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Background: Multiple studies have shown that an imbalance in the intestinal microbiota
is related to bone metabolism, but the role of the intestinal microbiota in postmenopausal
osteoporosis remains to be elucidated. We explored the effect of the intestinal microbiota
on osteoporosis.

Methods:We constructed a postmenopausal osteoporosis mouse model, and Micro CT
was used to observe changes in bone structure. Then, we identified the abundance of
intestinal microbiota by 16S RNA sequencing and found that the ratio of Firmicutes and
Bacteroidetes increased significantly. UHPLC-MS analysis was further used to analyze
changes in metabolites in feces and serum.

Results: We identified 53 upregulated and 61 downregulated metabolites in feces and 2
upregulated and 22 downregulated metabolites in serum under OP conditions, and
interestedly, one group of bile acids showed significant differences in the OP and control
groups. Network analysis also found that these bile acids had a strong relationship with
the same family, Eggerthellaceae. Random forest analysis confirmed the effectiveness of
the serum and fecal models in distinguishing the OP group from the control group.

Conclusions: These results indicated that changes in the gut microbiota and metabolites
in feces and serum were responsible for the occurrence and development of
postmenopausal osteoporosis. The gut microbiota is a vital inducer of osteoporosis
and could regulate the pathogenesis process through the “microbiota-gut-metabolite-
bone” axis, and some components of this axis are potential biomarkers, providing a new
entry point for the future study on the pathogenesis of postmenopausal osteoporosis.
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INTRODUCTION

Postmenopausal osteoporosis (OP), the most common type of
primary osteoporosis, poses a large threat to the health of women
around the world (Watts et al., 2010; Pagnotti et al., 2019). OP
progresses rapidly and refers to ovarian function decline due to a
decrease in oestrogen levels, which leads to more osteoclast
absorption than osteoblast-mediated bone formation, characterized
by a decrease in the amount of bone tissue per unit volume and by
the microarchitectural deterioration of bone tissue (Eastell et al.,
2016). A decrease bone density can lead to an increased risk of
bone fragility fractures, resulting in pain, disability, and loss of
functional independence (Forsén et al., 1999; Orwig et al., 2006).
However, drugs based on our current understanding of
osteoporosis pathogenesis cannot completely prevent the
occurrence and development of postmenopausal osteoporosis
(Jian and Sambrook, 2011; Black and Rosen, 2016a).

The gut microbiota has been shown to interact with various
organs and systems in the body (Feng et al., 2018), representing an
important influencing factor of metabolic health (Ke et al., 2019).
The development of newhigh-throughput sequencing technologies
has facilitated the large-scale analysis of the metabolic
characteristics of intestinal microbial communities and provided
the possibility of a new therapeutic intervention approach,
especially for various metabolic diseases in recent years (Zhang
et al., 2017; Liu et al., 2017; Meng et al., 2018).Wang found that the
gut microbiota regulates obesity through NFIL3, and the circadian
clock and Akkermansia could control islet autoimmunity to
influence the severity of type 1 diabetes (Wang et al., 2017). It was
also reported that high fibre intake led to changes in the
gut microbiota and prevented the development of hypertension
(Marques et al., 2016). Postmenopausal osteoporosis is a systemic
metabolic disease (Black and Rosen, 2016b), and the relationship
with gut microbiota remains to be further explored. Increasing
evidence has shown that gut microbiota can affect bone formation.
Li et al. found that germ-free mice had higher trabecular density
thanmice fed regular feed.However,when the intestinalmicrobiota
was recolonized, both trabeculardensity andcortical cross-sectional
area were decreased, indicating that the intestinal microbiota is
closely related to bone metabolism (Li et al., 2016). The intestinal
microbiota may affect bone metabolism through the immune
system, endocrine system, or ion absorption (Gilman and
Cashman, 2006; Sjogren et al., 2012; Yan et al., 2016), and either
pathway is closely related to the concentration of various
metabolites in the blood and intestines. The gut microbiota exerts
biological effects by producing specific metabolites that act on the
intestinal wall or enter the blood to regulate target organs (Rooks
and Garrett, 2016; Dalile et al., 2019). However, the bacteria,
metabolites, and mechanisms by which intestinal microbiota
affect postmenopausal osteoporosis are still unknown.

Therefore, we studied the effect of the intestinal microbiota on the
fecal and serum metabolism phenotype under the condition of
postmenopausal osteoporosis. We also applied an integrated
approach of 16S rRNA gene sequencing combined with blood and
fecal ultra-high-performance liquid chromatography-mass
spectrometry (UHPLC-MS) analysis to determine whether specific
bacterial genera andmetaboliteswere associatedwith postmenopausal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
osteoporosis.Randomforest (RF)analysisof thismodelwasperformed
to verify the effectiveness of the model. This study first evaluated the
functional metabolic interactions between the microbial species in
postmenopausal osteoporosis, resulting in a new breakthrough in the
study of the pathogenesis of postmenopausal osteoporosis.
MATERIALS AND METHODS

Animal
We purchased fourteen 10-week-old C57BL6/J female mice from
the Laboratory Animal Department of China Medical University.
They were raised without specific pathogens. The mice were fed
sterile food and autoclavedwater ad libitumunder a 12 h light cycle.
After feeding for one week under this condition, we randomly
divided the mice into a postmenopausal osteoporosis group and a
control group, with seven mice in each group, and performed
ovariectomy on the mice in the OP group to construct
postmenopausal osteoporosis models. After successfully
establishing the model, we continued to raise the mice for another
10 weeks under the above conditions and then collected femoral
samples from each group of mice and removed excess tissue. Next,
we fixed the femoral sample with 4% paraformaldehyde for 48 h,
performed amicrocomputer tomography (Micro CT) examination
and evaluated the results. All animal operations in our experiments
were performed in strict accordance with the National Institutes of
Health (NIH) Guidelines for the Care and Use of Experimental
Animals and were approved by China Medical Univeristy
Institutional Animal Care and Use Committee (Shenyang, China)

Micro CT
We used Micro CT (SkyScan 1276, Bruker) to analyze 100
sections from the growth plate of each femur to observe the
differences in the volume and structure of cortical and trabecular
bone between the two groups. We obtained the following
parameters of the sample through built-in software (NRecon,
DataViewer CTAn version: 1.17.7.2): trabecular volume
percentage (BV/TV), cortical volume (Ct. V), cortical thickness
(Ct. Th), trabecular number (Tb. N), trabecular space (Tb. Sp),
and trabecular thickness (Tb.Th).

Feces and Serum Collection
After raising the mice for 70 days, we collected at least two fecal
pellets from each mouse, one for metabolic analysis and one for
microbial analysis. Immediately after collecting the fecal samples,
we placed them in a sterile centrifuge tube and stored them at
-80°C for further analysis. Serum samples were collected in the
last step of this study. The mice were anaesthetized with
isoflurane, and blood was collected. The blood was centrifuged
to separate the serum, which was also stored frozen at -80°C for
the following metabolic analysis.

16S rRNA Microbial Community Analysis
We used the CTAB/SDS method to extract total DNA from stool
samples. Analysis was conducted at Novogene Co., Ltd. (Beijing,
China). Based on previously reported studies, we selected the V3-
V4 region of the 16S rRNA gene using custom barcode universal
November 2020 | Volume 10 | Article 535310
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bacterial primers 338F (5’-barcode-ACTCCTACGGGA,
GGCAGCA-3’) and 806R (5’-GGACTACHVGGGTWTCT
CATAT-3’) (Chen et al., 2019).

Same volume of 1×loading buffer (contained SYB green) with
PCR products and operate electrophoresis on 2% agarose gel for
detection were mixed together. PCR products was mixed in
equidensity ratios. Then, mixture PCR products was purified
with GeneJETTM Gel Extraction Kit (Thermo Scientific).
Sequencing libraries were generated using Ion Plus Fragment
Library Kit 48 rxns (Thermo Scientific) following manufacturer’s
recommendations. The library quality was assessed on the
Qubit@ 2.0 Fluorometer (Thermo Scientific). At last, the
library was sequenced on an Ion S5TM XL platform and 400/
600 bp single-end reads were generated.

Next, based on the threshold of 97% sequence similarity, we
used Usearch to cluster the filtered sequences into operational
classification units (OTUs) and classify them according to the
Greengenes Database. The products were analyzed using the
QIIME software package (Version 1.9.1) (Caporaso et al., 2010).
Finally, we used the vegan package in R (version 3.2.1) to perform a
Bray-Curtis differential analysis of intestinal flora changes.

Feces and Serum Metabolomic
Analysis Preparation
We thawed the fecal samples on ice, all samples were done
individually not pooled. We added 100 mg feces from each
sample to precooled 50% methanol and mixed thoroughly by
vortexing. The samples were then incubated on ice for 5 min and
centrifuged (15,000 x g) at 4°C for 15min, and the supernatant was
retained. The supernatantwas stored at -80°C until subsequent LC-
MS analysis.

After thawing the serum samples on ice, we added 20 ml of
serum from each sample to 80 ml of precooled formaldehyde
containing internal standard. The mixture was vortexed for 60
seconds to mix thoroughly. Then, the mixture was incubated at
-20°C for 12 h and centrifuged (4°C, 12,000 rpm, 15 min). The
supernatant was collected and dried under a stream of nitrogen.
The dried extracts were resuspended for subsequent LC-MS
analysis. A quality control (QC) sample was obtained by
mixing an equal quantity of all samples.

UHPLC-MS/MS Analysis
We used a Vanquish UHPLC system (Thermo Fisher, 100 ×
2.1 mm, 1.9 mm) to perform chromatographic separation of the
samples at a constant temperature of 40°C and an Orbitrap Q
Exactive series mass spectrometer (Thermo Fisher) to detect
eluted metabolites. Specific type of column used in the UHPLC-
MS/MS analysis was C18. The sample injection volume was 5 ml,
and the column flow rate was maintained at 0.2 mL/min. The
mobile phase contained two solvent eluents. In positive mode,
eluent A was 0.1% FA in water, and eluent B was methanol; in
negative mode, eluent A was 5 mM ammonium acetate with a
pH of 9.0, and eluent B was methanol. The gradient elution was
2% B for 1.5 min, 2-100% B for 12.0 min, 100% B for 14.0 min,
100-2% B for 14.1 min, and 2% B for 17 min. To analyze the
samples, we set the mass spectrometer spray voltage to 3.2 kV,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
the capillary temperature to 320°C, the sheath gas flow rate to 35
arb, and the auxiliary gas flow rate to 10 arb.

Database Search
We used Compound Discoverer 3.1 (CD3.1, Thermo Fisher) to
process the data generated by UHPLC-MS/MS. We used the
following parameters: retention time tolerance, 0.2 min; actual
mass tolerance, 5 ppm; signal strength tolerance, 30%; signal-to-
noise ratio, 3; and minimum intensity, 100,000. Then, we compared
the peaks of each metabolite and observed the differences. We, next,
normalizedthepeak intensities topredict themolecular formulaof the
metabolites. To analyze the peaks qualitatively and quantitatively, we
matched the peaks with the mzCloud (https://www.mzcloud.org/),
mzVault and MassList databases. Finally, we performed statistical
analysis on the data using statistical software (R, version 3.4.3;
Python, version 2.7.6; CentOS, version 6.6). If the data were not
normally distributed, normal transformations were attempted using
the area normalization method. These metabolites were annotated
using the KEGG database (http://www.genome.jp/kegg/), HMDB
database (http://www.hmdb.ca/) and Lipidmaps database (http://
www.lipidmaps.org/). Principal co-ordinate analysis (PCoA) and
orthogonal partial least squares discriminant analysis (OPLS-DA)
were performed with metaX. A t-test was used to calculate the P-
value. If VIP >1, P-value <0.05, and FC≥2 or FC≤0.5, the differences
between themetabolites were significant.We plotted the results on a
volcano map. We set the abscissa of the volcano chart to log2 (fold
change) and the ordinate to -log10 (P-value) to determine the
changes in the metabolites. For clustering heat maps, the data were
normalized using z-scores of the intensity areas of differential
metabolites and were plotted by the Pheatmap package in R
language. The correlations between differential metabolites were
analyzed by R language. R language was used to analyze whether
there was a correlation between differential metabolites. If the
correlation was statistically significant, correlation plots were
plotted by the corrplot package in R language. The functions of
these metabolites and metabolic pathways were studied using the
KEGG database. Metabolic pathway enrichment analysis of
differential metabolites was performed. When the ratio was
satisfied by x/n > y/N, the metabolic pathways were considered
enriched, and when the P-value of metabolic pathway <0.05,
metabolic pathways were considered significantly enriched.
RESULTS

Evaluation of Femoral Bone Structure
The results of Micro CT (Figure 1A) showed that the values of
BV/TV, Ct. V, Ct. Th, and Tb. N were lower in the OP group
than in the control group. However, Tb. Sp of the OP group was
higher than that of the control group. There was no significant
difference in Tb. Th between the two groups (Figure 1B).

Gut Microbiota Significantly Distinguish
the OP Group From the Control Group
TheOTUanalysis results revealed themicrobiota changes in theOP
group. A total of 802 OTUs were generated from OP and normal
November 2020 | Volume 10 | Article 535310
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mice (n = 7), including 21 phyla, 30 classes, 61 orders, 108 families,
180 genera, and 132 species. We used principal coordinate analysis
(PCoA) to observe the difference between themicrobiota in the OP
group and the control group (Figure 2A). Each point in the graph
represents a single sample. The figure shows that the flora in theOP
group and the control group are clearly divided into two regions,
indicating that theflora in the twogroupswas significantlydifferent.
After that, we performed a phylum-level analysis, as shown in
Figure 2B. The amount of Firmicutes and Bacteroidetes and the
percentage of Proteobacteria were significantly increased, while
Verrucomicrobia was significantly reduced in the OP group
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
compared with the control group. Next, we performed an LDA
effect size analysis (LEfSe) with LDA fold = 4, and the relationship
between different microbiota from the phylum level to the genus
level is shown in the cladogram (Figure 2C). As shown in the LDA
score map, in the OP mice, c_Bacilli, o_Lactobacillales,
f_Lac tobac i l l aceae , g_Lac tobac i l lus , p_Fi rmicutes ,
s_Lactobacillus_reuteri, s_Helicobacter_ganmani, and
s_Clostridium_sp_ND2 were significantly increased, while in the
control mice, f_Ruminococcaceae, s_Pseudomonas_fragi,
f_Rikenellaceae, g_Alistipes, f_Muribaculaceae, o_Bacteroidales,
c_Bacteroidia, and p_Bacteroidetes were significantly increased.
A B

FIGURE 1 | (A) Images of representative 3-dimensional Micro CT reconstructions of examined femurs from each group. (B) Evaluation of femoral bone of control
and OP mice by Micro CT after 70 days. Comparision of BV/TV, Ct.Th,Ct.V, Tb.N,Tb.Sp, Tb.Th in the two groups. (n = 7 mice per group in all panels. Data are
expressed as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001).
A B

C

FIGURE 2 | (A) PCoA analysis of the gut microbiota. PC1 = 41.86%, PC2 = 14.10% OP group: red; OP group: blue, Control group: red, n = 7. (B) Difference of gut
microbiota between OP group and control group at phylum level, n = 7. (C) LEfSe analysis of gut microbiota for OP group: green, Control group: red, n = 7, LDA
score >4.0. Red represents increased flora in OP mice; Green represents increased flora in control mice.
November 2020 | Volume 10 | Article 535310
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Metabolomics Analysis of Fecal Samples
From Postmenopausal Osteoporosis Mice
We performed OPLS-DA analysis on the data obtained by LC-MS
(Figure 3A) to identify the differences in fecal metabolites between
the two groups. The metabolite profiles of the two groups showed
good separation, indicating that OP can cause changes in
biomarkers in feces. OPLS-DA classification modeling, the
sample is divided into training set and test set at a ratio of 6:1,
using 7-fold cross-validation, each time one copy is selected as the
test set test sample, and the remaining 6 copies are used as the
training set Training modeling. R2 and Q2 were showed in Figure
S1. After the analysis, we obtained a total of 114 metabolites with
changes in the OP model by P-value (Hagan et al., 2019), of which
53 were upregulated and 61 were downregulated (Figure 3B). We
mapped volcano plots for the 1,255 fecal metabolites identified by
LC-MS. Among these, 42 metabolites were identified as potential
biomarkers basedon theHMDBdatabase.We listed the Log2FC,P-
value and VIP values of the metabolites inTable 1. Compared with
Control group the levels of 4-Phenylbutyric acid, b-Pseudouridine,
Uridine, Adenosine, Biotinwere increased andRiboflavin, Ritalinic
acid, Glycyl-L-leucine, Gly-Val, Gly-Tyr were decreased.

Metabolomics Analysis of Serum From
Postmenopausal Osteoporosis Mice
We performed OPLS-DA analysis on the data obtained by LC-MS
(Figure 4A) to identify the differences in serum metabolites
between the two groups. R2 and Q2 were showed in Figure S2.
The metabolite profiles of the two groups showed good separation,
indicating that OP can cause changes in biomarkers in serum. We
mapped volcano plots for the 515 serum metabolites identified by
LC-MS.After the analysis,weobtaineda total of 24metaboliteswith
changes in the OP model by P-value, of which 2 were upregulated
and 22 were downregulated (Figure 4B). Among these, 16
metabolites were considered potential biomarkers of OP. We
listed the Log2FC, P-value and VIP values of the metabolites in
Table2. ComparedwithControl group the levels ofTetrahydro-11-
deoxycortisol, 4-Methylphenol, 6-Phosphogluconic acid,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Deoxycholic acid, 5-Hydroxytryptophol were decreased and 2-
Hydroxymyristic acid were increased.

Correlations of Gut Microbial Genera with
the Metabolome of Postmenopausal
Osteoporosis Mice
We plotted a heat map to display the correlations of gut microbial
genera and differential metabolites (Figures 5A, B). The
relationships between well-predicted bacteria and fecal and serum
metabolites are plotted in Figure 5C (|r| > 0.7) and Figure 5D (|r| >
0.7), respectively. There were multiple correlations between the gut
microbiota at the genus level and metabolites, especially bile acids.
For example, according to the fecal metabolomic and 16S analyses,
hydrodeoxycholic acid was positively correlated with
Anaeroplasma (r = 0.862) and Parvibacter (r = 0.700).
Glycocholic acid was positively correlated with Faecalibaculum
(r = 0.821), Romboutsia (r = 0.856), and Gordonibacter (r=0.707)
and a negative correlation with Parasutterella (r = -0.728). Serum
deoxycholic acid had positive relationships with Parvibacter (r =
0.775) and Gordonibacter (r = 0.831), and Gordonibacter also had
positive correlationswith two other cholic acids, 7-ketodeoxycholic
acid (r = 0.789) and cholic acid (r = 0.854). Gordonibacter and
Parvibacter belong to the same family, Eggerthellaceae.

The above resultsmay suggest that the occurrence and development
of osteoporosis are closely related to cholic acidmetabolism and that the
Eggerthellaceae family plays a vital role in this process.

Random Forest Analysis
We used genus-level RF analysis to test the effectiveness of
distinguishing the OP model from the control group (Figures 6A,
B). The sample is divided into a training set and a test set at a ratio
of 4:1, and the average of the false positive rate and true positive
rate of 5-fold cross-validation is used to drawROCcurve. Since the
independent test set is used for testing, when the AUC of the test
set is not significantly reduced relative to the training set, it is
considered that there is no overfitting. We obtained an AUC of
0.99 from both the 16S ROC curve and all ROCs.
A B

FIGURE 3 | (A) OPLS-DA scores plot of fecal metabolite profiling between the OP and control groups. (B) Volcano plot analysis of fecal metabolites (VIP > 1,
|P(corr)| ≥ 0.5, jackknifed 95% confidence intervals).
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TABLE 1 | Differential fecal metabolites.

Name log2FC Pvalue VIP Up Down

4-Phenylbutyric acid 2.520114 0.008154 3.292082 up
Riboflavin -1.54385 0.003643 1.584122 down
b-Pseudouridine 2.068796 0.029984 1.766358 up
Uridine 1.508218 0.045368 1.730744 up
Adenosine 1.702021 0.022402 1.98056 up
Biotin 1.469365 0.00183 1.142501 up
Ritalinic acid -1.7891 0.044506 1.377868 down
2-Hydroxyphenylalanine 2.710969 3.49E-07 1.323967 up
Glycyl-L-leucine -3.06621 2.87E-05 1.742255 down
Gly-Val -2.58124 4.49E-05 1.735141 down
Gly-Tyr -2.16333 0.000113 1.346554 down
L-threo-3-Phenylserine -1.82545 0.000352 1.384437 down
Ala-Ile -2.2229 0.000994 2.02748 down
N-Acetyl-L-leucine -2.10276 0.002756 2.228996 down
Leucylproline -1.31182 0.019222 3.245156 down
gamma-Glutamyltyrosine -2.4517 2.30E-07 1.017503 down
L-(-)-Methionine -1.93278 0.000311 1.343952 down
Methionine sulfoxide -1.06576 0.001708 1.28186 down
Ornithine -1.1902 0.009353 1.792292 down
L-Tyrosine -2.17247 0.000215 1.533334 down
Valine -2.34421 0.000101 1.522017 down
Catechol 1.478887 0.017643 1.387654 up
Hyodeoxycholic Acid 4.121678 2.67E-06 1.20456 up
Glycocholic acidGlycocholic acid -3.6759 4.17E-06 1.428059 down
Stercobilin 4.990742 0.000317 2.467178 up
D-Glucose 6-phosphate 3.965526 0.001797 1.234257 up
Deoxyribose 5-Phosphate 1.925479 0.010653 1.030104 up
4-Hydroxybenzaldehyde -1.61006 9.24E-05 1.451096 down
Ergosterol peroxide 1.135775 0.001783 1.197758 up
Isopropyl myristate 2.32473 0.000235 1.571395 up
Sildenafil-d3 -2.49217 0.00031 1.300368 down
2-Hydroxy-4-methylthiobutanoic acid -2.55016 0.004946 3.924234 down
2-Hydroxycaproic acid -2.61195 0.007083 4.482585 down
Docosanamide -2.69821 0.00018 2.402933 down
2-Hydroxycinnamic acid -2.24045 5.77E-05 1.378673 down
Skatole -3.09426 3.25E-07 1.556727 down
DL-Tryptophan -3.18289 5.82E-08 1.432171 down
Indole-3-lactic acid -1.95456 0.000697 1.641163 down
Isohomovanillic acid -1.56827 0.018266 1.886425 down
7-Methylguanine -1.04554 0.03577 2.476467 down
Guanine -1.60688 0.031909 3.136626 down
Cytosine -1.56665 0.013968 2.442863 down
Frontiers in Cellular and Infection Microbiology | www.frontiers
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FIGURE 4 | (A) OPLS-DA scores plot of serum metabolite profiling between the OP and control groups. (B) Volcano plot analysis of serum metabolites (VIP > 1,
|P(corr)| ≥ 0.5, jackknifed 95% confidence intervals).
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DISCUSSION

Beneficial and pathogenic bacteria maintain a balanced state
(Icaza-Chávez, 2013). The intestinal microbiota can act as a
barrier to prevent invasion by disease-causing microorganisms
and influence endocrine organs, such as by providing short-
chain fatty acids and vitamins to the host (Sudo andMicrobiome,
2014; Neuman et al., 2015). When the balance is disrupted, the
gut microbiota will induce pathological processes in their host to
cause a variety of severe metabolic diseases (Icaza-Chávez, 2013).
Researchers have indicated that intestinal microbiota imbalance
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
might cause bone metabolic disorders (Britton et al., 2014;
Ohlsson et al., 2014; Parvaneh et al., 2015). However, the
relationship between intestinal microorganisms and host
metabolites in osteoporosis has seldom been studied thus far.
Through the application of a multiomics correlation network
approach, we analyzed the relationships between changes in the
microbiota and in the host and identified the association of
specific metabolites with the occurrence and development of
postmenopausal osteoporosis in this study.

In the 16S rRNA gene sequencing analysis, we observed an
increased Firmicutes/Bacteroidetes ratio, and Akkermansia was
TABLE 2 | Differential serum metabolites.

Name log2FC P-value VIP Up Down

Tetrahydro-11-deoxycortisol -2.35364 8.72E-06 1.465754 down
4-Methylphenol -2.85508 0.000329 1.773945 down
6-Phosphogluconic acid -1.26675 0.000481 1.357323 down
2-Hydroxymyristic acid 1.188196 0.001099 1.736772 up
Deoxycholic acid -2.96145 0.00168 1.997309 down
5-Hydroxytryptophol -2.05355 0.001885 2.036391 down
D-Mannose 6-phosphate -1.05951 0.002457 1.616874 down
7-Ketodeoxycholic acid -1.73967 0.009479 1.178995 down
D-Ribulose 5-phosphate -1.80248 0.010638 2.468253 down
N-Phenylacetylglycine -1.16033 0.012151 1.582213 down
Acetylcarnitine -1.09344 0.014461 1.522388 down
Hydrocinnamic acid -1.23681 0.018479 1.425951 down
Progesterone -1.85365 0.029654 1.175589 down
Cholic acid -1.21818 0.031485 2.146499 down
No
vember 2020 | Volume 10 | Artic
A

B

D

C

FIGURE 5 | Relationships of gut microbial genera with metabolites in OP mice. (A) Heat map to display the correlations of gut microbial genera and fecal
metabolites. (B) Heat map to display the correlations of gut microbial genera and serum metabolites. (C) Network analysis between well-predicted bacteria and fecal
metabolites. (D) Network analysis between well-predicted bacteria and serum metabolites.
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shown to decrease in our research. These factors all relate to the
overactivation of self-immunity. For example, Ansaldo et al.
found that Akkermansia induced intestinal adaptive immune
responses (Ansaldo et al., 2019) under homeostasis conditions.
The ratio of Firmicutes/Bacteroidetes is closely related to
circulating short-chain fatty acids (SCFAs) and can shape the
immunological environment (Trompette et al., 2014; Marques
et al., 2017). Overactivation of self-immunity is a widely accepted
osteoporosis pathogenesis (Zupan et al., 2013; Crotti et al., 2015),
indicating that this activation may be induced by gut
microbiota imbalance.

To clarify how the intestinal flora regulates bone metabolism,
we further explored the metabolism of postmenopausal
osteoporosis to determine the pathogenic mechanism of OP.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Metabolomics is emerging as a tool to discover biomarkers and
unravel pathological processes. Lei, using functional
metabolomics, found that N-acetylneuraminic acid played a
vital role in coronary artery diseases (Black and Rosen, 2016a).
Yachida performed fecal metagenomic and metabolomic studies
on 616 patients and found that branched-chain amino acids and
phenylalanine were very important in the aetiology and
diagnosis of intramucosal carcinomas (Yachida et al., 2019). In
this research, fecal metabolomics revealed a series of meaningful
metabolite changes, such as riboflavin (vitamin B2), which could
affect osteoblast differentiation (Chaves Neto et al., 2010).
Additionally, a population-based cohort that included 5,053
individuals further showed that dietary riboflavin intake
positively influences BMD (Rejnmark et al., 2008). We also
A B

FIGURE 6 | (A) Fecal metabolomic and 16S ROC. (B) Serum metabolomic and 16S ROC.
FIGURE 7 | Inferences about intestinal microbiota and metabolites regulate osteoporosis.
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found changes in 14 amino acids, one of the important energy
sources during bone remodelling that affect bone resident cells
through neuronal and hormonal mechanisms (Rendina-Ruedy
and Rosen, 2020). To further understand the crosstalk between
metabolites and microbiota, correlation analysis was conducted.
Gordonibacter and Parvibacter seemed to play a vital role, and
they belong to the same family, Eggerthellaceae; moreover, both
correlated with bile acid. Hydrodeoxycholic acid, glycocholic
acid, deoxycholic acid, 7-ketodeoxycholic acid, and cholic acid all
had strong correlations (|r| > 0.7) with these genera.

Microbiota and bile acids have multiple interactions. The
microbiota can regulate bile acid synthesis through the bile acid
receptors FXR andTGR5,which participate in bile acidmetabolism
(Sayin et al., 2013). In return, bile acids can modify microbiota
abundance by promoting bile-metabolizing bacteria proliferation
and inhibit bile-sensitive bacteria proliferation, thereby regulating
gut microbiota (Parséus et al., 2016).

Recent research has shown that osteoporosis is commonly seen
among patients with chronic cholestasis (Guañabens and Parés,
2018), and TGR5 knockout strongly induced osteoclast
differentiation in an OP mouse model (Li et al., 2019). Bile acids
can also regulate bone turnover, but the functions of specific bile
acids are still unclear. In our results, deoxycholic acid, which acted as
a Tgr5 agonist and is produced in the gut (Jensen et al., 2013), was
significantly downregulated in theOP group. Based on this result, we
infer that OP causes increased bile acid secretion and that the
antimicrobial effect of bile acid on intestinal bacteria causes changes
in the species abundance of the intestinal flora. This effect may
increase bile acid-metabolising flora and reduce bile acid-sensitive
flora, which subsequently affects bile acid intestinal metabolism and
increases ordecreases certain kinds of serumbile acid concentrations,
eventually affecting osteoclast activity and causing bone mass loss.
Exactly which type of bile acid affects osteoclasts and whether the
Eggerthellaceae family is closely related to bile acid metabolism still
need to be proven by further experiments (Figure 7).

Finally, we used random forest analysis to build classification
algorithm todeterminewhether our results effectively distinguished
the OP model group from the control group. Random forest
analysis is commonly used to solve “large p, small n” problems. In
addition, overfitting is not a problem because the generalization
error of the random forest converges (Matsuki et al., 2016). The
AUC of our model was 0.99 for both fecal and serum samples,
indicating that the model was appropriate to differentiate between
OPandnormalmice. Althoughour research confirmed that theOP
andnormal groupshad significant differences in intestinalflora and
metabolites, the differences in the blood metabolome were not as
obvious as those in the intestine. This finding may indicate that the
intestinalmicrobiotamay have a large effect on the body by indirect
effects; some metabolites act on the intestinal wall rather than
directly in the blood, such as changing the proportion of intestinal
Th17 cells and Treg cells to regulate the immune activation level in
the body (Britton et al., 2019; Hang et al., 2019). Correlating
metabolomics with more omics analyses may lead to new findings.

However, our study has certain limitations. Our sample size was
rather small not only for the random forest test but also for the
whole experiment. Larger sample size experiment is need in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
future to identify ideal biomarker for postmenopausal osteoporosis.
And we only found a correlation between osteoporosis intestinal
microbiota andmetabolites, but not to prove the causal relationship
between them, these also needed further research.
CONCLUSION

Our research found that the gut microbiota and metabolic
regulation were closely related to the occurrence and
development of osteoporosis. The gut microbiota is a vital
inducer of osteoporosis and could regulate pathogenesis through
the “microbiota-gut-metabolite-bone” axis, and some of the
components of this axis are potential biomarkers, providing a
new entry point for future studies on the pathogenesis and
treatment of postmenopausal osteoporosis.
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