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During the development of antimicrobial peptides (AMP) as potential therapeutics,

antimicrobial susceptibility testing (AST) stands as an essential part of the process in

identification and optimisation of candidate AMP. Standard methods for AST, developed

almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose

when it comes to determining the susceptibility of microorganisms to AMP. Without

careful consideration of the parameters comprising AST there is a risk of failing to identify

novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet

toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better

determination of the preclinical activity of drug candidates and allow the identification

of lead compounds. An important consideration is the efficacy of AMP in biological

matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage

fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy.

Additionally, specific AST for different target microorganisms may help to better predict

efficacy of AMP in specific infections. In this manuscript, we describe what we believe

are the key considerations for AST of AMP and hope that this information can better

guide the preclinical development of AMP toward becoming a new generation of urgently

needed antimicrobials.

Keywords: antimicrobial peptide (AMP), antimicrobial susceptibility testing, antibiotic, antifungal, host defence

peptide (HDP)

ANTIMICROBIAL RESISTANCE

Antimicrobial resistance (AMR) is a global health crisis. The over-use and inappropriate
prescribing of antibiotics has set us on a path toward a post-antibiotic era where our existing
armory of antibiotics will no longer be effective. Increasing numbers of microorganisms are already
becoming widely resistant to existing antibiotic classes (O’Neill, 2016; Barlow, 2018; Chatterjee
et al., 2018; Van Puyvelde et al., 2018; Roope et al., 2019). The need for new antimicrobial agents is
more important now than it has ever been. So too is the need for better antimicrobial stewardship;
prudent and appropriate use of antimicrobials.
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AMR is responsible for 700,000 deaths per annum globally
(Blair et al., 2015; European Commission, 2017) but this is
forecast to increase to 10 million deaths annually by 2050
(killing more people than cancer and diabetes) if the measures
highlighted above are not urgently implemented successfully to
address drug resistant infections (O’Neill, 2016). This assessment
was based on scenarios for rising drug resistance and economic
growth to 2050 for six major pathogens/infectious diseases;
Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus,
malaria, tuberculosis and HIV (O’Neill, 2014). According to the
Centers for Disease Control and Prevention (CDC), in the US
alone over 2.8million infections per year are caused by antibiotic-
resistant bacteria, causing more than 35,000 deaths in the US
per annum and US$55 billion in increased healthcare costs and
lost productivity (CDC, 2019). Strikingly, in 2009–2010 in the
US almost 20% of pathogens reported from Hospital-acquired
infections (HAI) were multidrug-resistant (Sievert et al., 2013).

Most of the antibiotics available today are broad-spectrum
molecules derived from agents that have been in use for more
than 30 years and as well as “failing” through resistance,
oftentimes have unintended side effects, such as toxicity
toward beneficial commensal bacteria and mammalian cells,
and triggering inflammatory responses (Lepore et al., 2019).
Research efforts are ongoing to discover and develop new,
more effective and safe antimicrobial agents that can overcome
bacterial resistance mechanisms, occasionally even presenting
selective activity toward single bacterial species or specific strains
of bacteria (de la Fuente-Nunez et al., 2017b).

ANTIMICROBIAL PEPTIDES/HOST
DEFENCE PEPTIDES

Antimicrobial peptides (AMP) have potential as a new
therapeutic class of antimicrobials and are one of the most
promising scaffolds being explored for the generation of much-
needed novel antibacterials and antifungals. The blueprint for
many AMP as drugs are endogenous Host Defence Peptides
(HDP); relatively small peptides (4–50 amino acid residues)
that are generally positively charged and often contain an
amphipathic conformation (Jiang et al., 2009; Mercer et al., 2019;
Torres et al., 2019). In the context of this manuscript AMP refers
to all peptides with antimicrobial properties, whereas HDP are
essential innate host defence effector molecules and are amongst
the “first responders” in all eukaryotic and some prokaryotic
organisms to infectious challenge or an inflammation (Zasloff,
2002; Hassan et al., 2012; Mansour et al., 2014; Kang et al.,
2017). As well as having direct antimicrobial activity against
bacteria, fungi and parasites, HDP can modulate the host
immune response, hence being termed host defence peptides
(Hancock and Sahl, 2006; Mansour et al., 2014). HDP are
often classified according to the structure they tend to adopt
in hydrophilic/hydrophobic interfaces, such as the interface of
microbial cell membranes and the extracellular environment,
e. g., α-helix, β-sheet, etc. (Wang, 2015). Often, ∼50% of their
sequence comprises hydrophobic and aliphatic residues that
facilitate interactions with and translocation across membranes

to form pores or to enter cells (Jenssen et al., 2006; Fjell et al.,
2011; Aoki and Ueda, 2013). HDP and the AMP derived from
these scaffolds are versatile molecules with a wide diversity
of structural and physicochemical properties, and are able to
target microorganisms through diverse mechanisms of action,
although the most common mechanism of action is membrane
perturbation/lysis (Brogden, 2005; Hancock and Sahl, 2006; Le
et al., 2017; Pyne et al., 2017; Kumar et al., 2018; Aisenbrey et al.,
2019). For the purposes of this manuscript, we will refer to both
AMP and HDP as AMP.

Achieving precise control over AMP properties and
understanding how peptides behave in different environments
are still challenges in the field (Naafs, 2018). The understanding
of AMP features and details of their mechanism/s of action are
still not clear and have been the target of many studies (Porto
et al., 2018; Torres et al., 2018; Torres and de la Fuente-Nunez,
2019; Yount et al., 2019). Some of the most promising approaches
to describe the role of structural and physicochemical properties
on AMP antimicrobial activity are those involving computer-
based strategies combined with high-throughput experiments
(Lee et al., 2018; de la Fuente-Nunez, 2019; Torres and de la
Fuente-Nunez, 2019). Recent advances in computational biology
have allowed the development of new molecular descriptors,
which enable the discovery of potent AMP through exploitation
of their vast sequence space (Awale et al., 2017; Lin et al., 2018).
Genetic and pattern recognition algorithms are examples of
successful tools that have been used for the generation of AMP
antibiotics that display antimicrobial activity both in vitro and
even in animal models (Lipkin and Lazaridis, 2017; Cipcigan
et al., 2018; Pane et al., 2018; Pfeil et al., 2018; Porto et al.,
2018; Rondon-Villarreal and Pinzon-Reyes, 2018). For example,
Guavanin 2, an AMP generated by means of a genetic algorithm
through a descriptive function that considered amphipathic
distribution, net charge and hydrophobicity, was bactericidal
at low concentrations, causing the disruption of Pseudomonas
aeruginosa membranes by hyperpolarization of the membrane
and displaying anti-infective activity in a mouse model (Porto
et al., 2018).

In vivo studies in animals have demonstrated that AMP
provide protection against microbial infection and that their
absence results in an increased risk of infectious disease (Rivas-
Santiago et al., 2009). In some cases, protection against infection
is relatively generalised, i.e. effected by a number of AMP, such as
the combination of drosomycin and metchnikowin and defence
against Candida albicans infection in Drosophila melanogaster
(Imler and Bulet, 2005; Hanson et al., 2019), whereas in
others interactions are very specific, e.g., diptericin and defence
against Providencia rettgeri infection inD. melanogaster (Hanson
et al., 2019). Clinical correlations between AMP production
and protection against infection exist that extend to humans
(Hancock et al., 2016; Mangoni et al., 2016; de la Fuente-Nunez
et al., 2017a; Coates et al., 2018), as patients with impaired
epithelial AMP production (e.g., atopic dermatitis/eczema) are
more susceptible to secondary infection, unlike those with
increased AMP production (e.g., psoriasis) (Ong et al., 2002;
Yamasaki and Gallo, 2008). Thus, it appears to be clear that AMP
function as antimicrobials in vivo.
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Despite the promise of AMP as novel antimicrobials, a lack of
optimization and standardization of experimental conditions for
antimicrobial susceptibility testing (AST), including exposure to
different pH, salt solutions, serum half-life, and media/biological
matrices used during AST (Mahlapuu et al., 2016; Torres
et al., 2019) has been a major block to confirming efficacy
potential from the outset in AMP drug development pathways.
Standardization of experimental conditions for assessing the
antimicrobial properties of AMP, and the difficulties encountered
therein, are the subject of this manuscript. It is widely believed
that AMP represent a group of molecules with the potential for
development into a new generation of antimicrobials and for
which “standard” AST protocols can significantly underestimate
the AMP efficacy as antimicrobial drug candidates. In this
era of increasing levels of AMR worldwide, drug development
professionals cannot afford to ignore potential antimicrobial
drug candidates simply because they do not perform well using
“standard” laboratory test methods. Should AMP be successfully
developed as therapeutics, due consideration needs to be given
to manufacturing peptides on a large scale and safe and ethical
disposal of manufacturing by-products and unused peptides.
More than 60 peptide-based drugs have been already approved
by the Food and Drug Administration (FDA) and more than
400 are in pre/clinical development (Aoki and Ueda, 2013; da
Costa et al., 2015; Ageitos et al., 2016; Mahlapuu et al., 2016; Lee
et al., 2019). Of these, at least 70 are AMP, with more than 25
in clinical trials (Koo and Seo, 2019). The peptide therapeutics
market was valued at >$23 Bn (US) in 2017 and is predicted
to be worth >$43 Bn (US) by 2024 (Zion Market Research,
2018). Additionally, peptide-based antimicrobials have been
successfully used in the clinic for a number of years, including
the antibacterials colistin, vancomycin, daptomycin and the
antifungals of the echinocandin class (Hancock and Chapple,
1999; Mercer and O’Neil, 2013). The peptide components of
the complex molecules are, in most cases, cyclic (head-to-tail
cyclization) or restricted (side chain-to-side chain or side chain-
to-end cyclization) or conjugated with other organic compounds,
such as carbohydrates or lipids. Cyclization and/or conjugation
confer AMP longer half-life and increased bioavailability, thus
improving the probability of achieving a successful treatment
(Greber and Dawgul, 2017).

ANTIMICROBIAL SUSCEPTIBILITY
TESTING

Antimicrobial susceptibility testing (AST) determines the
concentration of an antimicrobial that inhibits microbial growth,
for both microbicidal and microbiostatic agents (Brown et al.,
2016; Sanguinetti and Posteraro, 2018; Humphries et al., 2019;
van Belkum et al., 2019). The importance of accurate AST in at
least guiding antibiotic use in the clinic cannot be underestimated
(Doern et al., 1994; Kumar et al., 2009; Weiss et al., 2012; Holmes
et al., 2016).

During the development of novel antimicrobials, AST is
vitally important; (i) to determine the preclinical activity of drug
candidates and allow the identification of lead compounds, (ii)

to facilitate the determination of the likelihood of resistance
development, (iii) to provide estimates of likely in vivo and
critically, clinical efficacy when testing compounds in biological
matrices replicating sites of infection, e.g., blood/plasma/serum,
lung bronchiolar lavage fluid/sputum, urine, biofilms, etc.
(Breteler et al., 2011; Macia et al., 2014; Bottger et al., 2017; Ersoy
et al., 2017; Nizet, 2017; Savini et al., 2017; Starr and Wimley,
2017; Haney et al., 2019).

ANTIMICROBIAL SUSCEPTIBILITY
TESTING METHODS FOR EXISTING
CLASSES OF ANTIMICROBIALS

Most AST, and its interpretation, is conducted using
internationally recognised standards developed by bodies
including the International Organization for Standardization
(ISO), Clinical and Laboratory Standards Institute (CLSI), the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST), The United States Committee on Antimicrobial
Susceptibility Testing (USCAST) and the US Food and Drug
Administration (FDA) Center for Drug Evaluation and Research
(CDER) (Table 1) (Magiorakos et al., 2012; Kahlmeter, 2015;
Humphries et al., 2019). Susceptibility Test Interpretive Criteria
(STIC), also known as “breakpoints,” are used to determine
the optimal dose of antimicrobials for treating infection
and are based on those published by the CLSI, EUCAST,
USCAST and the FDA. In December 2017 the FDA launched
the Antimicrobial Susceptibility Test Interpretive Criteria
website (https://www.fda.gov/drugs/development-resources/
fda-recognised-antimicrobial-susceptibility-test-interpretive-
criteria) which includes STIC similar to those published by
CLSI and EUCAST. Different documents describe breakpoints
for bacteria, yeasts, filamentous fungi (moulds) and other
microorganisms (Table 1). Despite many similarities and
agreements, there remains some lack of harmonisation between
AST methods from different organisations (Pfaller et al., 2011,
2014; Chowdhary et al., 2015; Kahlmeter, 2015; Brown et al.,
2016; Sanguinetti and Posteraro, 2018; Simjee et al., 2018;
Cusack et al., 2019). Interpretive categories most commonly
assigned are susceptible (S), indicative of a high probability
of a successful outcome, and resistant (R), indicative of a low
probability of a successful outcome, although in less common
cases other categories include; non-susceptible, intermediate,
susceptible-dose dependent and area of technical uncertainty
(See the documents in Table 1 for details about these interpretive
categories). An alternative STIC is the Epidemiological Cutoff
Value (ECV CLSI, 2018f or ECOFF EUCAST, 2019c). The
ECV/ECOFF is defined as the MIC that separates a population
into isolates with and those without acquired or mutational
resistance based on their phenotypic MIC value. An ECV is not a
“breakpoint” as there is no clinical outcome or clinical trial data.
Thus, an ECV is not a predictor of clinical success, but allows for
prediction of whether an isolate has possible resistance to a given
antimicrobial (Turnidge et al., 2006; Lockhart et al., 2017). For
conventional antimicrobials with known resistance mechanisms,
it is easier to define an ECV/ECOFF than a breakpoint, but for
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TABLE 1 | Internationally recognised standards for Antimicrobial Susceptibility Testing (AST) and Susceptibility Testing Interpretive Criteria (STIC)/Breakpoints.

Organisation Antimicrobial susceptibility testing document Interpretive criteria document References

Bacteria

CLSI Methods for Dilution Antimicrobial Susceptibility Tests for

Bacteria That Grow Aerobically. M07, ED11.

Methods for Antimicrobial Susceptibility Testing of

Anaerobic Bacteria. M11, ED9.

Susceptibility Testing of Mycobacteria, Nocardia spp., and

Other Aerobic Actinomycetes. M24, ED3.

Methods for Antimicrobial Susceptibility Testing for Human

Mycoplasmas. M43, ED1.

Methods for Antimicrobial Dilution and Disk Susceptibility

Testing of Infrequently Isolated or Fastidious Bacteria.

M45, ED3.

Performance Standards for Antimicrobial

Susceptibility Testing (M100 ED29)

Performance Standards for Susceptibility Testing of

Mycobacteria, Nocardia spp., and Other Aerobic

Actinomycetes. M62, ED1.

CLSI, 2011, 2015, 2018a,b,c,d,

2019

EUCAST Antimicrobial susceptibility testing: EUCAST disk diffusion

method, Version 7.0.

EUCAST uses ISO 20776-1 for other bacterial

AST methods

The European Committee on Antimicrobial

Susceptibility Testing. Breakpoint tables for

interpretation of MICs and zone diameters. Version

9.0, 2019

EUCAST, 2019a,b

FDA Antibacterial Susceptibility Test Interpretive Criteria,

2018

https://www.fda.gov/drugs/

development-resources/

antibacterial-susceptibility-test-

interpretive-criteria

USCAST 2019 USCAST Interpretive tables http://www.uscast.org/

ISO Clinical laboratory testing and in vitro diagnostic test

systems—Susceptibility testing of infectious agents and

evaluation of performance of antimicrobial susceptibility

test devices - Part 1: Reference method for testing the

in vitro activity of antimicrobial agents against rapidly

growing aerobic bacteria involved in infectious diseases.

ISO20776-1.

ISO, 2019

Yeasts

CLSI Reference Method for Broth Dilution Antifungal

Susceptibility Testing of Yeasts. M27, ED4.

Method for Antifungal Disk Diffusion Susceptibility Testing

of Yeasts. M44, ED3.

Performance Standards for Antifungal Susceptibility

Testing of Yeasts, M60, S1.

Epidemiological Cutoff Values for Antifungal

Susceptibility Testing, M59, ED2.

CLSI, 2017a,b, 2018e,f

EUCAST Method for the determination of broth dilution minimum

inhibitory concentrations of antifungal agents for yeasts.

E.DEF 7.3.1.

The European Committee on Antimicrobial

Susceptibility Testing: Breakpoint tables for

interpretation of MICs. Version 9.0, 2018

EUCAST, 2017a, 2018

Filamentous

Fungi

CLSI Reference Method for Broth Dilution Antifungal

Susceptibility Testing of Filamentous Fungi. M38, ED3.

Method for Antifungal Disk Diffusion Susceptibility Testing

of Nondermatophyte Filamentous Fungi. M51, ED1.

Performance Standards for Antifungal Susceptibility

Testing of Filamentous Fungi. M61, ED1.

Epidemiological Cutoff Values for Antifungal

Susceptibility Testing, M59, ED2.

CLSI, 2010, 2017c,d, 2018f

EUCAST Method for the determination of broth dilution minimum

inhibitory concentrations of antifungal agents for conidia

forming moulds. E.DEF 9.3.1.

The European Committee on Antimicrobial

Susceptibility Testing: Breakpoint tables for

interpretation of MICs. Version 9.0, 2018

EUCAST, 2017b, 2018

AMP, where resistance mechanisms are not necessarily known,
or present, it is much more difficult (if not impossible) to define
ECV/ECOFF, let alone a breakpoint. If that is the case, then
defining STIC for AMP will require an entirely new definition.

The most commonly used manual AST methods are disk
diffusion and broth microdilution, although many large hospital
laboratories use automated systems, due to improvements in
convenience and flexibility, such as BD PhoenixTM, Beckman
CoulterMicroScan, bioMerieux Vitek R© 2, Accelerate Diagnostics
PhenoTest and Thermo Fisher SensititreTM (Syal et al., 2017). In
the case of antifungal susceptibility testing, broth microdilution

is almost exclusively used (Pfaller and Diekema, 2012; Ostrosky-
Zeichner and Andes, 2017). The time taken for conventional
AST varies considerably, depending on the infectious agent, and
normally is only performed after the pathogen has been cultured
and identified at the species level (van Belkum et al., 2019). For
bacteria this can be as quick as 24–48 h, but for fungi, isolation
and identification can take days, if not weeks, rather than hours
and AST may take 48 h or longer (CLSI, 2012, 2017a,b; EUCAST,
2017a,b). Any delay in appropriate antimicrobial therapy can
lead to increased mortality for severe infections (Delaloye and
Calandra, 2014; Liu et al., 2017). There is, therefore, an urgent
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need for more rapid AST (Sanguinetti and Posteraro, 2017; Kim
et al., 2018; Cansizoglu et al., 2019; Idelevich and Becker, 2019).

The standards for AST available from ISO, EUCAST and
CLSI were first implemented almost 60 years ago (World Health
Organization, 1961) and have remained largely unchanged
since then in a “one size fits all” approach and are used
largely unquestioningly by many users (Nizet, 2017). However,
some antimicrobials (and microorganisms) do not work
in these standards and require modifications to the testing
procedures, either by the use of additives to standard media
to generate representative efficacy values or by the use of
alternative or modified media for fastidious microorganisms
(e.g., Haemophilus Test Medium for Haemophilus influenzae
and H. parainfluenzae and the addition of 2.5–5.0% (v/v)
lysed horse blood to cation-adjusted Mueller-Hinton (CA-
MH) medium when testing streptococci) (CLSI, 2018a,b).
Interestingly, EUCAST developed a different medium for use
with fastidious bacteria (including streptococci andHaemophilus
spp.; a modified version of MH agar, with the addition of
5% mechanically defibrinated horse blood and 20 mg/L β-
nicotinamide adenine dinucleotide (β-NAD) (Matuschek
et al., 2018). Although most efficacy end-points are 100%
growth inhibition, there may be a lesser burden for some
pathogen/antimicrobial combinations (e.g., ≥50% growth
inhibition for fluconazole, flucytosine and ketoconazole for
non-dermatophyte moulds CLSI, 2017c) or the determination
of minimum effective concentrations (MEC), rather than MIC
(e.g., the MEC of echinocandins vs. filamentous fungi is defined
as “the lowest concentration of an antifungal agent that leads to
the growth of small, rounded, compact hyphal forms compared
with the hyphal growth seen in the control well” CLSI, 2017c).
Consideration of other assay parameters, such as those described
in Table 2, perhaps require attention when conducting these
standard procedures or when they are updated.

When using the same AST method, e.g., broth microdilution,
results can be influenced by factors such as medium age,
presence of polysorbate 80 and ion content (Bradford et al.,
2005; Fernandez-Mazarrasa et al., 2009; Sader et al., 2012;
Sutherland and Nicolau, 2014) as can non-compliance with
AST standards (Mouton et al., 2018; Turner and Ashley, 2019).
Examples where modifications to existing AST methods have
been successfully implemented include the lipopeptide antibiotic
daptomycin. Daptomycin requires physiological concentrations
of calcium (50 mg/L) in the medium for optimal efficacy or
otherwise MIC values can be up to 32-fold higher, clearly
affecting whether an isolate could be sensitive or resistant
(Eliopoulos et al., 1986; Campeau et al., 2018) and therefore the
CA-MH broth or agar is supplemented with additional Ca2+

(CLSI, 2018a,b). The lipoglycopeptides antibiotics (including
oritavancin, dalbavancin, and teicoplanin) are subject to binding
to laboratory plasticware (Arhin et al., 2008; Ross et al., 2014)
and therefore CLSI recommends addition of 0.002% (v/v)
polysorbate 80 (Tween 80) to CA-MHB to prevent such binding
(CLSI, 2018a). When testing staphylococci for sensitivity to
oxacillin (MRSA phenotype) it is recommended to supplement
media with 2% (w/v) sodium chloride as this enhances the
expression ofmecA-mediated oxacillin resistance and reduces the

TABLE 2 | Factors influencing antimicrobial activity of AMP.

In vitro Ex vivo In vivo

pH and ionic strength Biological matrices

(e.g., blood)

Animal models of

infection

Temperature Mammalian cells Pharmacokinetics

Medium type/composition Intracellular

pathogens

Pharmacodynamics

Nutrient concentrations Air:Liquid or

Solid:liquid interface

Metabolic

interactions

Buffer Infection models Polypharmacy

(drug- drug

interactions)

Bicarbonate Formulation and

delivery

Metal ions Polymicrobial

infections

Salt (NaCl)

Polysorbate-80

Synergy/Antagonism with other

antimicrobials

Inoculum size

Growth Phase (e.g., biofilms,

persisters, spores, small colony

variants, and other phenotypic

variants)

Charge effects

Solubility

Laboratory materials

Proteolysis

Biological macromolecules (e.g.,

protein, DNA)

Oxygen (hyper-, norm- and

hypoxia)

Mono/Polymicrobial interactions

In the context of this manuscript, ex vivo refers to experiment parameters that are not in a

living host organism (out of the living), but are simulating in vivo conditions. In vivo refers

to experiments conducted in/on a living host organism.

reporting of false negatives that occurs when 5% (w/v) sodium
chloride is used (Huang et al., 1993; Brown, 2001). Additionally,
CLSI recommends that when testing for oxacillin resistance
in staphylococci samples should be incubated at 33–35◦C, as
testing at temperatures above 35◦C may not detect mecA-
mediated resistance (CLSI, 2018a). Therefore, antimicrobial
substance-specific changes can be made to “standard” AST
methods, so there is no reason why this should not be
possible for AMP in pre-/clinical development. Additionally,
AMP-specific end points do not necessarily have to equate
to 100% growth inhibition. Obviously, any and all deviations
from “standard” protocols will require rigorous and detailed
justification and validation.

AMP represent one such group of molecules for which
these “standard” protocols can significantly underestimate their
efficacy potential. In this era of increasing levels of AMR
worldwide, can drug developers really afford to ignore potential
antimicrobial drug candidates simply because they do not
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perform well using “standard” test methods? AST of AMP
is normally performed using the broth microdilution (or
macrodilution) procedure, as many AMP are positively charged
molecules (and are dependent on that positive charge for
activity Jiang et al., 2009; Mercer et al., 2019; Torres et al.,
2019). Positively charged AMP interact with negatively charged
components in agar and neutralising their activity, meaning that
disk diffusion AST methods significantly under-estimate activity
or mask it completely (Kunin and Edmondson, 1968; Lehrer
et al., 1991), as is the case for the peptide antibiotics daptomycin
(Humphries et al., 2013) and colistin (Albur et al., 2014; Poirel
et al., 2017; Matuschek et al., 2018).

If AMP are to realise their potential as a future generation of
anti-infective therapeutics, AST methods will require approval
from regulatory authorities and buy-in from organisations such
as EUCAST, CLSI, and ISO (Kahlmeter, 2015; CLSI, 2018g). To
do this, any AST method for AMP or modification to an AST
method, at least for EUCAST, must be calibrated to the ISO broth
microdilution technique, often as part of the formal accreditation
process (Kahlmeter, 2015; ISO, 2019). Therefore, any AST
method must be accurate, robust, reproducible, have clinical
utility and validity and, ultimately, be amenable to automation.

ANTIMICROBIAL SUSCEPTIBILITY
TESTING OF AMP

It is clear that current AST methodologies are not “fit-for-
purpose” for determining the activity of AMP in vitro. When
considering a single antimicrobial and a single species of
microorganism, inter-laboratory variation and biological
variation (i.e., variation between strains) can still cause a broad
distribution of wild-type MIC values (Annis and Craig, 2005;
Hombach et al., 2016; Mouton et al., 2019). Therefore, efforts to
introduce standardised AST methods for AMP may turn out to
be an extremely onerous and difficult task (Jepson et al., 2016).
Previous attempts to standardise AST for AMP have met with
limited success. The method devised by the Hancock lab (http://
cmdr.ubc.ca/bobh/method/modified-mic-method-for-cationic-
antimicrobial-peptides/), was an adaptation of the CLSI broth
microdilution procedure (CLSI, 2018a), but has not been widely
adopted. The main differences between the two methods were
careful choice of labware (polypropylene or Sigmacote-coated
glass), diluent used (0.01% (v/v) acetic acid containing 0.2%
(w/v) bovine serum albumin) and determining an MIC50

(reduction in growth of ≥50%) in the Hancock method. A
comparison of the two methods revealed differences in MIC
in which the Hancock method generated MIC values that were
predominantly lower than the CLSI method (Giacometti et al.,
2000). In the two decades since the publication of this method,
interest in AMP has grown significantly, so consideration of AST
for AMP is perhaps overdue a review and update.

Membrane-active AMP are typically associated with higher
MIC values than those of conventional antibiotics, although this
is not always the case. Is this simply because the membrane
represents a very large target, especially for AMP that kill via the
carpet mechanism and even some pore-formers (Figure 1), or is

FIGURE 1 | Two different mechanisms of action proposed for

membrane-active AMPs. The lipid bilayer is represented by spheres, while the

AMPs are represented by green helical cartoons.

this because currently used test methods are not fit for purpose?
For example, Roversi et al. determined that for the cathelicidin
peptide PMAP-23 to kill E. coli ATCC25922 required 106-107

bound peptides per cell (1–10µM; 2.7–27 mg/L) (Roversi et al.,
2014). This compares to a typical susceptible MIC distribution of
ciprofloxacin vs. E. coli of 0.004–0.064 mg/L (0.012–0.193µM)
(R > 0.5 mg/L; ECOFF = 0.064 mg/L) (http://www.eucast.org)
and which specifically targets the enzymes DNA gyrase and
topoisomerase IV, thereby preventing DNA replication. PMAP-
23 kills bacteria by the “carpet” model (Orioni et al., 2009), so
this is likely to be more peptide molecules than required for pore-
forming peptides, or those with more specific mechanisms of
action (Figure 1).

A lack of antimicrobial activity of AMP, or attenuation
of activity, has been observed for AMP when assayed under
conditions in which existing, conventional antibiotic classes
are active. This has been ascribed to a variety of features,
including inactivation by physiological concentrations of
NaCl and divalent metal cations or serum/plasma. However,
manipulation of media conditions, including making them more
physiologically relevant, could potentially reverse the inhibitory
effects of compounds such as NaCl and proteins. For example,
addition of sodium bicarbonate was able to reverse the inhibitory
effects of physiological NaCl concentration against a number of
different AMP, including the human cathelicidin LL-37, human
β-defensin 2 (hBD-2) and Cryptidin-4, albeit not dermcidin
(Dorschner et al., 2006). Many of the factors for consideration
described here have also been investigated for their effects on the
activity of conventional antimicrobials with varying outcomes
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(Hajdu et al., 2010; Erdogan-Yildirim et al., 2011; Ersoy et al.,
2017; Oesterreicher et al., 2019).

It has been suggested that the discovery and preclinical
development of new antimicrobials should target pathogens
as they are found at sites of infection, rather than the
potentially different phenotype demonstrated in microbiological
growth media (Dorschner et al., 2006; Ersoy et al., 2017). One
reason for this is because standard AST does not take into
account the potential influence (positive or negative) of the
host cell environment on microbial susceptibility and resistance
(Sutherland and Nicolau, 2014; Haney et al., 2019). In order to
create a standardised AST procedure suitable for AMP there are
a number of factors that will need to be considered (Table 2).

Whilst many of the factors described in Table 2 may have an
impact on the design of AST for AMP, or the MIC of individual
AMP, combinations of changes to these factors must also be
considered (Oesterreicher et al., 2019).

Laboratory Materials
A number of publications have demonstrated that the results
of AST of many antimicrobials, not just AMP, can be affected
by the choice of laboratory plasticware for use with the broth
microdilution procedure and even the choice of tubes used for
preparing reagents (Singhal et al., 2018; Kavanagh et al., 2019).
This also applies to AST of AMP (Otvos and Cudic, 2007;
Wiegand et al., 2008; Kristensen et al., 2015).

Some peptide-based antibiotics and AMP need to be prepared
in alternative solvents, or with additives included in the
media/diluent to prevent binding to the surfaces of tubes
and plates. The lipoglycopeptides, including oritavancin and
telavancin, must be solubilised in dimethyl sulfoxide (DMSO)
or with the addition of a surfactant, 0.002% (v/v) polysorbate
80 (Tween 80), added to the water to prevent binding (Arhin
et al., 2008; Ross et al., 2014). When DMSO was used in place
of water as solvent for AST of the echinocandins (lipopeptide
antifungals) caspofungin andmicafungin, MIC values were lower
and MIC ranges were narrower (Alastruey-Izquierdo et al.,
2012) as was the case when water was supplemented with 50%
bovine serum albumin (Arendrup et al., 2011; Garcia-Effron
et al., 2011). In contrast, even though colistin (cyclic lipopeptide)
binds to plastics (Karvanen et al., 2017), the CLSI and EUCAST
recommend broth microdilution for AST of colistin, but without
added surfactant (Hindler andHumphries, 2013; CLSI-EUCAST,
2016), as polysorbate 80 can act synergistically with polymyxins
and reduce MICs (Brown and Winsley, 1968; Ezadi et al.,
2019), presumably due to interactions with lipopolysaccharides
in the Gram negative outer membrane (Correa et al., 2017).
Additionally, polysorbate has antibacterial properties of its own
(Brown et al., 1979; Figura et al., 2012). In the case of AMP,
the potential use of polysorbate is more complex as the addition
of polysorbate 20 improved antiviral activity of LL-37 and
magainin-2B amide, but reduced antibacterial activity (Ulaeto
et al., 2016), however the impact of polysorbate on AMP activity
has not been extensively studied. The effect of polysorbate
for the prevention of binding of AMP to laboratory plastics
would need to be carefully investigated in light of possible

synergistic activity as observed with the cationic, membrane-
active polymyxins. This is clearly an area that requires more
detailed investigation before any recommendation specific to
AMP susceptibility testing can be made. In the method described
by the Hancock laboratory (http://cmdr.ubc.ca/bobh/method/
modified-mic-method-for-cationic-antimicrobial-peptides/) for
AST of AMP, they recommend the use of a diluent of 0.01%
acetic acid containing 0.2% bovine serum albumin (BSA) to
reduce peptide binding to plastic surfaces (Wiegand et al., 2008),
although it is difficult to ascertain whether this recommendation
has been broadly adopted. Even when it comes to the choice of
filter for filter-sterilisation of AMP-containing solutions, caution
may be required, as cationic AMPmay bind to negatively charged
membranes, such as cellulose acetate (Wiegand et al., 2008).

The choice of laboratory plasticware is similarly problematic
as there are a number of publications that indicate that cationic
AMP bind to polypropylene, polystyrene and borosilicate glass,
the most commonly used materials used in the manufacture of
labware (Chico et al., 2003; Kristensen et al., 2015), although
the extent of binding may be similar regardless of the type of
material used (Sanchez-Gomez et al., 2008; Kristensen et al.,
2015). This situation also applies to some antibiotics (see above)
and even antifungals such as the echinocandins (Fothergill et al.,
2016; Arendrup et al., 2019). In the study of Kristensen and
co-workers, binding to the surface of the tubes (irrespective of
material) was saturable and relatively more peptide bound at
low concentrations, so a simple solution may be to keep peptide
concentrations as high as possible to minimise the percentage
lost to protein binding. Irrespective of this, this would lead to
an underestimation of AMP efficacy when trying to determine
MIC values at lower peptide concentrations. The use of low
protein-binding plasticware demonstrated reduced binding of
selected AMP when compared to polystyrene, polypropylene and
borosilicate glass (Kristensen et al., 2015), but they unfortunately
did not carry out AST in this study, so it is not currently possible
to assess whether the use of low protein-binding labware would
lead to a reduction in MIC for AMP without further studies and,
additionally, this is unlikely to provide a low cost solution.

The possibility of using different diluents, additives, or
changes to laboratory plasticware clearly warrants further
investigation, but perhaps the best recommendations are to be as
consistent as possible with your choices of materials and diluents
and keep AMP concentrations high where possible to minimise
the relative amount of peptide loss by binding.

Media Composition
Most AST using AMP is conducted using broth dilution
methods described by EUCAST or CLSI, or close variants
thereof. For bacteria, when conducting broth dilution AST,
both organisations recommend the use of Mueller-Hinton broth
(MHB) containing 10–12.5 mg/L Mg2+ and 20–25 mg/L Ca2+

(CLSI, 2018a; EUCAST, 2019a), whereas for testing of fungi, both
recommend RMPI-1640 medium (RPMI), but with different
concentrations of glucose; 2.0 g/L for CLSI test methods and
20.0 g/L for EUCAST test methods (CLSI, 2017a,c; EUCAST,
2017a,b). The reasons for the almost universal adoption of MHB
for antibacterial susceptibility testing are unclear, but MHB
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serves as a poor simulation of normal human body fluids (Ersoy
et al., 2017; Nizet, 2017). Antifungal susceptibility testing using
RPMI-1640 liquid medium (CLSI, 2017a,c; EUCAST, 2017a,b)
more closely simulates normal human body fluids, whereas CLSI
disk diffusion testing of fungi and yeasts again uses Mueller-
Hinton agar (MHA) (CLSI, 2010, 2018e). The effect of media
type on AST results has been examined in a number of studies
(Schwab et al., 1999; Sajjan et al., 2001; Dorschner et al., 2006;
Kumaraswamy et al., 2016; Ersoy et al., 2017; Tucker et al., 2018).
The use of MHB for AST of cationic AMP may be an unsuitable
medium due to the high content of anionic amino acids in
hydrolysed casein. MHB contains 17.5 g/L acid hydrolysate
of casein, with only 3 g/L beef extract and 1.5 g/L starch,
as well as additional Ca2+ (20–25 mg/L final concentration)
and Mg2+ (10–12.5 mg/L final concentration). Casein contains
25% anionic amino acids and these can interfere with cationic
AMP activity and cause them to precipitate (Turner et al.,
1998). Turner and co-workers compared the activity of LL-
37 and protegrin (PG-1) in conventional MHB and MHB that
had first been passed through an anion exchange column to
deplete the MHB of anionic compounds and demonstrated that
MICs against E. coli ML-35p, P. aeruginosa MR3007, Bacillus
subtilis and S. aureus 930918-3 were 3 - >20-fold higher in
standard MHB compared to MHB passed through an anion
exchange column (Turner et al., 1998). The choice of media
can make a significant impact on AMP efficacy. Incubation for
2 h with 5µM of the cationic AMP D4E1 resulted in 100%
killing of ∼1 × 105 cfu of S. aureus when incubated in RPMI-
1640 liquid medium buffered with 30mM HEPES, whereas the
use of MHB, CA-MHB, nutrient broth + 125mM NaCl or
Tryptone soya broth (TSB) resulted in less killing (68.6, 22.2,
56.1, and 5.3%, respectively). Similar trends were observed for
P. aeruginosa ATCC27853 and another cationic AMP (D2A21)
(Schwab et al., 1999). In the Schwab study, a range of different
buffers were also tested (PBS, Tris-NaCl, citrate-phosphate, saline
and phosphate), with a trend for less killing in the phosphate
buffers. Interestingly, osmolarity did not have any effect on the
activity of D2A21 against a range of bacterial pathogens isolated
from patients with cystic fibrosis (CF) (Schwab et al., 1999).
When determining the efficacy of the histatin derivative P-113,
Sajjan and co-workers observed little activity in CA-MHB, but
when this was diluted 20-fold the MIC was 3.1 mg/L, indicating
that one or more components of CA-MHB were inhibitory to
the antimicrobial activity of P-113 against P. aeruginosa. Use of
an alternative medium (LM broth) that attained similar growth
and growth rates to CA-MHB, but with reduced concentrations
of monovalent and divalent salts, retained the efficacy of P-113
to a range of bacterial CF pathogens, but did not affect the
efficacy of tobramycin, ceftazidime or imipenem, indicating the
detrimental effect of monovalent and/or divalent salts on AMP
efficacy (Sajjan et al., 2001).

The activity of azithromycin against different isolates of
Stenotrophomonas maltophilia was examined in cation-adjusted
MHB (CA-MHB) and RPMI-1640 liquid medium supplemented
with 10% Luria-Bertani broth (LB) (Kumaraswamy et al., 2016).
In this study MICs in MHB were 32–256 mg/L, whereas in
RPMI, MIC values were significantly lower (0.03–0.25 mg/L) and

azithromycin also synergised with the AMP LL-37 against MDR
P. aeruginosa and MDR Acinetobacter baumannii. When tested
in vivo, azithromycin also resulted in clearance of A. baumannii
and S. maltophilia, sensitising S. maltophilia to neutrophil killing
(Lin et al., 2015; Kumaraswamy et al., 2016). A series of 20 AMP
were isolated from a surface-displayed peptide library and tested
for activity in MHB via broth microdilution, but only 2 of the
peptides, and cecropin P1, demonstrated an MIC, but when the
MBC was determined in 10mM Tris, pH 7.4 + 25mM NaCl,
all AMP were bactericidal (MBC ≤128µM) against at least 1 of
4 Gram negative bacteria (Tucker et al., 2018). In other cases,
the use of diluted nutrient media results in improved efficacy of
AMP in AST. The MIC of the lactoferricin derivative HLopt2
against selected Candida spp. was >250 mg/L, but when tested
in BHI diluted 1:100 the minimum microbicidal concentrations
(MMC) were 2–31 mg/L. Similarly, the MIC in CA-MH vs. P.
aeruginosa and S. aureus was much higher (125 and 63 mg/L,
respectively) than the MMC when tested in 1:100-diluted BHI
(4 and 2 mg/L, respectively) (Ptaszynska et al., 2019). In some
cases, the choice of media type can have detrimental effects on
AMP activity. For example, the semi-synthetic AMP Lin-SB056-
1 was bactericidal against 6 P. aeruginosa in 1% TSB (MBC
= 1.56–3.12 mg/L), whereas activity was lost in 80% artificial
sputum medium, closely resembling the CF lung, except in the
presence of additional EDTA (ethylenediaminetetraacetic acid),
where bactericidal activity was restored (Maisetta et al., 2017).

The use of a more physiologically representative cell culture
medium (RPMI-1640) may be better suited for AST of AMP, and
is certainly more representative of conditions in vivo than CA-
MHB or other nutrient-rich microbiological growth media and
that the presence of higher concentrations of anionic substances
adversely affects the efficacy of cationic AMP. In a caveat to this,
it has recently been observed that the composition of a number
of cell culture media, including RPMI-1640, do not simulate
bodily fluids particularly closely (McKee and Komarova, 2017),
so perhaps further work is required to develop media that more
closely simulates mammalian bodily fluids.

Solubility and Aggregation
Given that most AMP have a net positive charge and hydrophilic
regions, aqueous solubility at concentrations required for AST
are not problematic, although some AMP aggregate and become
insoluble at relatively high concentrations in certain media and
in the presence of selected anions. This can result in a loss
of activity, stability and/or increased cytotoxicity (Frokjaer and
Otzen, 2005; Ratanji et al., 2014; Haney et al., 2017). Hydrophobic
regions in peptides are known to self-associate and drive the
formation of aggregates (Kim and Hecht, 2006), so modifications
to AMP design may reduce/prevent aggregation (Haney et al.,
2017). For example, the AMP Temporin L forms aggregates
in water and due to an extended hydrophobic region, but
substitution of glutamine to lysine at position 3 significantly
reduced aggregation in water and improved its antiendotoxin
properties (Srivastava and Ghosh, 2013), whereas substitution
with arginine at the same position improved activity against
P. aeruginosa (and is also likely to attenuate aggregation)
(Mangoni et al., 2011). For example, significant aggregation of the
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immunomodulatory AMP IDR-1018 occurred in the presence of
phosphate, benzoate, nitrate, and citrate, but less aggregation was
observed in the presence of acetate, chloride, water and, perhaps
significantly, bicarbonate (see later). IDR-1018 also exhibited
aggregation in 10% RPMI and 1% MEM tissue culture media
and also co-precipitated with serum proteins in a concentration-
dependent manner, in many cases adversely affected the desired
immunomodulatory properties of the peptide and increased
cytotoxicity (Hartlieb et al., 2017). Protegrin-4 (PG-4) also
aggregates in the presence of phosphate (>2.0 mg/ml PG-4 in
50mM sodium phosphate buffer, pH 7.4), forming amyloid-like
fibrils and retained antimicrobial activity against B. subtilis (Gour
et al., 2019). LL-37 exists in equilibrium between monomers and
oligomers in solution at low concentrations and oligomerizes
in the presence of zwitterionic membranes (Johansson et al.,
1998; Oren et al., 1999). Dermaseptin S9 formed aggregates
and amyloid-like fibrils and the peptide binds to membranes in
an aggregated state (Caillon et al., 2013). Human α-defensin 6
(HD6) is a 32-residue cysteine-rich peptide that lacks the broad-
spectrum antimicrobial activity observed for other human α-
defensins. Strikingly, HD6 oligomerises to form “nanonets,” due
to the disposition of hydrophobic residues in the HD6 primary
structure, that entrap microbes and prevent invasive pathogens
such as Salmonella enterica serovar Typhimurium and Listeria
monocytogenes from entering host cells in the gastrointestinal
tract (Chu et al., 2012; Chairatana and Nolan, 2017). An
in silico analysis of the aggregative potential of AMP and non-
antimicrobial peptides revealed that AMP demonstrate very low
in vitro aggregation propensity, but high in vivo aggregation
propensity. Non-antimicrobial peptides can be divided in two
main groups, presenting either high or low values for both in
vivo and in vitro aggregation. These results suggest that most
AMP demonstrate minimal aggregation in aqueous solution, but
promote aggregation in a more hydrophobic environment (i.e.,
the bacteria cell membrane) (Torrent et al., 2011), something
borne out in many experimental studies. Thus, when conducting
AST with AMP, consideration of the solute/s used can be
important and, in most cases, it would be advantageous to use
aqueous solutions where possible for formulation of drugs for
human or animal use, to minimise aggregation and to carefully
assess peptide solubility in the media used for AST.

Biological Matrices
When testing the efficacy of any antimicrobial, logic dictates that
it would be practical to test efficacy in the biological matrix at
the site of infection, e.g., blood, sputum, urine, etc., but this is
unlikely to be practical for routine screening. However, prior to
the initiation of in vivo efficacy studies it would be sensible to
determine the efficacy of AMP in relevant biological matrices.
Proteolytic degradation of AMP is often considered a major
weakness limiting their potential therapeutic application, as is
binding to biological matrices, including serum/plasma proteins
(Wang et al., 1998; Sivertsen et al., 2014), nucleic acids (Park
et al., 1998; Hsu et al., 2005), ribosomes (Mardirossian et al., 2014)
other proteins (Tu et al., 2011) bacterial cell walls (Malanovic
and Lohner, 2016) and lipopolysaccharide (Piers et al., 1994; Sun
and Shang, 2015). Many AMP can also bind to host cells as part

of their innate immune system functions (van der Does et al.,
2019) that are present in most biological matrices. For example,
LL-37 has direct interactions with ≥16 proteins/receptors, that
subsequently interact with >1000 secondary effector proteins
and when used to stimulate monocytes >900 gene expression
changes were observed (Hancock et al., 2016). It is, therefore, not
unreasonable to assume that many AMP will interact with host
cells and that the effects of these interactions may not necessarily
be desirable. This may not need to be assessed when considering
in vitro AST, but would need consideration, for example, at later
stages of the drug development process. Significant efforts have
been made to improve AMP activity in blood, plasma and/or
serum (Hamamoto et al., 2002; Knappe et al., 2010; Nguyen
et al., 2010; Chu et al., 2013; Dong et al., 2018; Kumar et al.,
2018).When considering AMP activity in blood, serum or plasma
the source of the blood and the method of collection must
be taken into account. Most blood samples are collected in
tubes (vacutainers) containing an anticoagulant to prevent blood
clotting and it is known that the presence of an anticoagulant
can affect AMP activity. For example, EDTA and citrate are
known to enhance the efficacy of some AMP as they can chelate
divalent cations which are inhibitory to the activity of a number
of AMP (Wei and Bobek, 2005;Walkenhorst et al., 2014; Maisetta
et al., 2017; Umerska et al., 2018; Grassi et al., 2019) and EDTA
and heparin can inactivate proteases found in blood, including
metalloproteases (EDTA), thrombin and Factor Xa (heparin) that
may prevent AMP hydrolysis (Bowen and Remaley, 2014; Bottger
et al., 2017; Rawlings et al., 2018).

The stability of proline-rich AMP (apidaecin and oncocin
derivatives) was examined in murine blood, serum and plasma
and, perhaps surprisingly, the general trend was for greatest
stability in whole blood, followed by plasma and least stable
in serum, albeit only over a 1 h incubation period, and that
substitution of L-arginine residues for D-arginine or ornithine
improved stability in blood, serum and plasma (Bottger et al.,
2017). In another study, pre-incubation of a panel of AMP
with red blood cells (RBC) (1 × 109 RBC/ml) before exposure
to the pathogen significantly increased the MIC of most AMP,
with a similar inhibitory effect caused by serum, even though
the affinity of AMP for bacteria was much greater than for
RBC. Thus, serum binding and binding to host cells for AMP
intended for systemic delivery requires consideration and can be
adapted to AST testing in the presence of serum or host cells
(Starr et al., 2016). However, when the AMP DNS-PMAP23 or
esculentin-1a(1-21)NH2 was added directly to a mixture of RBC
and E. coli, no significant inhibition of antibacterial activity took
place (Savini et al., 2017), indicating that experimental set-up,
and by extension the nature of the infection being potentially
treated, is an important consideration. In another study, in the
absence of host cells, WLBU2 (12.5µM) retained activity in the
presence of 98% human serum, whereas LL-37 was not active
at concentrations up to 100µM (Deslouches et al., 2005) and
therefore the effect of biological matrices on AMP activity may
be peptide-specific.

The efficacy of the histatin-derived AMP, P-113, was tested in
diluted sputum from CF patients and no activity vs. P. aeruginosa
was observed. When the stability of P-113 was determined in
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sputum, half-lives of 2.8–58.5min were determined, probably
preventing activity in sputum. By switching the composition of
P-113 from all L-enantiomer amino acids to all D-enantiomer
amino acids (P-113D), the activity against P. aeruginosa was
comparable to the L-enantiomer peptide, but P-113D was stable
in CF sputum for 7 d. When the efficacy of P-113D was tested in
CF sputum, an additional 1 log kill of P. aeruginosa was attained
in 1 h and efficacy was enhanced further by pre-treatment of the
sputum with recombinant human deoxyribonuclease (rhDNase;
Pulmozyme R©), a therapeutic used in some CF patients (Sajjan
et al., 2001). Interestingly, the activity of an all L-isomer of the
AMP temporin lost activity in faeces within 30min, whereas the
all D-isomer version retained activity for 30min, but activity
was lost after 24 h (Oh et al., 2000). Thus, testing of AMP in
biological matrices can be factored into AST and the earlier this is
conducted will have a bearing on lead selection for AMP intended
for specific infections.

pH and Ionic Strength
More than 30 AMP are known to have pH-dependent activity,
including LL-37, histatins, psoriasin, and lactoferrin, with greater
activity predominantly observed at lower pH values, especially
for histidine-containing AMP such as clavanins (Lee et al., 1997;
Malik et al., 2016; Alvares et al., 2017). Changes in pH can affect
ionic interactions between membranes and AMP by changing
the protonation states of functional groups on the membrane
and/or AMP, as well as effects on the ionic strength of the
solution (Walkenhorst, 2016). Cationic AMP are normally more
efficacious at neutral and lower pH due to the loss of net
positive charge at alkaline pH (Malik et al., 2016). For example,
the efficacy of LL-37 against C. albicans was greater at pH 4.5
(81% death) when compared to pH 5.5 (79% death) and pH
7.2 (40% death) (Lopez-Garcia et al., 2005). Localised pH can
significantly impact the interaction of AMP with membranes and
their subsequent ability to perturb the membrane (Malik et al.,
2016; Alvares et al., 2017). This can reflect their predominant
site of action, e.g., skin. The ionic strength of the buffer can also
influence efficacy, with reduced efficacy often observed at higher
ionic strengths (or an over-estimation of activity at low ionic
strengths) (Sanchez-Gomez et al., 2008;Walkenhorst et al., 2013).
Additionally, the choice of buffer can affect AMP efficacy, with
greater efficacy observed inMOPS compared to phosphate buffer
at similar pH and ionic strength (Walkenhorst, 2016). However,
there are a number of exceptions to this, that may be peptide-
dependent or organism dependent. Walkenhorst and co-workers
observed the expected trend of enhanced activity at lower pH
values for a family of peptides versus Gram negative bacteria and
C. albicans, but the opposite effect was observed against S. aureus,
with enhanced efficacy at higher pH values and hypothesized that
this was due to changes to teichoic acids in the S. aureus cell
wall, making the peptidoglycan layer less negatively charged at
neutral and acidic pH (Walkenhorst et al., 2013). Interestingly, a
linear form of esculentin 2EM caused greater cell lysis at pH 8.0
compared to pH 6.0 and this correlated with increased α-helicity
of the peptide (Malik et al., 2016), indicating that the effect of
pH on AMP activity cannot be readily predicted and needs to be
determined where necessary.

Despite the effect of pH on AMP activity (which in many
cases has not been investigated), AST of AMP is predominantly
carried out at neutral pH and the effect of pH modulation
is not considered. When considering the relevance of pH on
AST of AMP, the main consideration should be of the pH
at the site of infection and during delivery to the site of
infection. Many assume that this is close to neutral, as an often
cited physiological pH is 7.4, although pH can range from
7.0 to 9.0 in blood (Kellum, 2000). However, physiological pH
values cover a relatively broad range, including pH 5.0 in the
macrophage phagosome a site where intracellular pathogens
such as K. pneumoniae, Salmonella typhimurium, E. coli and
Mycobacterium tuberculosis can reside (Underhill and Ozinsky,
2002) and between 4 and 7 on the skin surface, with a most
frequently determined pH range of 4.0–5.9 (Lambers et al., 2006),
although the pH of chronic wounds can be alkaline (pH 7.15–
8.9) (Gethin, 2007). Skin infection can cause an elevation in skin
pH, as can other conditions, such as diabetes mellitus, that can
lead to increased risk of infection. Additionally, wound healing
is associated with less acidic pH which can influence microbial
colonisation and infection (Rippke et al., 2018). In the urinary
tract the pH of normal urine is slightly acidic (pH 6–7.5), but
a range as wide as 4.0–8.0 is normal. During infection this can
rise to 9.0 (e.g., “urea-splitting” pathogens such as Proteus spp.,
Klebsiella pneumoniae, or Ureaplasma urealyticum) and is a clear
indicator of a UTI (Bono and Reygaert, 2019). Conventional AST
is conducted at pH 7.2–7.4 for bacteria and pH 7 for fungi which
may be appropriate for many infections, but consideration of the
pH (and the buffer used to attain this) for testing should be taken
into account when investigating target pathogens or infections at
sites with different pH.

Oxygen (Hyper-, Norm-, and Hypoxia)
Antimicrobial susceptibility testing is normally conducted under
conditions of normoxia, yet in tissues the amount of oxygen
range between<1 and 11% oxygen, whereas in vitro experiments
are normally performed in 19.95% oxygen, an artificially high
concentration relative to tissue concentrations. For example, in
normal air the oxygen partial pressure is 160 mmHg, whereas
in alveoli, this is reduced to 110 mmHg, in the brain 23–48
mmHg and in the colon, only 3–4 mmHg (Carreau et al., 2011).
Areas of hypoxia are features of sites of bacterial infection,
healing wounds and other diseased tissues (Murdoch et al., 2005)
and hypoxia can induce the expression of hBD-2 (Nickel et al.,
2012). Thus, physiological oxygen concentrations vary widely,
yet are largely not considered in the context of antimicrobial
efficacy, unless specifically considering activity against anaerobes
or microaerophiles. Given the membrane disruption mechanism
of action of many AMP, should oxygen be a factor affecting their
activity? The plectasin-derived AMP, NZ2114 and MP1102, were
bactericidal by membrane lysis vs. Clostridium perfringens under
anaerobic conditions (>3 log kill in <60min) (Zheng et al.,
2017), whereas LL-37 and hBD-3 (< 5 mg/L) were bactericidal
against C. difficile under anaerobic conditions (Nuding et al.,
2014). The activity of human defensins against anaerobic bacteria
revealed that human α-defensin 5 and hBD-1 were minimally
active against a panel of 25 strict anaerobes, hBD-2 demonstrated
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relatively weak activity against most strict anaerobes, whereas
hBD-3 was active against 18 of 25 strict anaerobes tested
(Nuding et al., 2009). Interestingly, human α-defensin 6 (HD-
6), the second most abundant AMP produced by Paneth
cells in the small intestine (Wehkamp et al., 2005), does not
demonstrate direct antimicrobial activity under standard aerobic
conditions, but demonstrated direct killing of Bifidobacterium
adolescentis, Lactobacillus acidophilus, and Bif. breve, Bif. longum
and Streptococcus salivarius subsp. thermophilus under reducing
conditions (mimicking anaerobiosis) (Schroeder et al., 2015). Oh
and co-workers tested 16 CAMEL peptides (cecropin-melittin
hybrids) against a selection of anaerobes (Peptostreptococcus spp.,
C. difficile, Bacteroides fragilis, Prevotella, spp., Fusobacterium
nucleatum and Propionibacterium spp.; n = 60) under anaerobic
conditions and all were active (MIC90 = 1–32 mg/L) (Oh et al.,
2000). Piscidins and ixosin are AMP that contain the copper- and
nickel-binding ATCUNmotif. Bactericidal activity under aerobic
conditions is enhanced when these AMP bind copper, but under
anaerobic conditions two piscidins (p1 and p3) and ixosin retain
activity, but this does not depend on the presence of copper ions
(Libardo et al., 2016; Oludiran et al., 2019). Thus, it would appear
that antimicrobial activity of AMP under anaerobic conditions is
dependent on the AMP used and for the purposes of AMP vs.
anaerobes would need to be assessed on a case-by-case basis.

Proteolysis
Susceptibility to proteolysis is often viewed as one of the most
significant limitations when trying to develop peptide drugs,
including AMP (Vlieghe et al., 2010; Lecaille et al., 2016; Starr
and Wimley, 2017). When conducting AST with AMP, protease
production by the pathogen of interest is an obvious potential
cause of reduction in/or loss of activity (Stumpe et al., 1998;
Schmidtchen et al., 2002; Nesuta et al., 2017; Rapala-Kozik et al.,
2018). Additionally, if testing were to be carried out in biological
matrices other than growth media (e.g., blood, saliva etc.), then
proteolysis by relevant host proteases could adversely affect AMP
activity (Knappe et al., 2010; Lecaille et al., 2016; Starr et al.,
2016; Bottger et al., 2017; Starr andWimley, 2017). To determine
whether proteolysis could occur during AST, protease inhibitors
could be included in the system (Shin et al., 2010). However,
this is not necessarily as simple as it appears. A number of
protease inhibitors, including EDTA and citrate, can enhance
AMP activity by chelation of metal ions, or by other unknown
mechanisms, and this activity would need to be determined prior
to their use in AST (Wei and Bobek, 2005; Walkenhorst et al.,
2014; Maisetta et al., 2017; Umerska et al., 2018; Grassi et al.,
2019).

Bicarbonate
Bicarbonate (NaHCO3) is relatively common in mammalian
tissues (NaHCO3; 24.90 ± 1.79mM in human blood Wishart
et al., 2018) and the bicarbonate buffer system, sodium
bicarbonate in balance with carbonic acid, helps to maintain
the physiological pH, including blood, interstitial fluid and
the upper gastro-intestinal tract (Boron and Boulpaep, 2005).
However, bicarbonate warrants additional consideration beyond
its capacity for maintaining pH homeostasis. Despite its

importance physiologically, it is not routinely considered when
conducting AST or in the maintenance of pH during AST.
Even though AST of fungi uses RPMI-1640 liquid medium, a
mammalian cell culture medium, this is buffered to pH 7.0
with MOPS (CLSI, 2017a,c), rather than sodium bicarbonate
as it would be when culturing mammalian cells and using a
CO2 incubator (5% CO2). Sodium bicarbonate has antibacterial,
antifungal and antibiofilm properties of its own, but only at
supra-physiological concentrations (≥50mM) (Corral et al.,
1988; Xie et al., 2010; Letscher-Bru et al., 2013; Dobay et al., 2018;
Farha et al., 2018). Bicarbonate acts as a selective dissipater of the
trans-membrane pH gradient, a component of the proton motive
force (along with the membrane potential) and can enhance
the activity of AMP, including LL-37, α-defensin, indolicidin,
protegrin and bactenecin and selected antibiotics, including
aminoglycosides, macrolides and selected fluoroquinolones. The
activity of AMP was enhanced as both the AMP and bicarbonate
perturb bacterial membrane potential and in the case of
antibiotics, enhancement of activity was predominantly limited
to those whose uptake is driven by the membrane potential
(Farha et al., 2018). Interestingly, tobramycin (aminoglycoside)
activity against isolates of P. aeruginosa was enhanced in
the presence of bicarbonate against planktonic cells, but the
combination promoted biofilm growth (Kaushik et al., 2016).
The relevance of bicarbonate addition during AST of selected
antibiotics against bacteria has been investigated. When CA-MH
broth was supplemented with physiological levels of bicarbonate,
this improved the predictive value of AST for treatment of
in vivo infections for a number of antibiotic and pathogen
combinations, potentially due to structural changes to bacteria
and changes in gene expression (Ersoy et al., 2017). When
analysing the effect of bicarbonate on the sensitivity of isolates
of MRSA to anti-staphylococcal β-lactams, two phenotypes
became apparent; those that became susceptible on bicarbonate
supplementation and those that were unaffected. In the isolates
that became susceptible, bicarbonate supplementation caused
reduced expression of mecA and sarA, which led to decreased
production of penicillin-binding protein 2a and correlated with
sensitivity to β-lactams in a rabbit infective endocarditis model
comparable to that of MSSA isolates. Additionally, bicarbonate
responsive isolates demonstrated lower survival when the β-
lactam was combined with LL-37 in vitro and this may have
enhanced the efficacy seen in vivo (Ersoy et al., 2019).

Dorschner and colleagues observed inhibition of S. aureus
growth by LL-37 was greater in MEM, a cell culture medium,
when compared with Tryptone Soy Broth (a nutrient-rich
bacterial growth medium) containing the same concentrations
of NaCl and FBS (Dorschner et al., 2006). By analysis of
individual components of MEM, they determined that it
was the presence of physiological concentrations of sodium
bicarbonate that enhanced membrane-permeabilising activity
of the following AMP: LL-37, mCRAMP (murine cathelicidin-
related antimicrobial peptide), PR-39 (a porcine cathelicidin),
hBD-2 (human β-defensin 2), but not dermcidin (an anionic
AMP from human skin and sweat) and not in a pH-dependent
manner. The presence of bicarbonate; may also have ameliorated
the inhibitory effect of the 150mM NaCl in the medium used,

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11 July 2020 | Volume 10 | Article 326

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Mercer et al. Antimicrobial Susceptibility Testing of AMP

as NaCl concentrations of >50mM can inhibit the activity of
many AMP (Goldman et al., 1997; Travis et al., 2000). Culturing
E. coli O29 in the presence of NaHCO3 affected the expression
of a number of virulence-related genes that could increase
susceptibility to AMP (Dorschner et al., 2006). The addition of
25mM bicarbonate enhanced the activity of the AMP tritrpticin
against the protozoan Trichomonas vaginalis (Infante et al.,
2011). Conversely, selected S. aureus small-colony variants (SCV)
were less susceptible to LL-37 when incubated in the presence
of 50mM NaHCO3; (∼2 x physiological concentration) (Zhang
et al., 2018), although the effect of physiological bicarbonate
concentrations was not examined. Small colony variants (SCV)
are slow-growing sub-populations of bacteria with altered
metabolism and reduced antibiotic susceptibility which, in the
case of S. aureus, can cause persisting and recurrent infections
(Baumert et al., 2002). S. aureus SCV are already known to be
less susceptible to a number of AMP when compared to wild-
type cells (Koo et al., 1996; Sadowska et al., 2002; Samuelsen
et al., 2005), although this effect was not observed when a
cationic antimicrobial polypeptide was tested against S. aureus
SCV (Mercer et al., 2017). It would therefore be relevant to
examine the effects of media supplementation with physiological
concentrations of bicarbonate (25mM; 2.1 g/L) when conducting
AST with AMP to generate results possibly more predictive
of efficacy in vivo. Such results must be viewed with caution,
however, in light of the biofilm promoting effects in combination
with tobramycin (Kaushik et al., 2016).

Temperature
The effect of temperature on the activity of AMP during
AST has not been widely investigated, as most AMP are
intended for use against infectious diseases AST is predominantly
conducted at body temperature (∼37◦C) or at temperatures
recommended in CLSI or EUCAST guidelines (30–37◦C).
Thus, it seems most relevant to conduct AST at physiological
temperatures. At low temperatures membrane bilayers undergo
a reversible change of state from a fluid (disordered, liquid
crystalline) to a non-fluid (ordered, gel) array of the fatty acyl
chains (de Mendoza, 2014) and this increase in membrane
rigidity can lead to reduced AMP efficacy/resistance (Cole and
Nizet, 2016; Joo et al., 2016). Interestingly, the P. aeruginosa
quorum-sensing molecule 2-n-heptyl-4-hydroxyquinoline N-
oxide (HQNO) increases membrane fluidity in S. aureus, so it
would be intriguing to determine whether this increases the
sensitivity of S. aureus to AMP (Orazi et al., 2019). HQNO can
also induce S. aureus to adopt the SCV phenotype (Hoffman et al.,
2006) and thismay also affect AMP activity. The effect of high and
low temperatures on storage or preparation of AMP, as well as
activity, has received consideration in a number of studies (Wei
et al., 2007; Zhang et al., 2011; Ji et al., 2014; Lee et al., 2014; Jiao
et al., 2019). For example, many AMP demonstrate stability at
temperatures below 100◦C. For example, the thermal stability of
8 AMP (Cap18, Cap11, Cap-11-1-18m2, Cecropin B, Cecropin
P1, Indolicidin and Sub5) was assessed by heating them to 70
or 90◦C for up to 30min before conducting AST. All AMP were
stable following heating, with only Sub5 demonstrating an MIC
increase (4 to 8 mg/L) after being heated to 70◦C for 30min, but

not when heated to 90◦C (Ebbensgaard et al., 2015). However,
this is not the case for all AMP. The AMP epinecidin-1 was not
stable at elevated temperatures and demonstrated a 32 - >64-
fold increase in MIC against S. aureus following incubation at
60–100◦C for 5min (Huang et al., 2017). As is well-documented,
AMP have been isolated from almost all life-forms, including
arctic and Antarctic fish. Moronecidin (isolated from the hybrid
striped bass) and 2 derivatives were assessed for efficacy against
Psychrobacter spp. PAMC25501 at 5–15◦C and E. coli DH5α at
15–37◦C and no differences in MIC were observed at different
temperatures (Shin et al., 2017). The activity of the piscidin-
like AMP, chionodracine (isolated from the icefish Chiondraco
hamatus) was more active at 25 than 37◦C against E. coli (MIC
20 and 5 mg/L, respectively) and B. cereus (MIC 10 and 5 mg/L,
respectively) (Buonocore et al., 2012), although this may reflect
adaptation to the low temperature environment from which they
were isolated.

Metal Ions
Transition metal ions influence the activity of AMP in a variety
of ways. In some cases, the activity of AMP are dependent on
the presence of metal ions (Paulmann et al., 2012; Melino et al.,
2014; Alexander et al., 2018; Jezowska-Bojczuk and Stokowa-
Soltys, 2018; Agbale et al., 2019), whereas in others the presence
of metal ions can cause reduction, or even complete abrogation,
of activity (Friedrich et al., 1999; Deslouches et al., 2005). In most
circumstances, the effect of metal ions must be considered on a
case-by-case basis as different ions will produce a distinct effect.
For example, LL-37 is inactive in the presence of ≥3µMMgCl2,
whereas the de novo designed AMP, WLBU2, remains active at
the same concentration. LL-37 is also less potent in the presence
of ≥1µM CaCl2, whereas the MIC of WLBU2 increases by ∼4-
fold in the presence of ≥6µM CaCl2, (Deslouches et al., 2005).
Activity of the cecropin-melittin hybrid peptide variants was≥4-
fold increased in the presence of 3–5mM MgCl2 (representing
the serum concentration of divalent cations), although one
variant is insensitive to the effects of 3mM MgCl2, but not to
5mMMgCl2 (Friedrich et al., 1999).

Susceptibility testing of K. pneumoniae against tetracycline
in tissue culture medium predicts resistance, whereas testing
in MHB and LPM pH 5.5 media predicts susceptibility. Mice
infected with K. pneumoniae and treated with tetracycline
survive infection mirroring the results obtained in pH 5.5
media, conditions that resemble best the environment in which
tetracycline interacts with this pathogen since K. pneumoniae
resides within macrophage phagosomes (Ersoy et al., 2017).
This example highlights the importance of mimicking the
environment of phagosomes when dealing with intracellular
pathogens. Besides K. pneumoniae, other important pathogens
that thrive in an intracellular environment include Salmonella
spp. (de Jong et al., 2012; Helaine et al., 2014), Mycobacterium
tuberculosis (Pieters, 2008) and Legionella pneumophila (Escoll
et al., 2013). Streptococcus pyogenes is also suspected of sharing
this lifestyle (Hertzen et al., 2012).

After phagosomes internalize their cargo, acidification of
the interior takes place in a rapid process. For example, the
phagocytic compartment of a bone marrow-derived macrophage
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TABLE 3 | Concentration of copper and zinc ions within phagolysosomes of

peritoneal macrophages during infection by three Mycobacterium spp.

Element Time M. smegmatis M. avium M. tuberculosis

Cu 1h 9.9 ± 5.5µM 28.3 ± 11.4µM 426 ± 393µM

24h 24.8 ± 0.65µM 17.3 ± 10.3µM 24.7 ± 9.5µM

Zn 1h 70.5 ± 37.3µM 134.6 ± 38.8µM 37.8 ± 25.2µM

24h 260 ± 117µM 120.8 ± 31.1µM 459 ± 271µM

Concentrations were determined using hard x-ray microprobe with sub-optical resolution

(Wagner et al., 2005).

phagosome following internalization of an immunoglobulin G-
coated particle reaches a pH of 5.0 or below within 10–12min
of internalization of an immunoglobulin G (IgG)-coated particle
(Yates et al., 2005). The acidic, hydrolytically competent
environment of the phagolysosome in combination with other
antimicrobial effectors typically lead to the death and digestion
of most non-pathogenic microbes. It is in this environment that
the intracellular pathogens mentioned above survive and thrive,
and more importantly, it is where the interaction between an
antimicrobial agent and the pathogen will take place. Besides
the low pH, other antimicrobial effectors fill the phagocytic
compartment, including metal ions.

Metal ions such as copper and zinc have been observed
at high concentrations in the phagocytic milieu as a response
to certain types of infections. Wagner et al. using a hard x-
ray microprobe with suboptical resolution reported that upon
infection by the human pathogensM. tuberculosis andM. avium
or with avirulent M. smegmatis the concentration of copper and
zinc ions within phagolysosomes of peritoneal macrophages can
be as high as 426 ± 393µM and 459 ± 271µM, respectively
(Table 3) (Wagner et al., 2005). Additional indirect evidence
for the presence of copper ions in the intracellular battlefield
against pathogens include the observation that in IFN-γ and LPS-
activated macrophages the levels of the Ctr1 Cu importer are
elevated (White et al., 2009). Moreover, the Cu pump ATP7A
is overexpressed and localized to the phagolysosome, suggesting
accumulation of Cu within this compartment. Interestingly,
macrophage exposure to the Cu chelator tetrathiomolybdate
(TTM) results in increased survival of S. typhimurium (Achard
et al., 2012). Besides the quantitative determination of Zn by
Wagner and co-workers, there is additional evidence for a role
of host Zn in the direct overload killing of invading pathogens
(Djoko et al., 2015). Using a Zn-responsive fluorescent probe, it
was observed that infection of human macrophages with either
E. coli or M. tuberculosis leads to an increase in the intracellular
levels of Zn (Botella et al., 2011). Consistent with the hypothesis
that Zn directly kills phagocytosed pathogens, it was observed
that bacterial mutants defective in Zn export (zntA and ctpC
in E. coli and M. tuberculosis, respectively) showed decrease
survival within these human macrophages. Similar observations
of increased Zn concentrations within phagocytic cells have
been observed upon infection with Histoplasma capsulatum
(Subramanian Vignesh et al., 2013), and Streptococcus pyogenes
(Ong et al., 2015). As observed for E. coli and M. tuberculosis,

S. pyogenes mutants defective in Zn efflux had a lower survival
within the hosts.

There is also evidence for removal of Zn ions from
phagosomes during infections and excellent reviews on the
topic exist. In this work, we wanted to limit ourselves to those
environments in which the concentration of Zn ions increased.

Besides the phagocytic environment, there are other sites
of microbial infection in which copper and zinc ions are
found at concentrations in which they can affect the activity of
antimicrobial agents. For instance, during urinary tract infection
by the pathogens Proteus mirabilis and K. pneumoniae, copper
is found at micromolar concentration as a host response to
the infection (Hyre et al., 2017). Additional in vivo studies
demonstrated that Cu-deficient mice are more susceptible to
uropathogenic E. coli infection, indicating that copper release
into urine is an important innate defence mechanism. An
additional human fluid that containsmetal ions at concentrations
high enough to affect the antimicrobial activity of antibiotics
is sweat (Troy et al., 2007). Copper concentrations range from
4.6 ± 0.4µM to 20 ± 10µM, whereas zinc concentrations
can be as high as 630µM. Copper levels in human saliva
also have been reported to range from 1.6µM to 7.5µM
(Dreizen et al., 1952; Borello, 1976). Human saliva also contains
zinc ions with reports indicating a maximum concentration
of 6.7mM (Sejdini et al., 2018). Clearly, copper and zinc
ion interactions with antimicrobial agents is plausible outside
phagocytic compartments.

Antibiotics, with their richness of functional groups, are
poised for metal ion coordination. The result of this interaction
can range from antagonism to synergism, although the former is
the most common outcome. Back in 1946, Eisner et al. reported
the inactivation of penicillin by zinc salts (sulphate, acetate,
chloride, and oxide) (Eisner and Porzecanski, 1946). Amoxicillin
and ampicillin are also readily degraded by zinc ions (Navarro
et al., 2003). Tetracycline and several of its derivatives avidly bind
copper and zinc ions to form 2:1 complexes (Doluisio andMartin,
1963; Brion et al., 1985). Indeed, the formation of tetracycline-
zinc complexes is suspected to affect the metabolism of the drug
and adversely impact its antibiotic activity (Doluisio and Martin,
1963; Brion et al., 1985). Other antibiotics are known to bind
metal ions (e.g., quinolones Seedher and Agarwal, 2010; Uivarosi,
2013 and aminoglycosides Lesniak et al., 2003). Interestingly,
many chelates of quinolones show equal or enhanced activity
compared to that of the parent antibiotic. The reason for
the superior activity of the quinolone-metal complexes is not
clear. Overall, the impact of metal binding on the activity of
many antibiotics is undeniable and deserves attention during
susceptibility assays.

The effect on the antimicrobial activity of AMP of the presence
of Cu and Zn ions in the assay media is difficult to predict.
Typically, compounds that act as simple metal chelators will see
a decrease in their antimicrobial activity as the concentration of
chelated ions increase. An example of an antimicrobial peptide
that acts as a metal chelator is the tick peptide microplusin, which
specifically chelates Cu2+ ions (Figure 2). The opposite effect,
that is the increase in activity in the presence of these metal
ions, also takes place although it has received less attention. In
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FIGURE 2 | Structure of microplusin solved by NMR solution spectroscopy

(PDB ID: 2KNJ). For illustration purposes the Cu2+ ion has been added,

shown as brown sphere, to its putative binding site. The four labelled residues,

shown as red liquorice, are highly likely to bind Cu2+ ion due to their proximity

to the ion. The other residues, shown as blue liquorice, are also capable of

binding Cu ion, as suggested by the NMR experiment (Silva et al., 2009).

the case of copper ions, several antimicrobial peptides have been
recently reported to utilize this ion to enhance its bactericidal
activity (Libardo et al., 2014, 2015, 2016, 2017; Hayden et al.,
2015; Alexander et al., 2017). One of the earliest examples
of the AMP requirement for Zn2+ is that of bacitracin, a
mixture of chemically related dodecapeptides isolated from
Bacillus subtilis and Bacillus licheniformis. Bacitracin, a drug and
food additive, has a multimodal mechanism of action (Storm
and Strominger, 1973; Storm, 1974; Karala and Ruddock, 2010;
Dickerhof et al., 2011). There is consensus in that the main mode
of action involves the inhibition of bacterial cell-wall biosynthesis
by targeting extracellular, membrane-associated pyrophosphate
groups. Remarkably, recognition of the pyrophosphate group of
the lipid target is mediated by a zinc ion which organizes the N-
terminal region of the peptide and neutralizes the large charge
of the ligand, thus allowing direct antibiotic–lipid interactions
(Storm and Strominger, 1973; Economou et al., 2013). Other
peptides with enhanced its antimicrobial activity in the presence
of Zn2+are the anionic human AMP DCD-1 and its derivative
DCD-1L. Both peptides are present in eccrine sweat and are
highly active at pH values that range from 5.5 to 7.4 and retain
their activities against several microorganisms when the ionic
strength of the medium is increased by adding up to 150mM
NaCl (Dennison et al., 2006; Song et al., 2013; Becucci et al.,

2014; Libardo and Angeles-Boza, 2014). The Zn2+ ions are
required for the formation of ion channels as they promote the
formation of a trimer of dimers. One final example that is worth
mentioning corresponds to the synthetic ∗ARVA peptides, which
contain no histidines, that were selected from a combinatorial
library and shown to be synergistic with copper and zinc ions
(Walkenhorst et al., 2014; Walkenhorst, 2016). Thus, there is
mounting evidence that the activity of AMP is affected by the
presence of copper and zinc ions.

An important question that must be asked at this point is
whether the presence of other divalent cations would resemble
the effect of Cu and Zn ions? The short answer is no, as the effects
on the activity of AMP by Ca2+ and Mg2+ ions often differ from
those effects that originate from the presence of Cu and Zn ions.
For example, the presence of CaCl2 and MgCl2 does not affect
the activity of microplusin; however, similar concentrations of
CuCl2 have a negative impact in the activity of the AMP (Silva
et al., 2009). Similarly, the presence of Ca2+ ions decrease the
antimicrobial activity of clavanin A, an AMP found in phagocytic
cells, whereas Zn2+ ions increased its activity (Juliano et al.,
2017). In short, Ca2+ and Mg2+ ions do not have the same effect
as Cu and Zn ions in the antimicrobial activity of AMP.

Excluding the highest and lowest values of the metal
concentrations in the set of values shown in Table 3, the
average concentrations of Cu and Zn ions are 24 and 146µM,
respectively; therefore, we recommend using Cu and Zn
concentrations of 25 and 150µM, respectively if the phagosomal
environment is to be mimicked. [Zn2+] = 150µM is well above
the concentration required to maximize the potency of clavanin
A 16-fold at pH 5.5 (Juliano et al., 2017). Likewise, 150µM is in
the upper range of the Zn concentrations that were synergistic
with ∗ARVA peptides (Walkenhorst et al., 2014). Since Ersoy has
successfully used LPM (low magnesium medium) media at pH
5.5 to mimic the phagolysosome compartment, it is suggested
that using this media in combination with Cu and Zn ions.
CuCl2 and ZnCl2 can be used as sources for these ions. If
after performing the assay in the presence of copper and zinc
ions as suggested above one is suspicious of synergy between
any of these metal ions and the AMP, the best assay to follow
is the one described by Walkenhorst et al. which allows the
determination of FIC values using a 96-well plate. CuCl2 and
ZnCl2 were used in liquid test medium (LTM) and the procedure
is clearly described in the paper of Walkenhorst and co-workers
(Walkenhorst et al., 2014).

Salt (NaCl)
The effect of NaCl on AMP activity needs to be taken into
account depending on the site of infection as the concentration
can vary significantly, from ∼140mM in blood (Li et al., 2016),
12–52mM in saliva (Ferguson and Botchway, 1979) and 8–14
mmol/mmol creatinine in urine (Sasaki et al., 1998), whereas
in certain infectious disease states this can be much higher (up
to 180mM in CF sputum Grandjean Lapierre et al., 2017 and
300mM in infected urine Withman et al., 2013). Distinct from
other metal ions and salts, some AMP are sensitive to higher salt
concentrations. For example, human β-defensin 1 retains activity
at low NaCl concentrations (≤50mM), but this is rapidly lost
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when the NaCl concentration increases above 75mM (Goldman
et al., 1997), which are physiologically relevant (Wishart et al.,
2018). This sensitivity was to the Na+ ion, not the Cl− ion.
Similarly, the activity of LL-37 is reduced significantly in the
presence of 100mM NaCl (Turner et al., 1998) and the activities
of defensins are similarly reduced (Bals et al., 1998; Garcia
et al., 2001). The tryptophan-rich AMP, Pac-525, demonstrated
reduced activity in the presence of 100–300mM NaCl, whereas
the Pac-525 derivative, D-Nal-Pac-525 (all D-amino acids and
tryptophan residues replaced with D-β-naphthylalanine) was
not sensitive to these NaCl concentrations (Wang et al., 2009).
The histatin derivative P-113 was also sensitive to high NaCl
concentrations (as well as additional Ca2+ and Mg2+ in the
media) (Rothstein et al., 2001). Conversely, clavanin retained
activity in 100mM NaCl and Clavanin AK retained activity in
300mM NaCl (Lee et al., 1997), the de novo designed peptide
SHAP1 retained activity in the presence of 200mM NaCl (Kim
et al., 2014), the Streptococcus mutans-specific AMP IMB-2
retained ∼85% activity in the presence of 134mM NaCl (Mai
et al., 2011) and the RR12 AMP retained activity in 300mM
NaCl (Mohanram and Bhattacharjya, 2016). Therefore, when
considering AST of AMP, the concentration of NaCl at the site
of infection is an important factor and the effects of NaCl on
AMP activity will need to be assessed on a case-by-case basis. If
the tested AMP is salt-sensitive, there are a number of possible
strategies available to reduce salt-sensitivity (Harwig et al., 1996;
Friedrich et al., 1999; Tam et al., 2000; Park et al., 2004; Yu et al.,
2011; Chu et al., 2013).

Inoculum Size
The efficacy of an antimicrobial during AST will necessarily
depend on the size of inoculum tested. The inoculum effect
is a well-documented laboratory phenomenon that can be
described as a significant elevation in antibiotic MIC when
the number of inoculated microorganisms is increased (Brook,
1989; Smith and Kirby, 2018; Idelevich and Becker, 2019).
Elevated MIC (reduced efficacy) values as a function of increased
cell density has been observed for a limited number of AMP,
including LL-37 (Snoussi et al., 2018), ARVA (Starr et al.,
2016) and DNS-PMAP 23 (Savini et al., 2017). In cultures
with a low inoculum density, MICs of AMP and antibiotics
can reach a plateau value that is independent of cell density
(Udekwu et al., 2009; Savini et al., 2017).

An additional consideration must be the presence of host
cells as these can effectively contribute to the inoculum effect.
For example, conducting AST in the presence of host cells,
e.g., red blood cells, can cause a loss of activity against the
target pathogen due to binding of the AMP to these host cells,
even if selectivity is lower than for the pathogen (Starr et al.,
2016). However, bactericidal concentrations of AMP can be
achieved in the presence of host cells (Savini et al., 2017) and
this should also be possible clinically. Thus, when conducting
AST of AMP the size microbial inoculum (cfu/ml) must be
given due consideration and a balance reached between low cell
density resulting in efficacy that is unachievable in vivo and high
cell density that results in under-estimation of activity and the
potential loss of promising therapeutic candidates. As a starting

point the cell densities specified in CLSI, ISO and EUCAST
documents (Table 1) are not unreasonable starting points, but
consideration should also be given to the pathogen and site of
infection, as in vivo information may be available to better guide
the likely cell density during infection and this would clearly be
more relevant to take into consideration.

Growth Phase: Biofilms, Persister Cells
Spores and Small Colony Variants (SCV)
When conducting broth dilution AST using CLSI or EUCAST
protocols, bacteria are normally prepared when actively growing
(exponential phase) or in the stationary phase, depending on
whether the inoculum is prepared by the broth culture or
colony suspension methods, respectively (CLSI, 2018a; ISO,
2019), but the potential influence of growth phase on AST
results is not taken into consideration. Similarly, the growth
phase is not factored in when preparing yeast inocula (CLSI,
2017a). Conversely, AST of filamentous fungi starts with an
inoculum prepared from a spore suspension (CLSI, 2017c) that
can take a number of hours to germinate into actively growing
hyphae. In most cases, AST of conventional antibiotics and
antifungals requires actively metabolising/growing cells, as their
mechanism of action relies on physiological processes, including
DNA/RNA replication (fluoroquinolones and flucytosine),
protein biosynthesis (tetracyclines and macrolides), cell wall
biosynthesis (β-lactams and echinocandins) and membrane
biosynthesis (polyenes and azoles) (Silver, 2011; Perfect, 2017).
Therefore, it is important that microorganisms are actively
growing, or have the capacity to do so, when AST is performed.
Membrane-active AMP, on the other hand, are active against
metabolically inactive as well as active cells; a major potential
therapeutic advantage, e.g., (Mercer et al., 2017). As such, it
is not critical that cells be metabolically active when AST is
conducted for these AMP, and it is only by following convention
than most AST of AMP is done on actively metabolising cells. At
sites of infection, microorganisms are rarely found growing in
the exponential phase on nutrient-rich media sources; therefore,
the importance of microbes existing in other growth phases
requires consideration and there is evidence that slower growing
pathogens are more virulent than faster growing pathogens
(Leggett et al., 2017). Additionally, a number of different
parameters influencing growth phase can alter virulence gene
expression in pathogens, including toxin and adhesin production
in E. coli (Crofts et al., 2018) and hyphal development in Candida
spp. (Su et al., 2018).

Given the heterogeneity of microbial populations within an
infection site, a range of cell morphologies and environmental
conditions will exist and these will have an impact on
antimicrobial susceptibility. Given this heterogeneity, it is
relevant to test antimicrobial efficacy, including that of AMP,
vs. microbes existing in different growth states (Radlinski
and Conlon, 2018; Dewachter et al., 2019). Specialised
slow or non-growing forms of microbial pathogens include
biofilms (Desai et al., 2014; Reichhardt et al., 2016; Koo et al.,
2017; Wolfmeier et al., 2018; Orazi and O’Toole, 2019), spores
(Setlow, 2014; Gil et al., 2017), persister cells (Fisher et al., 2017;
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Wuyts et al., 2018; Balaban et al., 2019) and small colony variants
(SCV) (Proctor et al., 2006; Johns et al., 2015). In some cases,
there are even combinations of these cells, e.g., persister cells
and/or SCV within biofilms (Mirani et al., 2015; Waters et al.,
2016; Wuyts et al., 2018; Yan and Bassler, 2019). A common
feature of microbial growth in these forms is normally reduced
susceptibility to antibiotics and antifungals. The efficacy of
AMP has been tested against cells demonstrating differing
growth modes.

At the simplest level, a microbial biofilm is a surface-
associated community of microorganisms surrounded by an
extracellular polymeric matrix. It is estimated that more than
80% of microbial infections are caused by microbes growing
as biofilms (Romling and Balsalobre, 2012), and therefore their
determination of their susceptibility to antimicrobial agents,
including AMP, is of paramount importance when developing
novel antimicrobial agents. An increasing understanding of
biofilm infections has led to the appreciation thatmany infections
are polymicrobial in nature and may contain diverse species
of bacteria, fungi and viruses (Peters et al., 2012; Wolcott
et al., 2013; Mihai et al., 2015; Todd and Peters, 2019) and
a number of models of polymicrobial biofilms have recently
been developed (Gabrilska and Rumbaugh, 2015). Polymicrobial
biofilms are of relevance in many infections, including chronic
wound infections (Clinton and Carter, 2015), CF lung infections
(Lopes et al., 2015), bacterial vaginosis (Jung et al., 2017)
and medical device-associated infections (Wi and Patel, 2018).
Microbes growing in biofilms can be up to 1000-fold more
tolerant to antimicrobials than their planktonically growing
counterparts (Costerton et al., 1995; Hoiby et al., 2010), so
more effective therapeutic options are urgently required. A
number of mechanisms are responsible for biofilm antibiotic-
tolerance including; (1) reduced diffusion of antibiotics through
the biofilm matrix, (2) sequestration of antibiotics by the biofilm
matrix; (3) presence of slow-growing and persister cells (see
below) refractory to antibiotics targeting bacterial metabolism;
and (4) increased exchange of antibiotic resistance genes on
mobile genetic elements by cells in close proximity (Stewart
and Costerton, 2001; Hall and Mah, 2017; Orazi and O’Toole,
2019). The potential role of AMP as therapeutics to treat biofilm
infections has received significantly more attention than activity
vs. spores, persister cells or SCV and has been the subject
of several review articles in the last few years (Batoni et al.,
2016; de la Fuente-Nunez et al., 2016; Pletzer and Hancock,
2016; Delattin et al., 2017; Grassi et al., 2017b; van Dijck
et al., 2018; Von Borowski et al., 2018; Yasir et al., 2018;
Shahrour et al., 2019). A detailed analysis of the potential role
of AMP in the treatment of biofilm infections is beyond the
scope of this manuscript, but some key points with respect to
AST will be addressed in the following paragraphs. Membrane
disruption is the most common mechanism of action of cationic
AMP and remains important in some instances for anti-biofilm
properties of AMP, but when assessing anti-biofilm properties,
other attributes of AMP may be of equal or greater importance
(Yasir et al., 2018), including; (1) blocking of/interference with
bacterial cell signalling systems, e.g., LL-37 (Overhage et al.,
2008); (2) degradation of the biofilm matrix, e.g., piscidin-3

(Libardo et al., 2017); (3) inhibition of the alarmone system
to avoid the bacterial stringent response, e.g., peptide 1018
(de la Fuente-Nunez et al., 2014); (4) downregulation of genes
responsible for biofilm formation, e.g., hBD-3 (Zhu et al.,
2013); and (5) immunomodulatory properties may also confer
additional in vivo anti-biofilm properties. Interestingly, some
AMP are able to prevent biofilm formation at concentrations
significantly below their MIC, or have anti-biofilm properties,
but without antibacterial activity (for examples see (Pletzer
and Hancock, 2016; Mercer et al., 2017; Haney et al., 2018a;
Shahrour et al., 2019), indicating a separate mechanism of
action from membrane disruption/direct killing. The membrane
disruption properties of AMP have been the main focus of this
manuscript and will remain so for the discussion of AST of AMP
and biofilms.

Examples of AMP that can kill biofilm microbes by
membrane permeabilization include the eosinophil cationic
protein-derived AMP, RN3(5-17P22-36), that demonstrated
membrane-permeabilising activity (Sytox green membrane
permeabilization) against established biofilms of P. aeruginosa,
albeit at 2–8-fold higher concentrations than required for
the same activity vs. planktonic P. aeruginosa (Pulido et al.,
2016). The esculentin-1a-derived AMP, Esc(1-21), also caused
permeabilization of the membranes of planktonic cells and
biofilms of P. aeruginosa PAO1 (Sytox green membrane
permeabilization and β-galactosidase release) (Luca et al., 2013),
and LL-37 and selected truncated versions (LL-31, LL7-37,
LL13-37, and LL7-31), albeit at relatively high concentrations
(20–100µM) (measured by propidium iodide (PI) uptake)
against pre-grown P. aeruginosa PAO1 biofilms (Nagant et al.,
2012). The lactoferricin-derived AMP, LF11-215, LF11-324 and
a lipopeptide derivative, DI-MB-LF11-324, caused membrane
permeabilization of P. aeruginosa PAO1 in biofilms (PI uptake)
at 10 × MIC concentrations (Sanchez-Gomez et al., 2015). The
related AMP Seg6L and Seg6D both demonstrated antibiofilm
properties with Seg6D predominantly causing cell lysis, whereas
Seg6L degraded the biofilm by detaching live cells, rather than
direct killing, demonstrating that relatively minor changes to
AMP composition (substitution of 5 Seg6L amino acids for
D-isoform amino acids) can substantially affect antimicrobial
properties (Segev-Zarko et al., 2015). Some AMP are also
membrane-active against fungal biofilms (van Dijck et al.,
2018). Tyrocidines are cationic cyclodecapeptides with broad-
spectrum antimicrobial activity and the tyrocidines (TrcA, TrcB,
and TrcC) were able to disrupt the membrane of Candida
albicans growing as biofilms (PI uptake) at concentrations similar
to the planktonic MIC (∼12.5µM), but significantly higher
concentrations were required to eradicate biofilms (Troskie et al.,
2014). Similarly, the peptidomimetic mPE was able to disrupt the
membrane of Candida albicans growing as biofilms (PI uptake)
at concentrations 6–12-fold higher (50–100 mg/L) than the MIC
vs. planktonic cells (Hua et al., 2010). Studies of the activity
of AMP vs. polymicrobial biofilms are less frequently reported,
but the Herpes simplex-derived AMP gH625-GCGKKKK was
able to prevent formation of mixed species biofilms consisting
of Candida tropicalis and S. aureus or C. tropicalis and Serratia
marcescens as well as eradicating mixed biofilms containing
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these microbes (de Alteriis et al., 2018) as did melittin against
a polymicrobial biofilm consisting of selected dairy isolates
of bacteria (P. aeruginosa, Staphylococcus haemolyticus, K.
pneumoniae, and Aeromonas caviae) (Galdiero et al., 2019).
The de novo AMP ASP-1 was able to eradicate polymicrobial
biofilms containing S, aureus, P. aeruginosa, A. baumannii,
and K. pneumoniae when formulated into a polyurethane-based
dressing (Bayramov et al., 2018) and the Komodo dragon-
derived peptide DRGN-1 demonstrated moderate eradication
activity against mixed biofilms containing P. aeruginosa and S.
aureus (Chung et al., 2017). Luo and co-workers tested a library
of peptoids for antibiofilm activity and demonstrated that 3
peptoids from the library were able to eradicate mixed species
biofilms (formed for 8 h) containing C. albicans and S. aureus or
C. albicans and E. coli (Luo et al., 2017).

In general, concentrations of AMP required to permeabilise
membranes in biofilms are higher than for their planktonic
counterparts and this may reflect sequestration (for example, by
extracellular DNA or other extracellular polymeric substances),
hydrolysis of AMP in the biofilm, increased microbial cell
density or may reflect changes to individual microorganisms
residing within the biofilm, as bacteria growing in biofilms
can have altered membrane permeability (Orazi and O’Toole,
2019), which may affect the activity of membrane-active
AMP. Membranes of S. aureus, Listeria monocytogenes, P.
aeruginosa, Salmonella Typhimurium growing as biofilms
contain significantly higher proportions of saturated fatty
acids compared to cells growing planktonically. Increases in
saturated fatty acids (in particular long-chain fatty acids are
concomitant to decreases in branched-chain fatty acid content,
which can lead to increased membrane rigidity and stability
(Denich et al., 2003; Dubois-Brissonnet et al., 2016).

Approved standards exist for AST of both bacteria and
fungi (Table 1), but these apply only to microbes growing
planktonically. Approved AST standards for microorganisms
growing as biofilms do not exist and a number of different
methods are used (Macia et al., 2014;Magana et al., 2018), making
direct comparisons of different studies difficult to undertake. As
described above, microorganisms growing as biofilms are more
tolerant of antimicrobials than microbes growing planktonically,
so the results of conventional AST cannot be used to accurately
predict the results of biofilmAST (Macia et al., 2014). As an added
level of complexity, the level of biofilm antimicrobial tolerance
may also be influenced by the methods used to establish and
monitor the biofilms.

At present it is not possible to specify an optimal testing
procedure for assessing the activity of AMP against biofilms,
given their heterogenous nature and the complexity underlying
their development (Haney et al., 2018a; Magana et al., 2018).
When reporting activity of AMP vs. biofilms it is vital, initially,
to specify whether biofilm prevention or eradication is being
described. When describing the anti-biofilm properties of AMP
appropriate methodological details must be provided, including
device used to grow the biofilm and the parameters used to
establish anti-biofilm activity. Most commonly, biofilms are
grown in multi-well plates or the Calgary device, which are
simpler and cheaper than flow-cell devices and better suited to

routine AST of biofilms (Macia et al., 2014). The most commonly
used are the minimal biofilm inhibitory concentration (MBIC),
defined as the lowest concentration of an antimicrobial at which
there is no time-dependent increase in the mean number of
biofilm viable cells (Moskowitz et al., 2004), or the minimal
biofilm-eradication concentration (MBEC), defined as the lowest
concentration of antibiotic required to eradicate the biofilm (Ceri
et al., 1999). In the case of membrane-active AMP, evidence
of membrane permeabilization must be provided, for example,
the use of fluorescence microscopy (standard, confocal laser
scanning microscopy or scanning electron microscopy) using
membrane-impermeant fluorophores that allow demonstration
of membrane permeabilization, including PI (Boulos et al., 1999)
or Sytox dyes (Roth et al., 1997) or reporter genes. Recently,
Haney and co-workers proposed two quick, easy, reproducible
and inexpensive methods; one for assessing biofilm inhibition
and the other for assessing biofilm eradication, to determine
the activity of AMP against biofilms (Haney et al., 2018b). Both
methods were based on the use of microtitre plates for detection
and utilised the crystal violet protocol for determining biofilm
biomass (O’Toole and Kolter, 1998; O’Toole, 2011) and in the
eradication assay they assessed metabolic activity within the
biofilm using the tetrazolium chloride dye (triphenyl tetrazolium
chloride) (Brown et al., 2013; Sabaeifard et al., 2014). These
methods are similar to many reported in the literature and
appear suitable for simplified analysis of biofilm prevention and
eradication and should also be readily adapted for use in the
analysis of fungal biofilms, but do not provide an assessment
of the effects of AMP on the bacterial membrane, which would
require use of some of the methods outlined above.

The efficacy of AMP vs. bacterial and fungal spores has been
the subject of a relatively limited number of studies. Bacterial
endospores with relevance to human infectious diseases are
mainly produced by Clostridiodes spp. (Clostridium spp.) and
Bacillus spp. Bacterial endospores are metabolically dormant
and environmentally resistant and are capable of surviving
antibiotic exposure, extremes of temperature, desiccation and
ionizing radiation (Higgins and Dworkin, 2012). The cathelicidin
family AMP PG-1, BMAP28, and LL-37 demonstrated sporicidal
activity against B. anthracis spores in the low mg/L range,
whereas SMAP-29, CAP-18 were not effective and NA-CATH
andmCRAMP demonstrated activity only at high concentrations
(1,000 mg/L) (Blower et al., 2018). The AMP chrysophin-3 also
demonstrated sporicidal activity vs. B. anthracis (Pinzon-Arango
et al., 2013) and activity of PG-1 vs. spores of B. anthracis
had been previously reported (Lisanby et al., 2008). The AMP
TC19, TC84, BP2 and the lantibiotic nisin A were tested for
efficacy against spores of Bacillus subtilis and were bactericidal
against germinated spores by perturbing the inner membrane,
thus preventing outgrowth to vegetative cells, but were not able
to prevent germination (Omardien et al., 2018). Presumably, this
is because the inner membrane of endospores is immobile and
becomes fluid only during spore germination (Setlow, 2006).
Other than this, the only peptides with activity vs. spores are the
lantibiotics nisin (Gut et al., 2008) and subtilin (Liu and Hansen,
1993), both of which were only active against germinated spores,
as above. Assessing the efficacy of AMP vs. bacterial spores for
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AST is relatively simple, by substituting a spore suspension for
the normal inoculum, but in order to fully understand the precise
effect of AMP on spores requires more specialised techniques,
such as those described by Omardien et al. (2018). As spores are
not normally the cause of the disease, rather this is vegetatively
growing cells, the importance of AMP activity against spores is of
more relevance to disease prevention, rather than cure.

Activity specifically against fungal spores (conidia) has
received limited attention compared to activity against
vegetatively growing fungi or yeast. Fungal spores are often
the infectious propagule that initiates disease, e.g., inhalation
of Aspergillus spp. spores into the lung, but the disease is
caused once the spores germinate and the fungi begin vegetative
growth (Kosmidis and Denning, 2015). As with efficacy vs.
bacterial endospores, sporicidal activity is of more relevance
to disease prevention than cure. Nevertheless, activity against
vegetatively growing cells and spores is a desirable property
for any antifungal AMP. The thaumatin-like protein osmotin
demonstrated antifungal activity against fungal hyphae of
predominantly plant-pathogenic fungi and caused lysis of
spores of Fusarium moniliforme, F. oxysporum, Trichoderma
longibrachatum, and Verticillium dahlaie (Abad et al., 1996)
as did the synthetic undecapeptides Pep3, BP15, BP20, BP33,
and BP76 vs. F. oxysporum conidia (Badosa et al., 2009).
The antifungal peptide drosomycin, originally isolated from
Drosophila spp., inhibited fungal spore germination (Zhang
and Zhu, 2009) as did bombinins H2 and H4 which were active
against spores of Phytophthora nicotianae (Matejuk et al., 2010).
Peptide KK14 and derivatives inhibited spore germination of
F. culmorum, Penicillium expansum, and A. niger, albeit with
reduced activity vs. germinated conidia (Thery et al., 2019) as
did the AMP O3TR and derivatives (Thery et al., 2018). Rabbit
neutrophil cationic peptides, however, were not active against
ungerminated spores of Aspergillus fumigatus or Rhizopus
oryzae (Levitz et al., 1986). When carrying out broth dilution
AST using filamentous fungi, the inoculum used is a spore
(conidial) suspension, but no attempt is made to determine
whether the antifungal used prevents spore germination or is
solely active against germinated spores/hyphae. The measure
of inhibition is optical density or a visual (i.e., not using
microscopy) determination of growth/no growth (CLSI, 2017c;
EUCAST, 2017b), except in the case of echinocandins using
EUCAST methodology in which the Minimum Effective
Concentration (MEC) endpoint is determined (EUCAST,
2017b). Thus, it is clear that echinocandins do not prevent
spore germination (i.e., not sporicidal), but this cannot be
determined for other antifungals, including AMP, without
additional analyses, such as microscopic analysis over time
(Abad et al., 1996). Alternatively, spores could be exposed to
AMP for only limited time periods in which spore germination
could not have taken place (i.e., killing activity can have
affected only spores) followed by plating on non-selective
media to determination sporicidal activity (Badosa et al.,
2009).

Small colony variants (SCV) constitute a slow-growing
sub-population of bacteria that are characterized by impaired

growth, atypical colony morphology, and an ability to persist
in mammalian cells. SCV are characterized by down-regulation
of genes for metabolism and virulence, while genes important
for adhesion, persistence and biofilm formation are often
up-regulated (Proctor et al., 2006; Johns et al., 2015; Kahl
et al., 2016). SCV are frequently deficient in electron
transport (menadione and haemin auxotrophs) or thiamine
biosynthesis (thymidine auxotrophs) and these phenotypes
can be reversed by supplementation with menadione,
haemin or thymidine, respectively (Proctor et al., 2006).
Additionally, SCV are less susceptible to various antibiotics
including aminoglycosides, such as tobramycin, trimethoprim-
sulfamethoxazole, fluorquinolones, fusidic acid, and even to
antiseptics like triclosan (Kahl, 2014; Evans, 2015; Bui et al.,
2017). SCV are relatively commonly isolated from infections and
are also responsible for latent or recurrent infections, often once
antibiotic selection is removed, and are often present in chronic
infections (Proctor et al., 2006; Johns et al., 2015). In a number of
cases, intracellular SCV have been isolated from sites of infection,
including fibroblasts, osteoblasts, macrophages and endothelial
cells (Kahl et al., 2016) and intracellular presence can induce SCV
formation (Vesga et al., 1996). SCV normally constitute a minor
sub-population of cells at the site of infection and therefore their
isolation in sufficient numbers for the purposes of AST can be
challenging (Johns et al., 2015; Kahl et al., 2016). SCV have been
identified in diverse range of bacterial genera and isolated from
clinical specimens, including S. aureus, S. epidermidis, S. capitis,
P. aeruginosa, Salmonella serovars, Burkholderia spp., Vibrio
cholerae, Shigella spp., Brucella melitensis, E. coli, Lactobacillus
acidophilus, Serratia marcescens, and Neisseria gonorrhoeae
(Proctor et al., 2006; Johns et al., 2015; Kahl et al., 2016). At
present, there are no approved methods for AST of SCV, and
S. aureus SCV do not grow well in CA-MH broth, making it
difficult to generate meaningful results from broth-dilution
AST (Precit et al., 2016). Precit and co-workers developed
a disk diffusion method suitable for AST of S. aureus SCV
(Precit et al., 2016), but this method is unlikely to work well
with AMP due to the know interactions of cationic AMP with
the negatively charged sulphate and sugar components of the
agaropectin in agar (Lehrer et al., 1991). Another difficulty
when working with SCV is their reversion to a normal colony
phenotype (Proctor et al., 2006; Johns et al., 2015; Kahl et al.,
2016). Other studies have described AST of SCV (see Table S1
in Precit et al., 2016 for a complete list), including direct use of
the CLSI broth dilution procedure (Gao et al., 2010; Singh et al.,
2010) and modifications of this, including prolonged incubation
times (von Eiff et al., 1997; Samuelsen et al., 2005; Mercer
et al., 2017) and media changes (e.g., Brain Heart Infusion
(BHI) Kahl et al., 1998; Yagci et al., 2013). Naturally, AST of
intracellular SCV adds a further level of complexity and the
authors are not aware of any studies on the activity of AMP
against intracellular SCV. For experimental purposes, SCV of S.
aureus (with the characteristics of clinical SCV) can be selected
for in vitro by incubation in the presence of the P. aeruginosa
quorum sensing molecule 4-hydroxy-2-heptylquinoline-N-oxide
(HQNO) (Hoffman et al., 2006), although the authors are not
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aware whether this works with other staphylococci or other
bacterial genera. It was reported that SCV of E. coli could be
generated following exposure to 2-methyl-1,4-napthoquinone
(Colwell, 1946) or copper ions (Weed and Longfellow, 1954)
and that mutants in a number of bacterial genes can generate
SCV (Santos and Hirshfield, 2016; Tikhomirova et al., 2018;
Al Ahmar et al., 2019; Vidovic et al., 2019). The importance of
SCV in the context of infection means that AMP activity vs.
SCV could represent an important method for the treatment
of chronic, recurrent and antibiotic resistant infections, but has
received only limited attention in the context of AMP. Glaser
and co-workers demonstrated that SCV of S. aureus were less
susceptible to the skin-derived AMP RNase7, hBD-2, hBD-3,
and LL-37 than wild-type S. aureus as was a hemB mutant when
compared to the complemented mutant, with the exception
of LL-37. SCV were also less susceptible to the killing activity
of human stratum corneum (Glaser et al., 2014). Similarly,
SCV of P. aeruginosa were also less susceptible to LL-37 than
the wild-type (Pestrak et al., 2018). S. aureus SCV were less
susceptible to the AMP lactoferricin B and thrombin-induced
microbicidal protein (tPMP) when compared to the wild-type
and in the case of lactoferricin B, this was irrespective of the
underlying auxotrophy (Koo et al., 1996; Samuelsen et al., 2005).
Conversely, an antimicrobial polypeptide (NP108) retained
comparable efficacy vs. S. aureus SCV when compared to

wild-type S. aureus (Mercer et al., 2017). In another study,
S. aureus SCV were less susceptible to the AMP protamine,
but equally susceptible to magainin and HNP-1, whereas SCV
were more susceptible to dermaseptin than the wild-type S.
aureus. Interestingly, exposure to sub-MIC concentrations of
protamine selected for SCV in vitro (Sadowska et al., 2002).
Zhang and co-workers reported that wild-type and SCV of S.
aureus were equally susceptible to LL-37, but that SCV became
less susceptible in the presence of bicarbonate, adding a further
level of complexity of AST of SCV (Zhang et al., 2018). The
above results appear to indicate that susceptibility of SCV
of S. aureus to AMP needs to be determined on a case-by-
case basis and potentially that he method of AST adopted is
also important.

Persister cells are dormant or slow-growing variants of normal
wild-type cells, forming a sub-population that are highly tolerant
to antimicrobials (despite no genetic basis for resistance), but
that can revert back to wild-type growth and sensitivity. Persister
cells can be responsible for recalcitrance of infections and
relapse following treatment and the emergence of antibiotic
resistance (Fisher et al., 2017; Balaban et al., 2019). Most work
to-date has been carried out on bacterial persister cells, however,
fungal persister cells have been isolated from biofilms and
that share many of the characteristics of bacterial persisters,
including tolerance to high doses of antifungals (Bojsen et al.,

TABLE 4 | Clinically approved peptide antimicrobials.

Antimicrobial Drug name Company Class Source Mol Wt Application MOA Dosing References

Colistin

(Polymyxin E)

Coly-Mycin Generic Lipopeptide Bacillus colistinus 1155.4 Antibacterial;

Gram -

Membrane

disruption

IV, IM and

Inhalation

Karaiskos et al.,

2017

Dalbavancina Dalvance Durata

Therapeutics

Lipoglycopeptide Semi-synthetic 1816.7 Antibacterial;

Gram +

Cell wall

biosynthesis

IV Bassetti et al.,

2018

Daptomycin Cubicin Merck

(Cubist)

Lipopeptide Streptomyces roseosporus 1620.6 Antibacterial;

Gram +

Membrane

disruption

IV Gonzalez-Ruiz

et al., 2016

Gramicidin D NA Generic Linear peptides Bacillus brevis 1882.2 Antibacterial;

Gram +

Membrane

disruption

Topical Burkhart et al.,

1999

Gramicidin S NA Generic Cyclic peptide Bacillus brevis 1141.4 Antibacterial;

Gram + and -

Membrane

disruption

Topical Mogi and Kita,

2009

Oritavancinb Orbactiv Melinta

Therapeutics

Lipoglycopeptide Semi-synthetic 1793.1 Antibacterial;

Gram +

Cell wall

biosynthesis

IV Saravolatz and

Stein, 2015

Polymyxin B NA Generic Lipopeptide Bacillus polymyxa 1203.5 Antibacterial;

Gram -

Membrane

disruption

IV and IM Rigatto et al., 2019

Teicoplanin Targocid NPS Pharma Glycopeptide Actinoplanes teichomyceticus 1879.6 Antibacterial;

Gram +

Cell wall

biosynthesis

IV and IM Campoli-Richards

et al., 1990

Telavancinb Vibativ Theravance Lipoglycopeptide Semi-synthetic 1755.7 Antibacterial;

Gram +

Cell wall

biosynthesis

IV Higgins et al.,

2005

Vancomycin NA Generic Glycopeptide Streptomyces orientalis 1449.3 Antibacterial;

Gram +

Cell wall

biosynthesis

Oral and IV Alvarez et al., 2016

Anidulafungin Eraxis Pfizer Echinocandin

(lipopeptide)

Semi-synthetic 1140.2 Antifungal Cell wall

biosynthesis

IV Mayr et al., 2011

Caspofungin Cancidas Merck Echinocandin

(lipopeptide)

Semi-synthetic 1093.3 Antifungal Cell wall

biosynthesis

IV Song and

Stevens, 2016

Micafungin Mycamine Astellas Echinocandin

(lipopeptide)

Semi-synthetic 1270.3 Antifungal Cell wall

biosynthesis

IV Scott, 2012

IV, Intravenous; IM, Intramuscular; NA, Not applicable; aDalbavancin is a semi-synthetic derivative of Teicoplanin; bOritavancin and Telavancin are semi-synthetic derivatives

of Vancomycin.
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2017; Wuyts et al., 2018). Given the importance of persister
cells in infection, it is important to develop antimicrobial
agents capable of eradicating persister cells and the efficacy
of AMP against bacterial persister cells has been examined in
a limited number of studies. The dendrimeric AMP, 2D-24,
was active against persister cells of P. aeruginosa PAO1 and
a mucoid mutant PDO300, as well as planktonic and biofilm
cells (Bahar et al., 2015). Trp/Arg-containing AMP successfully
killed planktonic and biofilm persister cells of E. coli (Chen
et al., 2011), and the aryl-alkyl-lysine NCK-10 against persister
cells, planktonic cells and biofilms of S. aureus (Ghosh et al.,
2015) and the LL-37 derivative SAAP-148 (de Breij et al., 2018).
Additionally, the temporin analogue, TB_L1FK, the β-defensin
derivative, C5, and the dendrimeric AMP, Den-SB056, were
equally effective against in vitro generated persister and wild-

type cells of P. aeruginosa and S. aureus (Grassi et al., 2017b).

Persister cells of some bacterial species can be generated in the

laboratory by antibiotic exposure (Dorr et al., 2009; Sulaiman
et al., 2018) or treatment with specific chemicals, including

E. coli, P. aeruginosa, and S. aureus using the uncoupling

agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP)

(Kwan et al., 2013; Grassi et al., 2017a) and E. coli using
salicylate (Wang et al., 2017), facilitating AST of persisters
with AMP.

Interactions of AMP With
Antibiotics/Antifungals
A large number of publications have described in vitro synergy
of selected AMP with other AMP (Zerweck et al., 2017; Hanson
et al., 2019), antibiotics (for example Cassone and Otvos, 2010;
Sakoulas et al., 2014; Soren et al., 2015; Pollini et al., 2017;
Pizzolato-Cezar et al., 2019) or antifungals (Duggineni et al.,
2007; Singh et al., 2017), although this is not always the case
(He et al., 2015) and is something that is no doubt under-
reported. Conjugates of AMP and antibiotics, organometallic
compounds, gold nanoparticles or to create AMP polymers
to increase efficacy, to reduce toxicity and/or to improve
formulation have become of increasing interest over recent years
(for examples, see Reinhardt and Neundorf, 2016; Rajchakit and
Sarojini, 2017; David et al., 2018; Sun et al., 2018) and will
undoubtedly require additional consideration when it comes to
AST. In vitro synergy is often species- or even strain-specific
and is often specific to certain antimicrobials, so there are
no general rules with respect to predicting synergy. Whilst
in vitro synergy between antibiotics or antifungals demonstrates
potential, there is limited evidence that synergy translates into
the clinic, beyond β-lactam/β-lactamase combinations such as
piperacillin/tazobactam and ceftazidime/avibactam, so perhaps
it might be set to temper this enthusiasm until detailed

TABLE 5 | AMP in clinical development (adapted from Koo and Seo, 2019).

AMP Source Targetc Phase Company Administrationd

EA-230 hCG derivative Sepsis and renal failure protection II Exponential biotherapies Iv

CZEN-002 α-MSH derivative Anti-fungal IIb Zengen Top

D2A21 Synthetic Burn wound infections III Demegen Top

XMP-629 BPI derivative Impetigo and acne rosacea IIIb Xoma Ltd. Top

Neuprex(rBPI21) BPR derivative Peadiatric meningococcemia IIIb Xoma Ltd. iv

Delmitide(RDP58) HLA class I derivative Inflammatory bowel disease IIa Genzyme Top

Ghrelin Endogenous HDP Chronic respiratory failure IIa University of Miyazaki; Papworth Hospital iv

hLF1-11 Lactoferricin derivative MRSA, K. pneumoniae, L. monocytogenes I/II AM-Pharma iv

C16G2 Synthetic Tooth decay by Streptococcus mutans II C3 Jian Inc. Mouthwash

SGX942(Dusquetide) Synthetic Oral mucositis III Soligenix Oral rinse

DPK-060 Kininogen derivative Acute external otitis II ProMore pharma Ear drops

PXL01 Lactoferrin analogue Postsurgical adhesions III ProMore pharma Top

PAC113 Histatin 5 analogue Oral candidiasis IIa Pacgen biopharmaceuticals Mouth rinse

POL7080 Protegrin analogue P. aeruginosa, K. pneumoniae III Polyphor Ltd. iv

LTX-109 (Lytixar) Synthetic G+, MRSA skin infection; impetigo IIa Lytix biopharma Top

OP-145 LL-37 derivative Chronic middle ear infection IIa Dr. Reddy’s research Ear drops

LL-37 Human cathelicidin Leg ulcer IIb ProMore pharma Top

Novexatin (NP213) Cyclic cationic peptide Fungal nail infection IIa NovaBiotics Ltd. Top

p2TA (AB103) Synthetic Necrotizing soft tissue infections III Atox Bio Ltd. iv

Iseganan (IB-367) Protegrin analogue Pneumonia, stomatitis IIIb IntraBiotics pharmaceuticals Top

Pexiganan (MSI-78) Magainin analogue Diabetic foot ulcers IIIb Dipexium pharmaceuticals Top

Omiganan (CLS001) Indolicidin derivative Rosacea III Cutanea life sciences Top

aClinical trial completed.
bClinical trial discontinued.
cTarget microorgansim: G+ - Gram positive; MRSA – methicillin-resistant S. aureus.
dRoute of administration: top - topical; iv – intravenous.
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standardisation of testing methods and clinical trials have
been carried out (Doern, 2014). When conducting AST with
combinations of AMP with conventional antimicrobials care
needs to be taken analysing antimicrobials where solvent other
than water are used (e.g., DMSO), or where conventional media
requires supplements, including blood, NaCl and polysorbate
(see above for the potential effects of these compounds on
AMP), as they may impact upon AMP activity. Dimethyl
sulfoxide (DMSO) can function as a membrane permeabiliser
and can depolarize membranes (Yu and Quinn, 1998) and
clearly, this may enhance the apparent activity of membrane
permeabilising AMP.

AMP IN CLINICAL DEVELOPMENT

A limited number of antibiotics comprising a peptide element
are in clinical use (Table 4), but as yet, no AMP have been
approved as therapies although a number are in clinical trials
(Table 5). Koo and Seo, in a comprehensive review of AMP drug
development, state that approximately half of AMP currently in
development are at the preclinical stage, while a third havemoved
forward to clinical trials, most of those are currently in phase II.
Approximately 15% of the AMP failed during one of these stages
(Koo and Seo, 2019). These numbers are much more promising
than the ones presented by Lau and Dunn for previous years,
where the number of discontinued AMP trials was higher than
50% (Lau and Dunn, 2018). To increase the clinical pipeline of
AMP drug candidates and more importantly, approval of these
potentially AMR game-changing antimicrobials, better and more
appropriate AST (and in vivo models, although this not a topic
for this manuscript) is critical.

CONCLUSIONS

Antimicrobial resistance is a global health problem that will
require the survey of a large number ofmolecules with a variety of

chemistries and new functional families. AMP are clearly a group
of molecules with significant potential as a new class of therapy
to address the urgent need for better and AMR-mitigating
antibacterial and antifungal therapies. Among other advantages
highlighted in this and other reviews, AMP offer great versatility
in terms of chemical functionality. Unfortunately, “standard”
AST protocols can significantly underestimate the efficacy of
AMP and improved, more predictive methods are required to
identify leads and facilitate faster progress of AMP into pre-
/clinical development. These changes to “standard” protocols
will require rigorous and detailed justification and a degree of
validation. New AST of AMP will have to take into account that
many AMP depend on their positive charge for activity as well
as the many other factors we have enumerated in this review
(see Table 2). Despite the manifold factors that influence AMP
activity, we are confident that research toward developing more
appropriate AST for AMP is headed in the right direction. New
protocols will, in the near future, accelerate the discovery process
of novel AMP therapeutics.
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