ZT19 in comparison
to the ones operated at ZT7, which correlated with an earlier
mortality (Silver et al., 2012). The difference in the time of greater
severity compared to the high doses of LPS model can be due to a
difference in the kinetics and severity with which the septic shock
is triggered in both models.
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Therefore, the severity of septic shock may be due to the pro-
inflammatory response elicited by LPS, which is related to TNF-
α signaling through TNFR1, as confirmed by this work. These
results are in line with the ones reported by Hrushesky et al.,
in which they showed that peripheral administration of TNF-
α at different times induced a daily variation in the mortality
rate similar to that observed with LPS administration (Hrushesky
et al., 1994). Here we show, for the first time, that the lack
of TNFR1 not only increases mice survival after septic shock
induction (which was previously observed by Pfeffer et al., 1993;
Leon et al., 1998; Guo et al., 2009), but also abolishes the daily
difference in mortality, hypothermia and neuronal activation in
response to high doses of LPS, as can be observed in Figure 10. It
was previously reported that TNF-α is related to the pyrogenic
response to inflammation (Stefferl et al., 1996; Luheshi et al.,
1997). However, previous studies suggested that it is also a
cryogenic cytokine, capable of reducing body temperature, since
its systemic administration decreases the fever induced by LPS
(Long et al., 1992; Klir et al., 1995). Even though in this study
TNFR1 KO mice did not show differences in the temperature
curves, the ones injected at ZT11 developed lower minimum
temperatures than those injected at ZT19.

Hypothalamic neuronal circuits allow to keep body
temperature homeostasis in the presence of different stimuli as
environmental temperature changes or even immune challenges
(Morrison, 2016). One of the main thermosensitive regions is
the POA, which is able to sense its own temperature as well
as the one from peripheral tissues that have thermoreceptors
as the skin, different organs and the spinal cord (Boulant,
1998; Zhao et al., 2017; Tan and Knight, 2018). Other groups
have reported neuronal activation of the POA in mice which
developed fever or hypothermia (Yoshida et al., 2005; Uchida
et al., 2014). Furthermore, other hypothalamic regions, as the
SCN and PVN, are capable of receiving and modulating thermal
signals (Lu et al., 2001; Wanner et al., 2013; Guzmán-Ruiz
et al., 2015). Immune peripheral signals can reach the central
nervous system by humoral or nervous pathways, which in
turn can induce glial activation and the secretion of pro- or
anti-inflammatory molecules (Meneses et al., 2019). Previous
studies have shown neuronal activation in response to LPS (Hare
et al., 1995; Marpegán et al., 2005; Paladino et al., 2010, 2014), but
this work provides the first indication of a circadian modulation
in hypothalamic responses to high doses of this molecule. As
shown in this work, the greater activation of the hypothalamic
regions studied correlates with the higher mortality rate and
hypothermic response, and is related to TNF-α signaling pathway
since TNFR1 KO mice showed lower cFos expression and daily
difference was abolished. These results reinforce the idea that this
particular molecule is central to the differential septic response.
Nevertheless, we observed that both Tnf-α and Tnfr1 expression
are induced in POA in response to septic shock, independently of
the time of LPS inoculation, which suggests that these molecules
are related to the thermoregulatory mechanism but not to the
daily difference observed in this hypothalamic region. Until now,
there were no reports about the expression of this cytokine and
its receptor in this hypothalamic region in response to high doses
of LPS. This suggests that TNF-α signaling may not be the only
pathway responsible for septic shock. In patients, treatment with

TNF-α antagonists induced varied and controversial results that
may be due to the complexity and diversity in the response to
septic shock (Fisher et al., 1993; Lv et al., 2014). This complexity
in the clinical response can be related to a TNF-α differential
induction according to the time when septic shock is triggered,
as observed in our studies.

Moreover, circadian synchronization seems to be an
important factor for the response to septic shock. Here we show
that the exacerbation in the mortality rate and hypothermic
response is accompanied by an increase in the serum levels of
TNF-α in desynchronized mice stimulated at ZT11 compared to
those kept under LD conditions. Additionally, previous studies
from our group have shown that in constant dark conditions,
the daily difference in the response to high doses of LPS is lost
and the survival percentages are similar to those observed after
ZT11 inoculation in LD conditions (Marpegan et al., 2009).
Other groups have shown that mice deficient for the circadian
genes Per2 or Clock, are more resistant to septic shock, the daily
difference in the mortality rate is lost and correlates with lower
levels of inflammatory cytokines in serum (Liu et al., 2006b;
Wang et al., 2016); which highlights again the importance of
a functional circadian system. In the present work, we found
that desynchronized mice had a high mortality rate (80%)
independently from the time of inoculation. Carlson and Chiu
also observed a lower survival in animals subjected to cecal
ligation and puncture kept under constant light conditions
(disruptive conditions of the circadian cycle) after the surgical
intervention (Carlson and Chiu, 2008). Moreover, it has been
shown that mice subjected to four acute changes (one per week)
of the LD cycle have a higher mortality rate (Castanon-Cervantes
et al., 2010). This suggests that the absence of temporal external
cues as well as desynchronization can reduce the survival
percentage to sepsis.

Furthermore, in the present work we still found a daily
difference in the hypothermic response to high doses of LPS in
desynchronized mice. This result suggests that the mechanism
responsible for the development of the hypothermic response
keeps its synchrony in mice subjected to this illumination
scheme. This can occur because, in this CJL schedule, some
of the components of the circadian system may undergo
relative coordination and become partially synchronized to an
external cue which is not strong enough to establish a steady
synchronization (Casiraghi et al., 2012). However, as has been
shown in this work and in previous studies (Castanon-Cervantes
et al., 2010), the minimum temperatures developed by the
animals kept under CJL conditions were lower than those
observed in animals kept under a LD cycle.

To further analyze the inflammatory response in this model,
we studied macrophage percentage and level of activation in
the peritoneum and spleen. As mentioned before, peritoneal
macrophages can be classified according to their morphology
in LPMs and SPMs (Cassado Ados et al., 2015). The LPMs
constitute approximately 90% of the peritoneal macrophages
in non-stimulated animals, but their levels decrease quickly
in response to stimuli like LPS or tioglicolate administered
intraperitoneally. Moreover, these cells express high levels of the
LPS receptor TLR-4 (Toll like-receptor 4), and co-stimulatory
molecules (as CD86). It has been reported that due to the
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excessive inflammation produced during sepsis, a great number
of factors that promote macrophage apoptosis are induced
(Zhu et al., 2009; Luan et al., 2015). Additionally, in mice
experimentally infected with Enterococcus faecium, it has been
shown that peritoneal macrophages are important for the
containment of the infection and that its depletion delays the
clearance of the pathogen (Leendertse et al., 2009). Moreover, the
decrease in the levels of LPMs may be related to their migration
to other tissues (Okabe and Medzhitov, 2014). In line with these
reports, we found that the levels of LPMs decrease in response
to high doses of LPS. In particular, the total cell and activated
macrophage percentage decreased more after LPS administration
at ZT11 than at ZT19. There are evidences that the decrease
in the levels of LPMs in response to an inflammatory stimulus
is accompanied by the arrival of inflammatory monocytes to
the peritoneal cavity (Cassado Ados et al., 2015). Moreover,
it has been shown that the levels of SPMs increase after 2
days in response to low doses of LPS stimulation and that
the monocytes that arrive to the cavity differentiate into this
subset of macrophages (Ghosn et al., 2010). Additionally, in
vitro studies have shown that SPMs develop a pro-inflammatory
profile in response to LPS, since they produce high levels of pro-
inflammatory cytokines, among them TNF-α (Cain et al., 2013).
In this work, we observed a daily variation in the percentage of
this subset of macrophages, with higher levels at ZT11; which
can be related to the higher levels of TNF-α found in serum in
response to LPS inoculation at ZT11.

Spleen macrophages are also an important component of
the innate immune response (Liu et al., 2006a). We found an
increase in the percentage and activation of these cells after LPS
administration at ZT11, which was not observed after inoculation
at ZT19. Other groups have shown an increase in the expression
of CD86 in these macrophages in response to LPS (Liu et al.,
2006a), but, until now, there was no data on time-dependent
responses. Type M1 macrophages are characterized by pro-
inflammatory cytokine production and pathogen response; while
type M2 are associated with anti-inflammatory and homeostatic
functions (Zhang andWang, 2014; Sica et al., 2015). Other groups
have found that the excessive inflammation triggered by sepsis
can lead to M1 macrophages apoptosis or polarization toward
M2 type (Krausgruber et al., 2011; Sindrilaru et al., 2011). As
well, some cytokines as TNF-α, IL-4, IL-13, and IL-10, can induce
polarization of M1 macrophages to type M2 (Sica et al., 2015;
Ip et al., 2017). Similar to these groups, we observed an small
increase in the levels of CD86 in M2 cells at both inoculation
times; and we found daily differences in the expression levels of
CD86 which were slightly higher after inoculation at ZT11 than
after ZT19.

Regarding anti-inflammatory mechanisms, we observed
that the serum levels of the anti-inflammatory cytokine
IL-10 increased in mice injected at both times of LPS
administration. Indeed, mice deficient for IL-10 have a
higher mortality rate, along with an increase in glucocorticoid
and pro-inflammatory cytokines levels (Córdoba-Moreno
et al., 2018). Additionally, we analyzed corticosterone levels
in serum, which can attain immunosuppressant functions
(Stahn and Buttgereit, 2008; Ayroldi et al., 2012), and depend

on hypothalamo-pituitary-adrenal (HPA) axis activation.
Glucocorticoids were reported to be increased in the serum
both of septic patients and animal models (Kwon et al., 2007;
Thompson and van Eldik, 2009; Yamashita et al., 2017). In this
work, we observed an induction of corticosterone in serum
in response to LPS, independently of the inoculation time,
suggesting that stimulation of the HPA axis overrules circadian
modulation. It was reported a circadian rhythm in the levels
of glucocorticoid receptors (Xu et al., 1991) which can be
related to the diurnal response to LPS. Therefore, the levels
of IL-10 in serum are in line with the levels of corticosterone
and of CD86 in type M2 macrophages. These results indicate
that the differential daily response is not determined by these
anti-inflammatory molecules.

In conclusion, our current results reinforce the idea of
the importance of a synchronized circadian clock for septic
shock survival and the importance of TNF-α signaling in the
daily response to sepsis. The results also evidence a complex
communication between the central nervous system and the
peripheral tissues, with many signaling pathways working
together, which can be responsible for the daily differences
observed in response to high doses of LPS. This should be
taken into account since patients in the intensive care unit
can experience circadian disruption due to artificial lights,
medication, mechanical ventilation, pain, among others (Knauert
et al., 2015; Boyko et al., 2017).
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