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During chronic human immunodeficiency virus type 1 (HIV-1) infection, upregulation

of inhibitory molecules contributes to effector cell dysfunction and exhaustion. This,

in combination with the ability of HIV-1 to reside dormant in cellular reservoirs and

escape immune recognition, makes the pathway to HIV-1 cure particularly challenging.

An idealized strategy to achieve HIV-1 cure proposes combined viral and immune

activation by “shock”ing HIV-1 out of latency and into an immunologically visible

state to be recognized and “kill”ed by immune effector cells. Here we outline the

potential for blockade of the inhibitory immune checkpoint T cell immunoreceptor with

immunoglobulin and ITIM domains (TIGIT) to overcome natural killer (NK) cell and T cell

inhibition associated with HIV-1 infection and invigorate antiviral effector cell responses

against HIV-1 reactivated from the latent cellular reservoir.
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INTRODUCTION

Combination antiretroviral therapy (cART) reduces human immunodeficiency virus type 1
(HIV-1) replication to levels where the amount of viral ribonucleic acid (RNA) in the bloodstream
falls below current limits of detection. In most cases, maintenance of undetectable viral loads
requires strict adherence to therapy (Chun et al., 1995, 1997; Finzi et al., 1999). Despite their
efficacy, complete eradication of HIV-1 is unattainable with current cART regimes. During early
infection, HIV-1 establishes proviral reservoirs, concealing itself within various cell types in
different anatomical niches (Wong and Yukl, 2016; Baxter et al., 2018). In this largely dormant
state, the HIV-1 reservoir is invisible to the immune system and insensitive to cART (Finzi
et al., 1997). As a consequence of this widespread thorough concealment, if cART is interrupted,
HIV-1 reactivates and produces replication-competent viruses capable of nascent infection (Wong
et al., 1997; Finzi et al., 1999). Organs and tissues such as the gut and lymph nodes are key sites
enriched for cells harboringHIV-1 provirus (Wong and Yukl, 2016). Although various types of cells
including macrophages, monocytes and astrocytes can serve as HIV-1 reservoirs, the predominant
cell type containing HIV-1 provirus are CD4+ T cells and, thus, they are the predominant source
of viral replication with withdrawal of cART (Finzi et al., 1999; Wong et al., 2019). Seeding itself
in long-lived memory CD4+ T cells during acute and ongoing infection allows HIV-1 to persist
indefinitely, despite consistent and effective cART suppression.

In the absence of cART, activation of the resting CD4+ T cells harboring HIV-1 provirus drives
HIV-1 out from latency, replenishes the reservoir and promotes disease progression. Cure of the
“Berlin patient” in 2008 and the “London patient” in 2019 with HIV-1-resistant bone marrow
transplants provides proof of concept that HIV-1 can be eradicated in those already living with the
virus (Hutter et al., 2009; Gupta et al., 2019). Although application of this approach is not feasible
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for the vast majority of people living with HIV-1 (PLWH), other
elimination strategies are under investigation. These can include
“block and lock” or gene editing, both of which aim to fix latent
proviral HIV in a permanent inactive state with either drug
therapy or in situHIV genome editing. Conversely, a “kick/shock
and kill” approach focuses on purging the latent HIV-1 reservoir
by forced HIV activation from reservoir cells, thereby exposing
it to the immune system and/or cART (Deeks, 2012; Shan et al.,
2012; Qu et al., 2013; Ahlenstiel et al., 2015; Mousseau et al., 2015;
Zhu et al., 2015; Karpinski et al., 2016; Margolis et al., 2016).
To completely cure HIV-1 infection by this latter approach,
two currently unattainable objectives must be met. Firstly, viral
reactivation needs to occur in all latently infected cells bearing
replication competent viral genomes. Secondly, those cells in
which HIV-1 reactivates must be eliminated efficiently enough
to prevent spread to uninfected cells. The second goal requires
enhanced antiviral immune function, likely combined with novel
pharmacologic strategies. Direct reservoir cytolysis by T cell
and specific antibody-dependent NK cell mechanisms is a key
element of this goal. Incomplete purging of the latent HIV-1
reservoir, although not an absolute cure, may be sufficient to
reduce or even remove dependence upon cART for suppression
of HIV replication and yield a functional cure for HIV-1
infection. In light of the role that the immune system will play,
similarities between cancer and chronic viral infection imply
that administration of checkpoint inhibitors can benefit immune-
based HIV-1 cure and treatment strategies.

Like cancer, chronic viral infection often progresses to a
stage where effector cell functions fundamental for its control
are severely impaired (Wherry and Kurachi, 2015; Bi and
Tian, 2017). Following activation, T cells upregulate inhibitory
receptors such as CTLA-4 and PD-1 to limit T cell responses and
prevent immune pathology arising from unregulated responses
(Wherry and Kurachi, 2015). In settings of chronic infection with
persistent microbial replication, T cell function is dysregulated
by sustained high expression of these inhibitory checkpoint
receptors (Attanasio andWherry, 2016;Wykes and Lewin, 2018).
Checkpoint inhibitors targeting different inhibitory receptors on
immune cells or their corresponding ligands are transforming
cancer therapy and many are relevant to immunotherapy
for HIV-1 infection. We focused this review on the T cell
immunoreceptor with immunoglobulin and ITIM domains
(TIGIT) immune checkpoint receptor as expression of TIGIT,
its competitors, and its ligands are broadly dysregulated on
multiple cell types in HIV-1 infection. Furthermore, recent
studies indicate that TIGIT negatively regulates both T cell and
NK cell antiviral effector functions. We will discuss findings
that suggest that this regulatory axis is an especially exploitable
immune checkpoint in HIV-1 reservoir elimination strategies
engaging antiviral effector cells.

Differential TIGIT Expression on Immune
Cells
Most NK cells and multiple T cell subsets, including memory
T cells, regulatory T cells and follicular helper T cells (TFH),
express TIGIT (Boles et al., 2009; Stanietsky et al., 2009; Yu

et al., 2009; Levin et al., 2011; Wang et al., 2015; Wu et al.,
2016). After interaction with either of its ligands, poliovirus
receptor (PVR or CD155 or Necl-5), or PVRL2 (CD112 or
nectin-2), TIGIT inhibits activation of T cell or NK cell effector
functions (Stanietsky et al., 2009; Yu et al., 2009; Stengel et al.,
2012). TIGIT belongs to a larger family of nectin and nectin-
like receptors that all recognize the same group of ligands (Chan
et al., 2012; Pauken and Wherry, 2014). Like TIGIT, TACTILE
(CD96), and PVR-related Ig domain (PVRIG or CD112R) bind
PVR, and PVRL2, respectively, whereas DNAM-1 (CD226) is a
costimulatory counter receptor that competes with both TIGIT
and TACTILE for PVR engagement and with PVRIG for PVRL2
binding (Figure 1) (Anderson et al., 2016; Zhu et al., 2016;
Dougall et al., 2017; Xu et al., 2017; Sanchez-Correa et al.,
2019). The inhibitory receptor PVRIG is expressed on activated
T cells and NK cells (Figure 1), however, there is a lack of
conclusive evidence in human NK cell studies as to whether
TACTILE negatively or positively regulates activation (Fuchs
et al., 2004; Georgiev et al., 2018; Whelan et al., 2019). Although
PVR is a common ligand for TIGIT, TACTILE, and DNAM-1,
the binding affinities vastly differ, with TIGIT having a greater
affinity for PVR than either DNAM-1 or TACTILE (Figure 1)
(Yu et al., 2009). This domination TIGIT has over DNAM-1 for
ligand binding favors effector cell inhibition over effector cell
costimulation, thereby dampening immune responses. Another
means by which TIGIT controls T cell or NK cell activation is
by interfering with DNAM-1 homodimerization by forming a
heterodimer with DNAM-1 in cis (Figure 1) (Johnston et al.,
2014). The intracellular TIGIT/DNAM-1 complex prevents
effective intercellular DNAM-1/ligand interactions and reduces
effector cell costimulation. This family of paired receptors and
ligands constitute a regulatory signaling pathway resembling that
of CD28 and CTLA-4 with antagonistic effects conveyed through
differential receptor binding of the same ligand (Martinet and
Smyth, 2015).

One hallmark of chronic HIV-1 infection is disruption of
normal lymphocyte functions, leading to signs and symptoms
of immune exhaustion. This exhaustion profile is illustrated by
increased expression of multiple inhibitory immune checkpoint
molecules including PD-1, CTLA-4, TIM-3, and LAG-3 on
CD8+ T cells and in some instances, on NK cells (Wherry
et al., 2007; Anderson et al., 2016). In contrast to these well-
characterized exhaustion markers, TIGIT is found to varying
extents on NK cells and naïve CD8+ T cells and is further
upregulated after activation (Yu et al., 2009). There is convincing
evidence of a central role for TIGIT in control of CD8+

T cell maturation and exhaustion (Johnston et al., 2014).
However, considering its parallel regulation of NK cell functions,
targeting TIGIT with checkpoint inhibitors may have even
greater implications for bolstering antiviral immunity than
targeting PD-1 or CTLA-4. Of all lymphocyte subsets, NK
cells have the highest fraction of cells constitutively expressing
TIGIT receptors (Wang et al., 2015). Between 20 and 90%
of resting NK cells express TIGIT and levels are increased
by acute and chronic viral infections or cancers (Bi et al.,
2014; Johnston et al., 2014; Wang et al., 2015; Zhang et al.,
2018).
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FIGURE 1 | The TIGIT/DNAM-1 immune checkpoint axis. Interactions between inhibiting ( ) and activating ( ) T cell or NK cell receptors belonging to the nectin or

nectin-like family of receptors and their corresponding family of ligands are depicted. Strong interactions such as those between TIGIT and PVR or DNAM-1 in cis or

PVRIG and PVRL2 are illustrated with heavy arrows. There is no clear consensus regarding whether TIGIT binds PVRL3 (dotted arrow) and it is unclear whether

TIGIT/PVRL2 interactions are physiologically relevant in vivo (Stanietsky et al., 2009; Yu et al., 2009; Whelan et al., 2019). DNAM-1 interacts with both PVR and PVRL2

to counter inhibition, yet does so with lower affinity than either TIGIT or PVRIG. TACTILE preferentially interacts with PVRL1 over PVR (Holmes et al., 2019). The affinity

of KIR2DL5 for PVR binding is currently unknown, as is whether any other nectin or nectin-like ligand or receptor can serve as its binding partner.

Targeting TIGIT is an especially attractive approach to
incorporate into HIV-1 cure strategies as it impacts multiple
functions of multiple types of effector cells. Its widespread
expression on NK cells and CD8+ T cells enhances the
likelihood of TIGIT blockade having a meaningful impact
in the setting of chronic infection. In this setting, CD8+ T
cells acquire expression of inhibitory receptors, including
TIGIT, all contributing to maintenance of an immune
exhausted state. Utilizing therapeutic monoclonal antibodies
(mAb) to release the brakes on exhausted CD8+ T cells
and on NK cells expressing high amounts of TIGIT can
counter inhibition to favor restoration of productive antiviral
effector functions.

TIGIT Regulates Effector Cells in HIV-1
Infection
Expression of TIGIT is broadly dysregulated on both CD8+ T
cells and NK cells in HIV-1 infection. An increased fraction of
CD8+ T cells expressing TIGIT arises despite early initiation
of effective cART (Chew et al., 2016; Tauriainen et al., 2017).
The high potential impact of targeting TIGIT as a therapeutic
strategy to invigorate effector cell responses against HIV-1
is emphasized by TIGIT expression on more than half of
CD8+ T cells and almost all HIV-1-specific CD8+ T cells
in PLWH (Chew et al., 2016; Tauriainen et al., 2017). Cells
expressing TIGIT proliferated less and mounted weaker antiviral
cytokine responses compared with their TIGITneg CD8+ T
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cell counterparts, indicating a prominent role for TIGIT as a
negative regulator of HIV-1-specific CD8+ T cell immunity
(Chew et al., 2016). Additionally, TIGITpos CD8+ T cells from
PLWH have increased PD-1 co-expression, which correlates with
HIV-1 disease progression (Chew et al., 2016). ADDIN EN.CITE
(Cella et al., 2010; Tauriainen et al., 2017; Yin et al., 2018)
Interrupting TIGIT signaling using therapeutic mAb blockade
rescues CD8+ T cell antiviral activity. If signaling through either
TIGIT or PD-1 receptors is prevented by mAb, CD8+ T cell
interferon (IFN)-γ responses and cytotoxicity increase (Johnston
et al., 2014; Chew et al., 2016). However, IL-2 production
and T cell proliferation is reestablished only when blockade
of both receptors is imposed (Figure 2A) (Johnston et al.,
2014; Chew et al., 2016). In parallel with increased TIGIT
on CD8+ T cells, its costimulatory counterpart, DNAM-1, is
often downregulated, further contributing to T cell exhaustion
(Cella et al., 2010; Tauriainen et al., 2017). This “one-two
punch” increases inhibitory intercellular TIGIT/PVR interactions
and cis TIGIT/DNAM-1 heterodimers further restrict the
potential for productive costimulation mediated by DNAM-
1/PVR interactions (Figure 1).

Similar to the relationship seen with CD8+ T cells, higher
levels of TIGIT on NK cells correlate with HIV-1 disease
progression (Yin et al., 2018). Although TIGIT blockade
can rescue NK cell function against cancer, further evidence
illustrating the potential benefits of targeting the TIGIT axis in
the context of HIV-1 infection is needed (Zhang et al., 2018).
While TIGIT expression is increased on NK cells from treatment
naïve PLWH, cART may return TIGIT expression to similar
levels as that of healthy controls (Yin et al., 2018; Vendrame et al.,
2020). In untreated PLWH, NK cells expressing higher amounts
of TIGIT were less likely to degranulate and produce IFN-γ in
response to cytokine stimuli than those that did not express
TIGIT. In this case, baseline NK cell function was rescued by
mAb against TIGIT (Yin et al., 2018). In another study in which
NK cells were activated for 3 days with IL-2, blockade of TIGIT
provided no benefits to NK cells responding against in vitroHIV-
1 infected autologous primary CD4+ T cells (Vendrame et al.,
2020). In the setting of active HIV-1 infection, TIGIT expression
is increased on subsets of NK cells coexpressing DNAM-1 (Yin
et al., 2018; Vendrame et al., 2020). Combining viral reactivation
strategies with effector cell reinvigoration by preventing TIGIT
interactions with either its ligand or DNAM-1 should promote
cytolysis of infected cells (Figure 2B). More evidence is needed
to delineate the cytotoxic potential of these cells. Expression of
TIGIT on CD8+ T cells and NK cells suggests that TIGIT-specific
mAb therapy could synergistically unleash both types of antiviral
effector cells to more robustly target active HIV-1 infection.

A Ligand for TIGIT Is Enriched on HIV-1
Reservoir Cells
Although expression levels of many inhibitory checkpoint
molecules increase onmultiple types of effector cells during HIV-
1 infection, inhibition relies on the interactions between these
receptors, and their cognate ligands. The predominant ligand for
TIGIT and DNAM-1 is PVR, which is expressed on monocytes,
dendritic cells, T cells and other cell types including tumor
cells and HIV-1-infected cells (Mendelsohn et al., 1989; Pende

et al., 2006; Chauvin et al., 2015; Chew et al., 2016). Originally
identified in 1989 as a receptor for poliovirus, PVR belongs to
a larger family of molecules that facilitate cell adhesion and
migration, while over-expression of PVR in transformed cells
promotes proliferation (Mendelsohn et al., 1989; Takai et al.,
2008). Stimulated T cells have increased total PVR protein and
cell surface expression levels, with preferential PVR expression
on proliferating T cells in the S or G2/M cell cycle phase
(Ardolino et al., 2011). Increased cellular PVR expression occurs
after the DNA damage response (DDR) pathway is induced
(Ardolino et al., 2011). Although activated primary CD4+ T cells
express PVR, whether or not HIV-1 influences PVR expression
on circulating primary CD4+ T cells remains controversial
(Davis et al., 2017).

During infection, expression of HIV-1-encoded Vpr helps
promote cell cycle arrest in G2 via the DDR pathway (Andersen
et al., 2008). Through this same Vpr-dependent mechanism,
PVR was reported to be upregulated on the surface of HIV-1-
infected Jurkat T cells, yet expression of Nef and/or Vpu reduced
surface-expressed PVR on both Jurkat and primary CD4+ T cells
(Matusali et al., 2012; Vassena et al., 2013; Bolduan et al., 2014).
Another study reported no role for HIV-1-specific modulation of
PVR expression on primary CD4+ T cells (Davis et al., 2017).
These studies used various in vitro systems with CD4+ T cell
lines or ex vivo CD4+ T cells from healthy controls infected
with different laboratory passaged HIV-1 strains. In all cases,
PVR expression was assessed on all infected T cells, yet in vitro-
infected CD4+ T cells can be subsequently distinctly grouped
into either CD4pos or CD4neg cells (Tremblay-McLean et al.,
2017). In so doing, Tremblay-McLean et al. found that surface
PVR expression is reduced on infected CD4neg T cells compared
with infected CD4pos T cells (Tremblay-McLean et al., 2017). This
could indicate that if HIV-1 does regulate PVR expression in vivo,
productively infected or reservoir TFH cells that maintain their
expression of CD4 may have a different PVR expression profile
than their CD4neg T cell counterparts.

Investigation of ex vivo PVR expression on CD4+ T cells
from PLWH has been limited. Very low levels of PVR
expression on circulating CD4+ T cells combined with the
relative inaccessibility of lymph node sections from PLWHmake
informed assessment of PVR expression problematic (Yin et al.,
2018; Vendrame et al., 2020). Upregulation of PVR can occur
on CD4+ T cells in HIV-1 infection, especially on lymph node
TFH CD4+ T cells, which are the major site of HIV-1 reservoir
concentration (Perreau et al., 2013; Banga et al., 2016; Tauriainen
et al., 2017). Further, within the lymph nodes from PLWH,
PVR is expressed on both germinal center CD3+ cells and
interdigitating follicular DCs (Cella et al., 2010). This compact
compartment comprised of cells expressing PVR in proximity to
CD4+ T cells enriched in HIV-1 provirus could exploit higher
localized TIGIT expression on CD8+ T cells and NK cells to limit
effector cell functions as they transit through lymph nodes. As
NK cell and CD8+ T cell expression of TIGIT increases with
acute HIV-1 infection, introducing mAb therapy to overcome
the higher affinity TIGIT/PVR inhibitory interaction in favor
of DNAM-1/PVR-mediated activation is a rational strategy to
address lingering HIV-1 infection (Yin et al., 2018). In this event,
PVR expressed on reservoir CD4+ T cells would render them
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FIGURE 2 | Hypothetical outcomes of using TIGIT blockade within a “shock and kill” approach for HIV-1 curative therapy. Increased PVR expression on lymph node

CD4+ TFH cells can contribute to (A) CD8+ T cell or (B) NK cell dysregulation by engaging TIGIT and (co)inhibiting effector functions (left panel). Combined CD4+ T

cell reservoir activation and TIGIT mAb (right panel) could create a scenario where previously latent HIV-1 actively replicates, introducing targets for HIV-1-specific

CD8+ T cell or NK cell recognition. Reservoir cytolysis is promoted in this scenario by preventing inhibitory TIGIT interactions and allowing DNAM-1 (co)stimulation.

Combination TIGIT and PD-1 mAbs would also allow CD8+ T cell proliferation and IL-2 production. (C) Follicular DCs (fDCs) express PVR and interact closely with

reservoir CD4+ T cells. TIGIT is also expressed on lymph node CD4+ T cells and may contribute to their suppression (left panel). Humanized anti-TIGIT mAb could aid

in “shock”ing latent cells into productive infection by preventing CD4+ TFH cell TIGIT interactions with PVR expressed on fDCs leading to virus-induced or effector cell

mediated cytolysis.

more susceptible targets for DNAM-1-expressing CD8+ T cells
and NK cells (Figures 2A,B).

In 2019, killer cell immunoglobulin-like receptor (KIR)2DL5,
an inhibitory receptor expressed on NK cells and CD8+ T cells,
was identified as a binding partner for PVR, adding another facet
to this already complex regulatory pathway (Estefania et al., 2007;

Husain et al., 2019). The genes encoding KIR2DL5 (KIR2DL5A
and KIR2DL5) are highly polymorphic (Vilches et al., 2000a,b).
Less than 10% of CD56dim NK cells and a very small fraction
of the CD8+ T cells of carriers express the most common allele,
2DL5A∗001, which is detectable by mAb UP-R1 (Estefania et al.,
2007; Cisneros et al., 2012). An accurate measure of KIR2DL5
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prevalence in the wider population is currently unavailable as it
is unknown whether this is the only allele expressed or whether
polymorphisms arising in other alleles alter epitopes recognized
by UP-R1 (Cisneros et al., 2012, 2016). While multiple factors
suggest that inhibiting TIGIT/PVR interactions is a suitable
strategy to invigorate effector cell responses against HIV-1,
PLWHexpressing KIR2DL5may be less likely to benefit from this
approach. Studies are needed to determine the antiviral effector
potential of NK cells expressing KIR2DL5 and whether they
co-express other nectin or nectin-like receptors.

TIGIT Is Expressed on HIV-1 Reservoir
Cells
A significant hurdle to achieving HIV-1 cure is the lack of HIV-
1 antigen expression on reservoir CD4+ T cells, which leaves
no appropriate means to target them immunologically. Without
specific cell surface markers or HIV-1 antigen expression/peptide
presentation to identify HIV-1-infected cells, no level of
competent effector cell function can eradicate HIV. Selectively
targeting latently infected cells that comprise the HIV-1 reservoir
is a subsidiary approach to HIV-1 cure. Together with CD8+ T
cells and NK cells, CD4+ T cells, including TFH cells residing
deep within lymph node tissues, express TIGIT (Yu et al., 2009;
Wu et al., 2016). The CD4+ T cell fraction expressing TIGIT
is enriched for integrated HIV-1 DNA and the frequency of
TIGITpos cells that also co-express PD-1 and LAG-3 correlates
with the size of the HIV-1 reservoir (Fromentin et al., 2016).
Expression of TIGIT on CD4+ T cells, alone or in combination
with other immune checkpoint receptors identifies a subset of
CD4+ T cells more likely to harbor latent HIV-1.

Although TIGIT expression can help identify HIV-1
reservoirs, these cells need to be activated or shocked into
productive infection to express HIV-1 antigens or associated
stress proteins enabling recognition by antiviral effector cells.
Maintenance of stable HIV-1 reservoirs involves persistent
inhibition through interactions between checkpoint inhibitors,
such as PD-1 or TIGIT, and their ligands (Wykes and Lewin,
2018). Consistent with the latency reversal noted with anti-
PD-1 mAb, introducing anti-TIGIT mAb to unleash negative
regulation can help shock TIGIT-expressing CD4+ T cells
into activation and shift latent HIV-1 into active production
(Figure 2C) (Chew et al., 2016; Fromentin et al., 2016, 2019;
Evans et al., 2018; Guihot et al., 2018; Wykes and Lewin, 2018).
Targeting TIGIT as part of a cure strategy for HIV-1 could
concurrently help force HIV-1 out of hiding, while rescuing
CD8+ T cell and NK cell antiviral functions to bridge effector
cell functions with recognition of HIV-1-infected cells–a
multipronged “shock and kill” approach.

CONCLUSION

We have discussed findings that suggest TIGIT inhibition of
CD8+ T cell and NK cell surveillance against HIV-1-infected
CD4+ T cells and monocytes, compounded by dysregulation
of PVR and DNAM-1 expression, constitutes an exploitable
immune checkpoint in HIV-1 reservoir elimination strategies
engaging antiviral effector cells. The reasons that TIGIT could be

an especially attractive target are several fold. Most importantly,
TIGIT is expressed on most NK cells and almost all HIV-specific
CD8+ T cells in PLWH (Wang et al., 2015; Tauriainen et al.,
2017; Yin et al., 2018). While this may favor targeting TIGIT over
other inhibitory receptors such as PD-1 or CTLA-4, there is a case
for using combinations of checkpoint inhibitors. For example,
blocking TIGIT increased degranulation, IFN-γ production and
proliferation of antiviral effectors, however, blockade of both
TIGIT and PD-1 rescued IL-2 production, an important correlate
of immune stability in PLWH (Johnston et al., 2014; Chew
et al., 2016). In some settings, TIGIT blockade increases NK
cell natural degranulation and antiviral cytokine release and
likewise enhances cytokine release by CD8+ and CD4+ T cells
and degranulation of HIV-specific CD8+ T cells (Chew et al.,
2016; Fromentin et al., 2016; Tauriainen et al., 2017; Yin et al.,
2018). Secondly, there is evidence that HIV-1 infection of CD4+

T cells induces upregulation of PVR expression and that the
latent HIV reservoir is to some extent concentrated in CD4+ T
cells expressing PVR and/or TIGIT (Cella et al., 2010; Tauriainen
et al., 2017; Yin et al., 2018). Thus, at least a fraction of the CD4+

T cells activated for nascent HIV-1 replication is pre-armed to
inhibit antiviral effector cell function through PVR engagement
of TIGIT. Previous studies indicating that endogenous HIV-
specific CD8+ T cell responses of PLWH are insufficient to
address nascent HIV-1 reactivation underscore the necessity
to enhance antiviral effector functions in concert with HIV-1
reactivation (Shan et al., 2012).

The breadth of its effects on T cells and NK cells as well as
specificity for cells in which the HIV-1 reservoir is concentrated
combine to highlight the potential of TIGIT blockade in
immunotherapeutic HIV-1 cure strategies. Several humanized
anti-TIGIT mAb (AB154 and Etigilimab) have already entered
clinical trials in cancer therapy, alone and in combination with
anti-PD-1. These early stage studies indicate a favorable safety
profile with effective TIGIT blockade. Experience in the cancer
setting should help inform strategies for TIGIT blockade in
PLWH, including whether better outcomes can be achieved when
used in combination with other checkpoint inhibitors. For cure
strategies that involve widespread reactivation of HIV replication
and purging of the exposed infected cells, it will be critical to
determine which effector cells or functions can most rapidly be
brought to bear against nascent HIV-1 replication.
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