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This study offers a novel description of the sinonasal microbiome, through an

unsupervised machine learning approach combining dimensionality reduction and

clustering. We apply our method to the International Sinonasal Microbiome Study

(ISMS) dataset of 410 sinus swab samples. We propose three main sinonasal

“microbiotypes” or “states”: the first is Corynebacterium-dominated, the second is

Staphylococcus-dominated, and the third dominated by the other core genera of the

sinonasal microbiome (Streptococcus, Haemophilus, Moraxella, and Pseudomonas).

The prevalence of the three microbiotypes studied did not differ between healthy and

diseased sinuses, but differences in their distribution were evident based on geography.

We also describe a potential reciprocal relationship between Corynebacterium species

and Staphylococcus aureus, suggesting that a certain microbial equilibrium between

various players is reached in the sinuses. We validate our approach by applying it

to a separate 16S rRNA gene sequence dataset of 97 sinus swabs from a different

patient cohort. Sinonasal microbiotyping may prove useful in reducing the complexity of

describing sinonasal microbiota. It may drive future studies aimed at modeling microbial

interactions in the sinuses and in doing so may facilitate the development of a tailored

patient-specific approach to the treatment of sinus disease in the future.
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INTRODUCTION

Microbes present in any environment almost never live in
isolation, but enter in various types of ecological relationships
with one another (Lidicker, 1979; Faust and Raes, 2012). The end
result of these interactions is either a domination of a certain
organism, or coexistence through the establishment of metabolic
or territorial niches (Coyte et al., 2015; Bauer et al., 2018). In
each of these cases, a stable community configuration or state
is reached (Lewontin, 1969; May, 1974; Beisner et al., 2003).
The stable states of the human microbiota has been postulated
based on the findings of high inter-individual variability coupled
with relatively low temporal variability, taken as evidence of
resilience against perturbations (Costello et al., 2009; Caporaso
et al., 2011; Lozupone et al., 2012). Perturbations in an otherwise
stable microbiome could be linked to the concept of “dysbiosis”
(Olesen and Alm, 2016), which remains a vague term that
attempts to explain the contribution of an unhealthy microbiome
to disease (Olesen and Alm, 2016). Examining stable microbial
states as “clusters,” as opposed to the traditional analysis of the
differential abundances of microbial taxa one at a time, could
therefore provide another important ecological perspective in
describing the microbiome and, through potential unraveling
of common commensal-pathogen interactions (Brugger et al.,
2016), exploring its relevance to health or disease.

High inter-individual variability represent one of the findings
that has already been demonstrated in themicrobiome inhabiting
the paranasal sinuses (Biswas et al., 2015). This adds a
significant challenge when we attempt to determine its role in
Chronic Rhinosinusitis (CRS). CRS is a heterogenous, multi-
factorial inflammatory disease of the sinuses, with a complex
and incompletely understood aetiopathogenesis (Fokkens et al.,
2012). Naturally, the potential role of the sinonasal microbiome
and its “dysbiosis” in CRS pathophysiology has recently gained
increased interest. The nature of the microbial dysbiosis and
its role in disease causation and progression however remains
unclear, with conflicting findings from the small sinonasal
microbiome studies published thus far (Paramasivan et al., 2020).
This provided the impetus for us to conduct the first multi-
national, multicenter “International SinonasalMicrobiome Study
(ISMS)” (Paramasivan et al., 2020). This study, the largest
and most diverse of its kind to date, attempted to address
many of the limitations of the smaller previous studies, by
standardizing collection, processing and analysis of the samples.
Furthermore, its large sample size andmultinational recruitment,
meant that it was more likely to capture geographical and
center-based differences if present. A recent meta-analysis of
published sinonasal 16S rRNA sequences revealed that the largest
proportion of variance was attributed to differences between
studies (Wagner Mackenzie et al., 2017), highlighting a role

Abbreviations: AERD, aspirin-exacerbated respiratory disease; ANCOM,

“Analysis of Compositions of Microbiomes” method; BLAST, “Basic Local

Alignment Search Tool”; CRS, chronic rhinosinusitis; CRSsNP, chronic

rhinosinusitis sine nasal polyps; CRSwNP, chronic rhinosinusitis with nasal

polyps; ISMS, the International Sinonasal Microbiome Study; PCoA, principal

coordinate analysis; PCs, principal components; QIIME 2, “Quantitative

Insights Into Microbial Ecology 2” software; SparCC, “Sparse Correlations for

Compositional data” algorithm.

for performing a large multi-center study that employed a
unified methodology.

Contrary to the findings of previous small single-center
studies, our international cohort showed no significant
differences in alpha or beta diversity between the three groups of
patients analyzed: healthy control patients without CRS and the
two phenotypes of CRS patients, those with polyps (CRSwNP)
and those without (CRSsNP). The study however revealed a
potential grouping of samples as demonstrated on beta diversity
exploratory analysis (Paramasivan et al., 2020). Accordingly,
we hypothesized that the bacteriology of the sinuses could be
categorized into various clusters of similar compositions. We
inquired whether these potential groups would aid in describing
the sinonasal microbial composition of patients or associate with
clinical features. Similar attempts performed on gut microbiota
in healthy individuals were termed enterotyping (Arumugam
et al., 2011). The clinical relevance of gut enterotypes remain
the topic of research, and sometimes controversy. A previous
exploration of clusters of sinus microbiota in patients was
performed by Cope et al. (2017) in which the authors reported
four compositionally distinct sinonasal microbial community
states; the largest group of patients were dominated by a
continuum of Staphylococcaceae and Corynebacteriaceae (Cope
et al., 2017).

In this manuscript, we attempt “microbiotyping” to explain
interpatient heterogeneity of the bacterial communities in the
paranasal sinuses, and we describe “sinonasal microbiotypes”
across the first large, multi-center cohort of individuals with
and without CRS. We then describe the composition of
these microbiotypes, explore potential clinical associations, and
validate microbiotyping on a separate sinus microbiome dataset.

MATERIALS AND METHODS

The “International Sinonasal Microbiome
Study (ISMS)” Dataset
We perform the primary analysis on the dataset obtained from
the “International Sinonasal Microbiome Study (ISMS)” project
(Paramasivan et al., 2020). In summary, this dataset is a multi-
center 16S-amplicon dataset which includes endoscopically-
guided, guarded swabs collected from the sinuses (in particular
the middle meatus/anterior ethmoid region) of 532 participants
in 13 centers representing 5 continents. Details of sample
collection, DNA extraction and sequencing methodologies are
described in the original report (Paramasivan et al., 2020). The
16S gene region sequenced was the V3–V4 hypervariable region,
utilizing primers (CCTAYGGGRBGCASCAG forward primer)
and (GGACTACNNGGGTATCTAAT reverse primer) according
to protocols at the sequencing facility (the Australian Genome
Research Facility). Sequencing was done on the Illumina MiSeq
platform (Illumina Inc., San Diego, CA) with 300-base-pairs
paired-end Illumina chemistry.

Bioinformatics Pipeline
Details of the bioinformatic pipeline is detailed in the original
report (Paramasivan et al., 2020). In summary, we utilized a
QIIME 2-based pipeline (Quantitative Insights Into Microbial
Ecology 2) (Bolyen et al., 2018). Forward and reverse fastq reads
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were joined (Zhang et al., 2014), quality-filtered (Bokulich et al.,
2013), abundance-filtered (Wang et al., 2018), then denoised
using deblur (Amir et al., 2017) through QIIME 2-based plugins.
This yielded a final feature table of high-quality, high-resolution
Amplicon Sequence Variants (ASVs). Taxonomy assignment and
phylogenetic tree generation (Janssen et al., 2018) was done
against the Greengenes (DeSantis et al., 2006) database; and
taxonomy was assigned using the QIIME 2 BLAST assigner
(Bokulich et al., 2018). A rarefaction minimum depth cut-off was
chosen at 400 and this yielded 410 samples out of the original
532 for downstream analysis. The same pipeline was then applied
on DataSet Two for purposes of validation of microbiotyping.
We chose to reproduce exactly all the original pipeline steps
on DataSet Two, despite being a completely separate dataset, to
reduce bias.

Delineating the Microbiotypes of the
Sinonasal Microbiome
Our approach was guided by the “enterotyping” method
described by Arumugam et al. (2011) with adaptations. We
constructed a sample distance matrix using the Jensen-Shannon
distance (JSD) metric, as used in the original “enterotypes”
paper (Arumugam et al., 2011). The Jensen-Shannon distances
were calculated between samples in the genus-level-assigned
table in a pairwise fashion using the JSD function in the
R package “philentropy” with a log (log10) base. Following
this, Principal Coordinate analysis (PCoA) was done on the
distance matrix for dimensionality reduction and visualization.
Clustering was then performed using a standard K-means
clustering algorithm, as implemented in the machine learning
Python package scikit-learn (version 0.20.1) (Pedregosa et al.,
2011) on the first two principal components (PCs) obtained
from the PCoA, with the number of clusters (k) chosen
at 3 based on visual inspection of the beta diversity PCoA
plots. Average silhouette scores, as implemented in scikit-
learn, for the range (k = 2–8) were calculated to assess
clustering quality, and this revealed the highest silhouette scores:
0.61 and 0.6 for [k = 4] and [k = 3], respectively. The
three resulting clusters were defined as the three sinonasal
microbiotypes. For further exploration of the subgroups that
constitute microbiotype 3, we used the hierarchical density-based
clustering algorithm “hdbscan” (McInnes et al., 2017) on the full-
dimensional feature table. Genera were projected onto the PCoA
matrix using a biplot approach (Legendre and Legendre, 2012),
as implemented in scikit-bio’s function “pcoa_biplot.” Genera
were represented in the biplot figure as arrows, originating
from the center of the plot pointing to the direction of the
projected feature coordinates, and the lengths normalized as
a percentage of the longest arrow. We utilized “Analysis of
Compositions of Microbiomes (ANCOM)” (Mandal et al., 2015)
for identifying differentially-abundant taxa. Taxa genus level and
Staphylococcus species level co-occurrence/correlation analysis
were done after taxonomy assignment using SparCC (Sparse
Correlations for Compositional data) algorithm (Friedman and
Alm, 2012), in the fast implementation in FastSpar (Watts et al.,
2018).

Validating Microbiotypes on a Second
Sinonasal Microbiome Dataset
To infer whether our classification could be generalizable
to other sinonasal microbiome samples not included in this
study, we sought to validate our microbiotyping approach on
a separate, previously-unpublished, 16S dataset. This dataset
includes sinonasal microbiome swabs collected from private
and public patients attending the Otolaryngology Department
(University of Adelaide) to have surgery done by the authors
P-JW, AP or the Otorhinolaryngology Service at the Queen
Elizabeth Hospital in Adelaide, South Australia. Similar to the
main dataset, these included CRS patients who underwent
endoscopic sinus surgery for this sinus disease, and non-
CRS control patients who underwent other otolaryngological
procedures, such as tonsillectomy, septoplasty, or skullbase
tumor resection. Sample collection, and processing were done
in a standardized fashion similar to that has been described
in the ISMS main dataset, except that DNA extraction was
carried out using the PowerLyzer Power-Soil DNA kit (MoBio
Laboratories, Salona Beach, CA) as previously described (Chan
et al., 2016), rather than the Qiagen DNeasy kit (Qiagen,
Hilden, Germany). Similar to the ISMS samples, library
preparation and 16S sequencing were done at the Australian
Genome Research Facility, on the Illumina MiSeq platform
(Illumina Inc., San Diego, CA, USA) with the 300-base-pairs
paired-end chemistry. Libraries were generated by amplifying
(341F−806R) primers against the V3–V4 hypervariable region
of the 16S gene (CCTAYGGGRBGCASCAG forward primer;
GGACTACNNGGGTATCTAAT reverse primer) (Yu et al.,
2005). PCR was done using AmpliTaq Gold 360 master mix
(Life Technologies, Mulgrave, Australia) following a two-stage
PCR protocol (29 cycles for the first stage; and 8 cycles for
the second, indexing stage). Sequencing was done over two
MiSeq runs in January 2015. We termed this dataset in this
manuscript “Dataset Two.” This dataset comprises samples
collected from 129 participants. Rarefaction at a cutoff of 400
reads was performed, to match what was performed for the main
dataset, and samples with read number <400 were excluded; this
yielded a final feature table containing 97 samples, representing
33 CRSsNP patients, 35 CRSwNP patients, and 29 controls.

We took two separate approaches to validation. The first
approach is to replicate the previously-described unsupervised K-
means microbiotyping methodology independently on samples
in Dataset Two. We call this first approach the “unsupervised
approach.” The second approach is to use the K-means model
that was fitted on the samples from the Main Dataset to predict
labels (i.e., microbiotypes) of the samples in Dataset Two. As
such, the Main Dataset is used as a “training dataset” in the
language of machine learning.We called the second approach the
“semi-supervised approach.”

Statistical Analysis
All frontend analyses were done using the Jupyter notebook
frontend (Kluyver et al., 2016) and utilizing the assistance of
packages from the Scientific Python (Oliphant, 2007) stack
(numpy, scipy, pandas, statsmodels), scikit-learn (Pedregosa
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et al., 2011), scikit-bio (https://github.com/biocore/scikit-
bio), and omicexperiment (https://www.github.com/bassio/
omicexperiment). P-values were corrected for multiple
comparisons using Benjamini-Hochberg’s False Discovery
Rate (FDR) method when applicable.

RESULTS

Basic Characteristics of the Study Cohort
and Beta Diversity Plots
The main ISMS study cohort was described in our previous
publication (Paramasivan et al., 2020). In brief, 410 samples were
included in the analysis collected from 13 centers representing 5
continents. These samples are distributed along three diagnosis

groups as follows: 99 CRSsNP patients, 172 CRSwNP patients,
and 139 (non-CRS) controls. Beta diversity ordination plots (of
weighted UniFrac and Jensen-Shannon distances) are shown in
Figure 1. The plots do not reveal any distinct grouping by disease
state or by center, but on visual inspection show a triangular
arrangement suggesting that samples lie on a continuum between
three distinct clusters, providing motivation for further analysis.

Composition of the Three Sinonasal
Microbiotypes
We applied our microbiotyping approach through the
unsupervised dimensionality reduction and clustering
method described in the Methods. The principal components

FIGURE 1 | Beta diversity ordination plots. (A) Weighted UniFrac PCoA - by Diagnosis. (B) Weighted UniFrac PCoA - by Centre. (C) Jensen-Shannon PCoA - by

Diagnosis; (D) Jensen-Shannon PCoA - by Centre.
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FIGURE 2 | Microbiotyping the sinonasal microbiome. (A) Illustration of the assigned microbiotypes on the Jensen-Shannon PCoA biplot. Arrows were used to depict

the projection of the genera onto the PCoA matrix. Each arrow is indicated by the color of the genus according to the Legend. (B) Taxonomic composition of the three

microbiotypes at the genus level. (C) Histograms demonstrating the relative abundance of Corynebacterium and Staphylococcus. (D) Subgroups of microbiotype 3

(hierarchical density-based clustering). (E) Distribution of staphylococcal species (mean relative abundance).

and the taxonomic composition of the resulting “sinonasal
microbiotypes” is found in Figures 2A,B, respectively.

Microbiotype 1 is dominated by Corynebacterium (mean
relative abundance of 75.29%). Microbiotype 2 is dominated
by Staphylococcus (mean relative abundance of 74.96%).
Microbiotype 3 contained samples that were mostly constituted
of Streptococcus, Haemophilus, Moraxella, Pseudomonas, and
other genera.

The Abundance/Prevalence tables for the microbiotypes is
demonstrated in Tables S1A–C.

We used a PCoA biplot to project features (genera) onto the
PCoA matrix (Legendre and Legendre, 2012). The 5 topmost
abundant genera were overlaid on the PCoA plot as arrows,
originating from the center of the plot and pointing to the
direction of the projected feature coordinates (Figure 2B). Each
arrow is indicated by the color of the genus according to the
Legend in Figure 2B, and the length of each was normalized as
a percentage of the longest arrow. The coloring of the samples in
the PCoA scatter plot according to the microbiotype assignment
is provided for additional illustration (Figure 2A). We note that
the biplot arrows show a quasi-orthogonal arrangement between
the key genera that constitute the microbiome.

The distributions of the relative adundances of
Corynebacterium and Staphylococcus in all three microbiotypes

were plotted in histograms (Figure 2C). It was noted that
in microbiotype 1, most samples have a high abundance
of Corynebacteria (i.e., Corynebacteria dominate), while
Staphylococci appeared to dominate in microbiotype 2 in
most samples.

Dissection of “Sinonasal Microbiotype 3”
We observed that Microbiotype 3 included various genera
that did not cluster into the major two microbiotypes. It was
also evident that this microbiotype is more heterogeneous.
Applying the K-Means algorithm we showed poor clustering
on only the first two and three Principal Components, since
this group included multiple signatures with various dominant
organisms. Accordingly, we employed the hierarchical density-
based clustering algorithm “hdbscan” (McInnes et al., 2017) on
the full-dimensional OTU table. One advantage of this algorithm
is that it can estimate the number of clusters, without a priori
specification by the user. This algorithm also has the ability to
detect “outliers” that fail to cluster with the rest of the groups
and detaches them into a separate “Miscellaneous/Other” group.
We ran this algorithm on samples in Microbiotype 3 and this
revealed four clusters, each dominated by one of the genera of
Streptococcus (21 samples),Haemophilus (16 samples),Moraxella
(9 samples), and Pseudomonas (7 samples), with a mean relative
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FIGURE 3 | Prevalence and distribution of the microbiotypes.

abundance ranging from 73.49 to 95.5%. The fifth cluster was
the assigned “Miscellaneous/Other” group (18 samples).We term
these “sub-microbiotypes”: microbiotype 3S, 3H, 3M, 3P, and 3O,
respectively (Figure 2D).

Exploring Microbiotypes at the
Species-Level Reveals Potential
Antagonism Between Corynebacterium

Species and Staphylococcus aureus
At present, species level assignment is limited by the current
technology of 16S-surveys, the current state of microbial
databases in general, and by our chosen short-read sequencing
methodology. However, species level associations hold clinical
significance for sinus health, since Staphylococcus aureus has been
traditionally associated with biofilm formation and superantigen
elaboration, both of which are associated with more severe sinus
disease and poorer response to treatment. Furthermore, nasal
carriage of methicillin-resistant Staphylococcus aureus (MRSA) is
a global health concern with implications that extend far beyond
the sinuses. Moreover, our new QIIME 2-based pipeline (Bolyen
et al., 2018) allows a higher “sub-OTU” resolution compared to
older pipelines, offering an opportunity to resolve some taxa at
species level when possible (Amir et al., 2017; Thompson et al.,
2017).

We explored taxonomy assignment at the species level, with
a focus on Staphylococcal species. Staphylococci were assigned
to either Staphylococcus aureus, Staphylococcus epidermidis,
or unclassified Staphylococcus. We found that almost all of
the assigned Staphylococcus aureus species were clustered in
Microbiotype 2, forming 47.81% mean relative abundance of this
Microbiotype, compared to 1.36 and 0.3% in Microbiotype 1 and
Microbiotype 3, respectively (Figure 2E). Differential abundance
of both Staphylococcus aureus and epidermidis between the
disease groups was confirmed as statistically significant using the
ANCOMmethod.

In light of this finding, we hypothesized a reciprocal
or antagonistic relationship between Corynebacterium sp.
and Staphylococcus aureus and investigated this using the
SparCC algorithm. This confirmed a significant negative
correlation between Corynebacterium genus and the species
Staphylococcus aureus (correlation coefficient = −0.339, p
= 0.001). Interestingly, Staphylococcus epidermidis positively
correlated with Corynebacterium (correlation coefficient= 0.271,
p = 0.001). These results suggest that a benign or probiotic
role is played by both Corynebacterium spp. and Staphylococcus
epidermidis when interacting with Staphylococcus aureus. This
should be viewed in the context of previous literature and in
the context of the current limitations of 16S-sequencing, and is
elaborated on in the discussion.

Prevalence and Distribution of the
Microbiotypes in Different Diagnoses and
Centers
Microbiotype 1 was assigned to 222 samples (54.1%),
microbiotype 2 to 117 samples (28.5%), and microbiotype
3 to 71 samples (17.3%). The prevalence distribution of the
sinonasal microbiotypes did not appear to significantly differ
by the disease state of the sinuses (Figure 3). However, a
Chi-Squared test on the contingency table by center showed
significantly different distributions by center (FDR-corrected
p < 0.001): there was a higher prevalence of microbiotype 2
in our European center (Amsterdam), and a higher prevalence
of microbiotype 1 in Asian and Australasian centers, with a
much lower prevalence of microbiotype 3 in Asia (Figure 3 and
Table 1).

Associations of Microbiotypes With
Clinical Variables
We then explored the distribution of the three microbiotypes
among multiple clinical variables in Table 2. This shows no
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TABLE 1 | Distribution of microbiotypes by diagnosis and continent.

Variable Value Microbiotype_1 Microbiotype_2 Microbiotype_3 p-value

Diagnosis CRSsNP 56 (56.6%) 27 (27.3%) 16 (16.2%) 0.507

CRSwNP 85 (49.4%) 48 (27.9%) 39 (22.7%)

Control 81 (58.3%) 42 (30.2%) 16 (11.5%)

Continent Asia 27 (69.2%) 11 (28.2%) 1 (2.6%) <0.001

Australasia 67 (61.5%) 23 (21.1%) 19 (17.4%)

Europe 7 (18.4%) 22 (57.9%) 9 (23.7%)

North America 89 (56.3%) 43 (27.2%) 26 (16.5%)

South America 32 (48.5%) 18 (27.3%) 16 (24.2%)

TABLE 2 | Distribution of microbiotypes by various clinical variables.

Variable Value Microbiotype_1 Microbiotype_2 Microbiotype_3 P-value

Asthma No 162 (56.4%) 81 (28.2%) 44 (15.3%) 0.906

Yes 55 (51.4%) 31 (29.0%) 21 (19.6%)

Aspirin

sensitivity

No 202 (55.3%) 106 (29.0%) 57 (15.6%) 0.077

Yes 12 (48.0%) 5 (20.0%) 8 (32.0%)

Diabetes No 189 (54.9%) 98 (28.5%) 57 (16.6%) 0.979

Yes 22 (55.0%) 11 (27.5%) 7 (17.5%)

GORD No 177 (55.3%) 93 (29.1%) 50 (15.6%) 0.979

Yes 35 (55.6%) 17 (27.0%) 11 (17.5%)

Current smoker No 204 (54.4%) 110 (29.3%) 61 (16.3%) 0.077

Yes 15 (57.7%) 4 (15.4%) 7 (26.9%)

Primary surgery No 92 (47.2%) 57 (29.2%) 46 (23.6%) 0.114

Yes 130 (60.5%) 60 (27.9%) 25 (11.6%)

significant difference for some variables including asthma,
aspirin sensitivity, GORD, diabetes mellitus, and current
smoking status (FDR-corrected p > 0.05; Chi-squared test).
The cross tabulation however revealed a statistically significant
association with “aspirin sensitivity” or aspirin-exacerbated
respiratory disease (AERD) (p = 0.02), although this did not
persist after correction for multiple comparisons (corrected p
= 0.077). Patients who were aspirin-sensitive (or suffering from
AERD) showed less prevalence of microbiotypes 1, 2, and a
higher prevalence of microbiotype 3, compared to those who
were not aspirin-sensitive.

Validation of Sinonasal Microbiotyping on a
Separate Dataset
We validated our approach on a separate 16S dataset we called
Dataset Two. As described in the Methods section, we validated
this using an independent unsupervised approach and a semi-
supervised approach guided by the Main Dataset.

The first unsupervised approach yielded three clusters
similar to the microbiotypes described on the Main Dataset,
with one cluster exhibiting high mean relative abundance of
Corynebacteria, a second cluster exhibiting high mean relative
abundance of Staphylococcus, and a third cluster with other
dominant genera. Plotting the first two Principal Components
(Figure 4A) resulting from PCoA on the Jensen-Shannon
distance matrix revealed the same triangular distribution of
samples observed in Figure 1.

Prevalence of the microbiotypes in this dataset (using the
unsupervised approach) was as follows: microbiotype 1 assigned
39.2% of samples, microbiotype 2 with 26.8% of samples, and
microbiotype 3 with 34.0%.

The second semi-supervised approach yielded similar results
(Figure 4; Supplementary Jupyter notebook), differing in the
classification of only 3 samples (out of 97 samples; i.e., 3.09%; see
Supplementary Jupyter Notebook). Two of these samples show
Staphylococcus dominating the samples in combination with
Haemophilus, with no overt dominance of one taxon over the
other, making them more-or-less transitional samples between
the signatures of microbiotypes 2 and 3. The third sample was
dominated by Staphylococcus and Corynebacterium, making it a
transitional sample between microbiotype 1 and microbiotype
2, with Staphylococcal species assigned to epidermidis, making
this more appropriately assigned to microbiotype 1 (see
Supplementary Jupyter Notebook).

These results validate the microbiotyping approach and
suggest that our approach and dataset could be used to guide
classification of sinonasal samples sequenced in future separate
studies (Figure 4). Moreover, it points toward a potential clinical
relevance of performing sinonasal microbiotyping.

DISCUSSION

We demonstrate that the microbiota of most sinus swab samples
could be classified into distinct signatures or archetypes, which
we have termed “sinonasal microbiotypes.” We observed
three main microbiotypes: the most prevalent being a
Corynebacterium-dominated microbiotype (microbiotype 1),
then a Staphylococcus-dominated microbiotype (microbiotype
2), and microbiotype 3 which includes samples dominated
by Streptococcus, Haemophilus, Moraxella, Pseudomonas, and
other genera.

As we have previously reported (Paramasivan et al., 2020), the
sinus microbiota are dominated by the genera Corynebacterium
and Staphylococcus (microbiotypes 1 and 2). A similar clustering
approach to the sinusmicrobiomewas applied by Cope et al., who
utilized Dirichlet multinomial mixture models, and reported that
most samples in their study were occupied by a continuum of
Staphylococcaceae and Corynebacteriaceae (Cope et al., 2017). It
appears that, regardless the statistical or clustering methodology
utilized, it is most likely that the sinonasal microbiome consists
of core organisms (Paramasivan et al., 2020) that potentially have
distinct co-occurrence patterns.

Staphylococcus aureus has been perceived to be an important
pathogen in sinus inflammatory disease. Staphylococcus aureus
biofilms may act as a nidus for recurrent infections (Jervis-
Bardy et al., 2011; Drilling et al., 2014) and as a “nemesis” of
otherwise-successful sinus surgery (Psaltis et al., 2008; Foreman
and Wormald, 2010; Singhal et al., 2011). Staphylococcus aureus
is also a producer of exotoxins, which in some cases can serve
as superantigens, and these have been previously described as
playing an important role in the pathogenesis of CRSwNP
(Bachert et al., 2008). Pseudomonas aeruginosa biofilms are
also virulent organisms that are difficult to eradicate from the
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FIGURE 4 | Validation of microbiotyping approach on Dataset Two. (A) Independent K-Means clustering of Dataset Two samples using our described K-means

microbiotyping approach “Unsupervised.” (B) Prediction of microbiotypes on Dataset Two samples using the K-means model fitted on the Main Dataset

“Semi-supervised.” (C) Taxa composition of Dataset Two samples as per the “Unsupervised approach.” (D) Taxa Composition of the combined Main Dataset and

Dataset Two samples as per the “Semi-supervised approach.”

sinuses, and have been associated with worse clinical outcomes
(Bendouah et al., 2006). Both these organisms are important
pathogens in the chronic mucociliary dysfunction exhibited
in cystic fibrosis. However, methicillin-resistant Staphylococcus
aureus (MRSA) is an important nasal colonizer that could
asymptomatically colonize the nose.What determines the clinical
course, between asymptomatic colonization vs. symptomatic
pathogenicity, remains an interesting topic of research. In
this study, we identified a potential reciprocal relationship

between Staphylococcus aureus and Corynebacterium. Being
aware of the challenges of compositional data analysis, we
utilized for this purpose the specialized SparCC algorithm
which infers correlations from compositional data (Friedman
and Alm, 2012). This finding needs to be supported by
future co-culture experiments, but suggests thatCorynebacterium
sp. may be a “cornerstone” of sinus microbial health. It is
important to note that our bioinformatic methodology has
been intentionally designed to utilize state-of-the-art software
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methods at every step of the analysis pipeline, in order to
maximize the resolution of taxonomy assignment (Amir et al.,
2017; Bokulich et al., 2018; Bolyen et al., 2018). Nevertheless,
our approach is still confined within the limitations of current
16S sequencingmethodologies, and the confidence of assignment
is reduced beyond the genus level. Our analysis pipeline
could not delineate between different Corynebacteria at the
species level and Staphylococcus aureus at the strain level.
Hence functional difference between samples with same species
remain to be determined using a functional metagenomics
approach. A recent study suggest that by incorporating
location information or “sample-level metadata” into species-
level assignment accuracy could be improved (Kaehler et al.,
2019). In our study, the differential relationships of both
Staphylococcus aureus and epidermidis toward Corynebacteria
(negative and positive associations, respectively) could be of
clinical significance and is worthy of future investigation. We
performed a post-hoc inspection of species-level assignment
in Dataset Two, to investigate whether this finding will be
reproducible in a separate dataset. This confirmed clustering
of almost all Staphylococcus aureus species in microbiotype 2
(Supplementary Results in Jupyter Notebook).

The finding of a potential reciprocal relationship between
Staphylococcus aureus and Corynebacterium spp. has to be
placed in the context of similar previous findings from the
literature. The competitive inhibition between Staphylococcus
aureus and Corynbacteria were demonstrated in early studies
in vitro (Parker and Simmons, 1959; Barrow, 1963). More
recently, it has been shown that even these S. aureus strains
that survive killing by Corynebacteria in vitro exhibit a
decreased virulence profile (Ramsey et al., 2016; Hardy et al.,
2019). In vivo, a negative correlation has been demonstrated
between Staphylococcus aureus and various Corynbacterial
species (including C. accolens and C. pseudodiphthericum) in
the anterior nares in several studies (Uehara et al., 2000;
Lina et al., 2003; Wos-Oxley et al., 2010; Johnson et al.,
2015; Liu et al., 2015). Some interventional studies suggest
a probiotic potential as Corynebacteria successfully reduced
rates of Staphylococcal colonization when inoculated into the
anterior nares (Uehara et al., 2000; Kiryukhina et al., 2013).
Moreover, Johnson et al. (2015) showed that colonization of the
anterior nares by Corynebacteria was associated with a lower
prevalence of S. aureus related skin and soft tissue infections. In
the paranasal sinuses, the previously-referenced study by Cope
et al. (2017) is the first to demonstrate a reciprocal relationship
between Staphylococcaceae and Corynebacteriaceae. In addition
to competitive antagonism with S. aureus, the probiotic
role of Corynebacteria includes its resistance to Respiratory
Syncytial Virus and the pathologenic Streptococcus pneumoniae,
demonstrated in an animal model (Kanmani et al., 2017). It also
includes its contribution to the stability of the microbiome and
the reduced incidence of Respiratory Tract Infections, where
this has been demonstrated in children (Biesbroek et al., 2014;
Bosch et al., 2017). On the other hand, the probiotic role of
Staphylococcus epidermidis has been demonstrated in a murine
nasal bacterial interaction model (Cleland et al., 2014).

The distribution of the sinonasal microbiotypes was found
to be not significantly dis-similar amongst healthy controls

and CRS patients. This result mirrored the findings of the
traditional differential abundance approach undertaken in our
first report (Paramasivan et al., 2020). There appeared to be
no significant associations with other clinical variables such
as asthma and aspirin-sensitivity after controlling for multiple
comparisons (Table 2). The distribution of the microbiotypes
however differed according to center/location of collection
(Figure 3). As such, we cannot conclude based on our study
that microbiotypes could function independently as a disease
biomarker. It could be the case that chronicity of inflammation
-on its own- is not a determinant of a dysbiotic microbiome,
but whether there is a clinically-evident “sinus infection” current
at the time of sample collection. In this theory, stable chronic
sinuses with no overt signs of acute or chronic infection,
may remain similar to a “healthy sinus microbiome.” Only
when the sinuses are clinically infected (as evident on clinical
symptoms and endoscopic findings), the microbiota become
disrupted and the dysbiosis exaggerated. It is important to note
that Streptococcus, Haemophilus, and Moraxella (represented
here in microbiotype 3) have been traditionally implicated
in acute infections of the upper respiratory tract including
acute rhinosinusitis and acute otitis media. Patients with
clinically obvious acute exacerbations were not included in
the original dataset (Paramasivan et al., 2020). An alternative
possibility is that with advancing sequencing technology, and
with complementary methods such as shotgun metagenomics
or metatranscriptomics, we could unravel the constitution and
function of sinonasal microbiotypes at a higher resolution in the
future, which might uncover some difference between healthy
and diseased states.

Asia and Australasia showed an over-representation of
microbiotype 1. Europe had a higher prevalence of microbiotype
2. Unfortunately, the study only included one European center
(Amsterdam) so it is difficult to be certain whether this finding
generalizes to other locations in Europe. The driving factors
for these geographical differences could be multiple, including
but not limited to clinical practices such as local antibiotic
prescriptions for CRS and timing of recruitment of patients for
sinus surgery, as discussed previously (Paramasivan et al., 2020).
And as mentioned in our previous analysis, it is difficult to
conclude a “causative role” for geography given only our data
(Paramasivan et al., 2020).

We have adapted our methodology from the enterotyping
approach taken by Arumugam et al. (2011) for classifying
bacterial signatures of the gut microbiome. In their original
manuscript, they described three different enterotypes in the
gut dominated by Prevotella, Bacteroidetes, and Ruminococcus,
respectively (Arumugam et al., 2011). Several papers have
correlated gut enterotypes with various clinical variables (Wu
et al., 2011; Vandeputte et al., 2016). Despite this, enterotyping
as an approach to population stratification has not been without
its controversies. Several authors have criticized the definition
of distinct clusters, since it neglects intra-cluster variation and
gradients between clusters (Jeffery et al., 2012; Koren et al., 2013;
Knights et al., 2014; Costea et al., 2018). We provide answers
to previous critique (Knights et al., 2014) to enterotyping as
it applies to our study in Table S2. It is important to note
these valid criticisms to any community typing approach. In our
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experiment, the clusters or types lie on a continuum, with some
samples falling in the gradients between two, or perhaps even
all three microbiotypes (see ordination plots). The histograms
in Figure 2 also suggest this, but they do show most samples
in each microbiotype feature a high relative abundance of a
dominating genus in many samples. We investigated a simple
dominance measure, the Berger-Parker alpha diversity index
(Berger and Parker, 1970), in the combined datasets’ 507 samples.
The Berger-Parker index simply reports the relative abundance
of the most dominant taxon in a sample. This found that only
24.9% of samples had a dominating taxon that only had a relative
abundance of 50% or less. On the other hand, 51.9% of samples
had the dominant taxon exhibiting a relative abundance of>70%
of the sample (Supplementary Results in Jupyter Notebook;
Figure S1). This shows that in most samples, there is one
dominating organism. Based on these results, the microbiotyping
approach is therefore proposed to reduce complexity about
modeling bacterial interactions in the sinuses, and not to
suggest that each type is a walled-off discrete cluster. Further
investigations into the local substructures of each type will
be required to further explore the roles and interactions of
its constituent taxa. Another limitation of our description
of microbiotypes is that they may as well-describe different
community “states” rather than community “types,” since we do
not have longitudinal data to describe how these clusters behave
with the passage of time and treatments. Hence, we could not
confirm whether these are stable, consistent communities across
time. It may well be that intermediate samples lying between
two or more microbiotypes are representing a transitional
state. An important future avenue of research is to conduct
a longitudinal study to investigate the temporal stability of
these clusters.

We predict that ongoing sinonasal microbiome research and
consequent large meta-analyses of microbiota studies, with novel
meta-analytic tools and platforms (Gonzalez et al., 2018) enabling
such large-scale studies, will allow the refinement of these
types and further clarify their clinical/microbiological utility.
Our methodological approach to describe the microbiotypes
is not exclusive, as alternative statistical or machine-learning
approaches could be employed to investigate them. In light of
this, we expect that international multi-center standardization
and rationalization of the sinonasal microbiotypes would
be possible in the future, similar to the recent proposed
effort to standardize enterotyping of the gut microbiota by
Costea et al. (2018).

CONCLUSION

We examined our International Sinonasal Microbiome
Study 16S dataset through an approach modeled on human
gut microbiome enterotyping and we found three major
microbial community types or “microbiotypes” as clusters
that lie on a continuum, based on an unsupervised machine
learning approach that involved dimensionality reduction
and clustering. Microbiotypes did not show an association
with disease state or clinical variable, suggesting that they

could not function as independent disease biomarkers.
The description of these microbiotypes has also unveiled
a potential reciprocal relationship between Staphylococcus
aureus and Corynebacterium spp. in the sinuses that requires
further investigation in future studies. The findings were
validated on a separate previously unpublished sinus bacterial
16S gene dataset. Microbiotypes are therefore proposed to
reduce the complexity of modeling bacterial interactions
in the sinuses, and in this sense hold microbiological and
clinical relevance.
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