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Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by
neuronal loss and dysfunction of dopaminergic neurons located in the substantia nigra,
which contain a variety of misfolded a-synuclein (a-syn). Medications that increase or
substitute for dopamine can be used for the treatment of PD. Recently, numerous studies
have shown gut microbiota plays a crucial role in regulating and maintaining multiple
aspects of host physiology including host metabolism and neurodevelopment. In this
review article, the role of gut microbiota in the etiological mechanism of PD will be
reviewed. Furthermore, we discussed current pharmaceutical medicine-based methods
to prevent and treat PD, followed by describing specific strains that affect the host brain
function through the gut-brain axis. We explained in detail how gut microbiota directly
produces neurotransmitters or regulate the host biosynthesis of neurotransmitters. The
neurotransmitters secreted by the intestinal lumen bacteria may induce epithelial cells to
release molecules that, in turn, can regulate neural signaling in the enteric nervous system
and subsequently control brain function and behavior through the brain-gut axis. Finally,
we proved that the microbial regulation of the host neuronal system. Endogenous a-syn
can be transmitted long distance and bidirectional between ENS and brain through the
circulatory system which gives us a new option that the possibility of altering the
community of gut microbiota in completely new medication option for treating PD.

Keywords: Parkinson’s disease, dopamine, intestinal neuromodulation, brain-gut axis, gut microbiota
INTRODUCTION

Parkinson’s disease (PD), also known as tremor paralysis, is a common neurological degenerative
disease in the elderly, characterized by the lesions of substantia nigra and striatum (Liepelt-Scarfone
et al., 2013). Tremor, muscle rigidity, bradykinesia, and unstable posture are the main clinical
symptoms of this disease. PD is associated with a variety of factors, including cerebrovascular
disease (Haugarvoll et al., 2005), cerebral arteriosclerosis (Kummer et al., 2019), infections
(Limphaibool et al., 2019), poisoning (Taba, 2017; Li et al., 2018), trauma, medications
(Höllerhage, 2019), and genetic defects (Vila and Przedborski, 2004; Manzoni and Lewis, 2013).
PD is the second most common neurodegenerative condition after Alzheimer’s disease which affects
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patients in the world. With the acceleration of the population
aging process and decrease of physical functions of senile
patients, the incidence and prevalence of PD have shown an
increasing trend year by year (Nussbaum and Ellis, 2003; Hirsch
et al., 2016). Approximately between 4.1 million and 4.6 million
people are affected by PD in 2005 totaled, and it has been
estimated that number will more than double by 2030 to
between 8.7 million and 9.3 million in the most populous
nations (Dorsey et al., 2007; Wang et al., 2020). The majority
of people who get PD are over the age of 60, the incidence of PD
among people over 60 is about one percent, men are more
susceptible to PD than women at a ratio of about 3:2 (De Lau
and Breteler, 2006; Dorsey and Bloem, 2018; Cerri et al., 2019).

The deposition of alpha-synuclein (a-syn) in neuronal cells
could contribute to the development of PD. The a-syn is the
most abundant protein constituent of Lewy bodies(LBs), which
are generally described as round lamellar eosinophilic cytoplasmic
inclusions (Braak et al., 2003a). LBs are the hallmark pathologic
features of PD. Whether LBs are cytotoxic or cytoprotective to
neuronal cells remains debatable. It could potentially be toxic since
the number of cortical LBs positively correlated with the severity of
symptoms of dementia in PD (Hurtig et al., 2000). However, in
some cases, Lewy pathology is also found but without present
parkinsonism (Parkkinen et al., 2008; Adler et al., 2010; Milber et al.,
2012). Some studies have also suggested thata-syn aggregates might
be protective (da Costa et al., 2000; Tanaka et al., 2004), while
oligomers and pre-fibrillar a-syn are the toxic species responsible
for neurodegeneration (Chen et al., 2009). The excessive
accumulation of a-syn can enhance its toxicity and lead to the
degeneration of DA (dopamine) neurons in the substantia nigra of
the midbrain in PD, and the loss of neurons is associated with
motor symptoms (Dickson et al., 2009). It is also possible rather
than the neuronal loss, the presynaptic terminal failure may be the
more critical pathogenic factor for motor symptoms of PD (Schulz-
Schaeffer, 2010). Besides motor symptoms, PD is also associated
with non-motor symptoms. In the early stage of PD, non-motor
symptoms such as insomnia, impairment of smell (Shah et al., 2009)
as well as gastrointestinal (GI) dysfunction (nausea, abnormal
salivation, constipation, prolonged intestinal transit time etc.)
(Cersosimo et al., 2013; Mulak and Bonaz, 2015) can be found.
The typical movement-related symptoms, such as tremor, rigidity,
bradykinesia, and postural instability are reported in the second
stage of PD. In the final stage, the severe psychotic symptoms such
as motor disorders and neuropsychiatric disturbances which
including depression (Marsh, 2013; Parashar and Udayabanu,
2017; Guo et al., 2020; Park et al., 2020), dementia (Tsuang et al.,
2013) can be observed in PD patients. The interesting phenomenon
is that PD patients who suffer from GI symptoms can occur several
years ahead of classic motor symptoms (Chen et al., 2015). The GI
dysfunction caused by gut microbiota disorder which can initiate a-
syn accumulation in the enteric nerve cell, causing concurrent
mucosal inflammation and oxidative stress (Chen et al., 2019). So
scientists give the hypothesis that PD may begin in the
gastrointestinal tract and transfer to the brain through the gut-
brain axis (Hawkes et al., 2007).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
It has been shown that the intestinal microbiota and its
metabolites can be involved in modulating a lot of GI
functions, such as intestinal permeability (Frazier et al., 2011),
mucosal immune function (Simrén et al., 2013), the motility
(Cani et al., 2013) and sensitivity of the intestine (Valdez-
Morales et al., 2013), as well as the activity in the ENS(enteric
nervous system) (Forsythe and Kunze, 2013). The microbiota
and its metabolites are also likely to modulate behaviors and
brain processes, including stress responsiveness (Dinan and
Cryan, 2012), emotional behavior (Foster and Neufeld, 2013),
pain modulation, ingestive behavior (Cryan and Dinan, 2012),
and brain biochemistry (Stilling et al., 2014). Therefore, altering
the community of gut microbiota through prebiotics and
antibiotics or fecal transplantation can give a new approach to
treat PD due to gut microbiotas play a significant role in the
neuropathogenesis of CNS (central nervous system) disorders.
THE ETIOLOGICAL MECHANISM OF PD

Aging is the most important risk factor for PD, and the
biochemical changes caused by aging exacerbate these
abnormalities in the brain of PD (Reeve et al., 2014).
Dysfunction of DA neurons will cause a neuronal loss in the
substantia nigra, which ultimately leads to inhibition of motor
cortex neuron activation and function (Sulzer, 2007). In PD
patients, motor symptoms are mainly related to the loss of DA
neurons in the substantia nigra (Yamada et al., 2004). Moreover,
neuropathological changes could be found in the autonomic
nervous system, olfactory structures, the lower brainstem, and
cerebral cortex (Dickson, 2012; Rey et al., 2016). Extrapyramidal
pathology is associated with a wide range of non-motor
symptoms, which is considered as an important feature of PD
(Lim and Lang, 2010). It is reported that about 80% of PD
patients have gastrointestinal dysfunction especially constipation
(Frazzitta et al., 2019) and the GI dysfunction can occur several
years before the onset of motor symptoms. Idiopathic
constipation is one of the most substantial risk factors for PD
(Poirier et al., 2016). For many years, people have understood
that the environmental and genetic factors can cause loss of DA
neurons in the substantia nigra, which has been dramatically
expanded the understanding of the etiology of PD (Schapira and
Jenner, 2011). Based on lots of experiment investigations, people
have reached a consensus on the mechanism of cell death
induced by toxins (Anselmi et al., 2018), while how the genetic
defects lead to the loss of the neurons in PD is not clear. The
neuronal cell death could be caused by apoptosis or autophagy.
Mitochondrial dysfunction, oxidative stress, altered protein
handling, and inflammatory could be involved in the neuronal
cell death (Lin and Beal, 2006; Schapira and Jenner, 2011).
Mitochondria play a critical role in cellular energy metabolism,
mitochondrial dysfunction and LBs formation are vital to the
pathogenesis of PD (Golpich et al., 2017).

As shown before, the formation of LBs is very important for
the understanding of pathogenesis in PD. Lewy neurites are the
October 2020 | Volume 10 | Article 570658
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elongated structures in dendritic or axonal compartments that
are in the central and peripheral nervous systems (Volpicelli-
Daley et al., 2014). Both LBs and Lewy neurites are mainly
composed of filaments of misfolded a-syn protein (Spillantini
et al., 1998; Goedert et al., 2013) The native conformation of a-
syn is a soluble monomer that serves a pivotal role in synaptic
transmission and enhances the transmitter release from the
presynaptic vesicle (Burré, 2015). The a-syn protein is
generally expressed in the CNS with a function of modifying
the supply and release of DA to regulate neurotransmission in
the brain (Longhena et al., 2019). The intermediate oligomeric
protofibrillar form of a-syn has been suggested to be the most
toxic species (Goldberg and Lansbury, 2000). Their accumulation
at presynaptic terminals will affect the pivotal steps of
neurotransmitter release (Bridi and Hirth, 2018). In PD
patients, the progressive degeneration of DA neurons in the
dense substantia nigra of the midbrain is the main pathological
change of PD (Lindvall and Kokaia, 2009).

Damage in synaptic activity by a-syn microaggregation plays
a key role in DA neurons degeneration (Calo et al., 2016). In
healthy conditions, the correct organization of synaptic vesicle
pools in a dopaminergic striatal terminal can be observed in the
brain, monomer a-syn by regulating DA transporters can
control preserved DA release and reuptake (Burré, 2015). In
the prodromal phases of PD, high levels of a-syn microaggregate
at synaptic terminals, this will alter the size of synaptic vesicle
pools. The trafficking between the reserve and readily releasable
pools will be impaired (Bridi and Hirth, 2018). Misfold a-syn can
misregulate or redistribute proteins of the presynaptic Soluble
NSF Attachment Protein Receptor (SNARE) complex, synaptic
vesicles cluster, and their recycling was attenuated (Wang et al.,
2014; Bellucci et al., 2017). Furthermore, a-syn overexpression
reduces dopamine transporter (DAT) membrane content and
reduces DA release (Vaughan and Foster, 2013). The presynaptic
alterations impair neurotransmitter exocytosis and neuronal
communication. Terminal loss and axonal or cell body
degeneration not yet happen during this stage. In the early
stages of PD, loss of neuronal connections at terminals could
trigger axonal damage synaptic and axonal loss, the onset of
symptoms is related to these changes (Caminiti et al., 2017).
DAT binding decreased and partial Nigrosome-1 degenerated
(Wang et al., 2017). Finally, in the advanced phases of PD, broad
synaptic, axonal, and cell body degeneration can be detected
concomitantly participate in disease progression. The degeneration
of DA neurons in PD can bemediated by apoptosis. Two particular
proteins have an essential function in the process of apoptosis:
DRP1 promotes mitochondrial cytochrome C release, while the
OPA1 inhibits cytochrome C release (Estaquier and Arnoult, 2007;
Sheridan and Martin, 2010). When the balance between the two
proteins is broken, a large number of cytochrome C are released,
the cell death process will happen (Suen et al., 2008). Once
apoptosis is activated, amoeba changes, cell membranes blister,
cytoskeleton collapse, and cytoplasm condense will also happen.
These will cause nuclear agglutination, chromosome agglutination
or fragmentation, plasma membrane bleb and apoptotic body
formation (Elmore, 2007). Apoptotic signals are transmitted to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
the mitochondria, causing the release of cytochrome C, which is
located in the intermembrane of mitochondria, where it acts as an
electron shuttle function in the respiratory chain (Li et al., 2000).
Cytochrome C binds to APAF-1 and activates caspase 9, causing
protein hydrolysis and eventually leading to neuronal apoptosis
(Woo et al., 2003). Under normal physiological conditions,
neuronal cells have a highly resistant ability to apoptosis in the
late stage of mitosis. However, pathologic apoptosis can occur in
nerve cells under some stimulus. In recent years, more and more
researchers have realized the importance of abnormal apoptotic
pathways in the pathogenesis of PD (Lama et al., 2020).

The researchers have found that a-syn not only can regulate
the neurotransmission in the brain and also it can regulate the GI
function. The a-syn forms and diffuse from the intestinal tract to
the brain, supporting the hypothesis that PD pathogenesis may
primarily function through the gut intestine, as shown in Figure
1 (Holmqvist et al., 2014). It is reported that during the early
stage of PD, the internal and external innervation of the GI tract,
the dorsal motor nucleus of the vagus nerve (DMV) and the ENS
of the vagus nerve were affected to various degrees by the
intestine, suggesting that the PD pathogenesis observed in the
gut were even earlier than the substantia nigra (Braak et al.,
2003b). It has been proven that an unknown neurotropic
pathogen initially damaged and disrupted the innervation of
the GI tract and led to Lewy pathology of the intestine. The
intestinal a-syn forms (including monomers, oligomers, and
fibrils) reach the DMV through vagal innervation and
eventually damage the substantia nigra, which lead to the
appearance of the clinical symptoms of PD (Braak et al., 2006;
Recasens and Dehay, 2014; Longhena et al., 2017) (Figure 1).
According to this hyperthesis, the clinical pathology of PD can be
found in the following three stages. In the early stage of PD,
initial pathological a-syn appears in the olfactory bulb and DMV
(Braak et al., 2003a; Forsyth et al., 2011). In the second stage of
PD, substantia nigra be positive for immunoreactive a-syn
inclusions (Repovs ̌ and Baddeley, 2006; Rey et al., 2016). In the
final stage, as LBs reach the striatum and cerebral cortex, the
severe psychotic symptoms of PD can be observed. It is reported
that gut-initiated pathological processes in PD not only can be
caused by a PD pathogen or environmental toxin, it also can be
directly caused by gut microbiota disorder. Holmqvist proved
that a-syn could be retrogradely transported from the intestinal
wall to the brain by the experiment that the injection of a-syn
into the intestinal wall of rats and track the transfer route
(Holmqvist et al., 2014). Some researchers also found that a-
syn can be transmitted via endocytosis to neighboring neurons
by using in vitro and in vivo experiments (Hansen et al., 2011;
Angot et al., 2012; Kim et al., 2019).

Since a-syn can be transmitted between brain and intestine
which gives us a new option that we can modify the gut
microbiota to alter the system of the intestine and reduce
concurrent mucosal inflammation, eventually reduce the
symptoms of PD. Nowadays, it is clear that certain bacteria are
strain-specific that they can produce different essential
neurotransmitters and specific neuromodulators. It is reported
that several neurotransmitters such as gamma-aminobutyric acid
October 2020 | Volume 10 | Article 570658
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(GABA), noradrenaline, serotonin, dopamine, and acetylcholine
are produced by gut microbiota in human beings. For example,
researchers reported that Lactobacillus spp., Bifidobacterium spp.
(Y2) and Streptococcus salivarius subsp. thermophilus can
produce GABA (Barrett et al., 2012; Pokusaeva et al., 2017).
Escherichia spp., Saccharomyces spp., and Bacillus spp. can
produce noradrenaline (Shishov et al., 2009; Rogers et al.,
2016); Streptococcus pp., Candida spp., Enterococcus spp., and
Escherichia spp. produce serotonin (Özoğul, 2004; Shishov et al.,
2009; Özoğul et al., 2012); Bacillus spp.(Bacillus cereus, Bacillus
mycoides, Bacillus subtilis), Escherichia coli (K-12), Hafnia alvei
(NCIMB, 11999), Klebsiella pneumoniae (NCIMB, 673),
Morganella morganii (NCIMB, 10466), Proteus vulgaris,
Serratia marcescens, and Staphylococcus aureus can produce
dopamine (Özoğul, 2004; Shishov et al., 2009; Rogers et al.,
2016); and Lactobacillus spp. produce acetylcholine (Rogers et
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
al., 2016). The neurotransmitters secreted by the intestinal lumen
bacteria may induce epithelial cells to release molecules that, in
turn, can regulate neural signaling in the ENS and subsequently
control brain function and behavior through the brain-gut axis.
In some animal studies, various bacterial strains also mediate
behavioral effects through the vagus nerve (Reid, 2019). Other
important molecules produced in the colon by microbial
fermentation of dietary fiber are short-chain fatty acids
(SCFAs), such as butyrate, acetate, and propionate. SCFAs can
regulate intestinal inflammation and immune function; they can
be detected in the blood circulation system and also across the
blood-brain barrier (BBB) via monocarboxylate transporters to
affect the CNS system. SCFAs can promote microglia-mediated
neuroinflammation (Sampson et al., 2016). For example, the
administration of high doses of propionate in rats can cause
neurasthenia (den Besten et al., 2013). Therefore, intestinal
FIGURE 1 | The etiological mechanism of Parkinson’s disease. Gut microbiota dysbiosis leads to increased intestinal permeability and systemic exposure of
bacterial endotoxins, thereby initiating excess a-syn expression and supporting its misfolding to form LBs. The intestinal LBs from ENS will reach the CNS through
the vagal nerve and eventually move to and damage the substantia nigra, which will lead to the appearance of the clinical symptoms of PD. The a-syn protein is
generally expressed in the CNS with a function of modifying the supply and release of dopamine to regulate neurotransmission in the brain, while, in PD patients’
brains, a-syn protein is overexpressed and forms the LBs will cause dopamine release decreased. Moreover, LBs are the most toxic species in the brain.
Mitochondrial dysfunction can be found under pathological conditions. Apoptotic signals are transmitted to the mitochondria, causing the release of Cyto C, which
located in the intermembrane of mitochondria. Cyto C activates caspase9, causing protein hydrolysis and eventually leading to neuronal apoptosis. Under normal
physiological conditions, neuronal cells have a highly resistant ability to apoptosis. However, when the conditions are pathological, their auto-apoptosis can occur
abnormally and cause DA neurons degeneration. Bacteria, including Enterobacteriaceae, Ralstonia, Proteobacteria, etc. are increased in PD stool samples, which will
raise the serum lipopolysaccharide (LPS) and other endotoxins concentration. And bacteria like Bacillus spp., Lactobacillus spp., Streptococcus spp. that can
produce neurotransmitters such as gamma-aminobutyric acid (GABA), serotonin, and dopamine separately are decreased in PD stool samples. LB, Lewy’s body;
CNS, central nervous system; ENS, Enteric nervous system; PD, Parkinson’s disease; Cyto C, Cytochrome C; DA, dopamine.
October 2020 | Volume 10 | Article 570658
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microorganisms and their products play important roles in
improving the symptoms and pathogenesis of PD.
THE CURRENT TREATMENTS FOR PD

Current treatments for PD either increase/replace DA, or prevent
the breakdown of DA, or prolong the action of levodopa to help
control tremors (Isaacson and Hauser, 2009). Medications and
surgery have been used to treat PD, but both have moderate side
effects and often produce disappointing results. We will cover the
current treatments related to PD and also discuss the side effects
of different treatments (Table 1).

Medications Increase or Substitute for
Dopamine
Since DA cannot enter into the brain, it cannot be given directly
to treat PD. Medications increase or substitute for DA can be
used to treat the PD.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Carbidopa-Levodopa
Levodopa can pass into the brain and be converted to DA to treat
PD (Haddad et al., 2018) and carbidopa can prevent levodopa
breakdown. Side effects may happen, including lightheadedness
(orthostatic hypotension) (Lau et al., 2018) or nausea (Kell et al.,
2017). As the disease progresses after years, the effect of levodopa
becomes less stable, and a tendency to wane and dyskinesia may
appear in PD (Tran et al., 2018).

Duopa Therapy
Duopa is a form of carbidopa/levodopa delivered in gel form. It
delivers the medication directly to the small intestine in the gel form
through a feeding tube (LeWitt, 2016). A pump slowly and
consistently delivers Duopa to the intestine through the tube. This
procedure allows themedicine to be absorbed smoothly and reduces
motion fluctuations and movement disorders (Chaudhuri et al.,
2016). The Duopa therapy has the risks that the tube may fall out or
infections may happen at the infusion site or a blockage occurring in
the tube.
TABLE 1 | Current treatments of Parkinson’s disease.

Group of
treatment

Name of
medicine

Pharmaceutical
names

Mechanism of action Drawbacks Ref.

increase or
substitute for
dopamine

Carbidopa-
levodopaa.

Lodosyn-
levodopa

Levodopa converted to dopamine,
carbidopa protect levodopa
breakdown

Lightheadedness, nausea,
dyskinesia

(Kell et al., 2017; Haddad et al., 2018;
Lau et al., 2018)

Duopa
therapya.

Duopa Delivers the medicine in the gel,
reduces motion fluctuations and
movement disorders

The tube fall out,
and infections, blockage in
the tube

(Chaudhuri et al., 2016; LeWitt, 2016)

Dopamine
agonistsa.

Requip, Mirapex,
Neupro

Similar effects as dopamine Hallucinations, sleepiness,
and compulsive behaviors

(Pahwa and Lyons, 2009; Kulisevsky
and Pagonabarraga, 2010; Yu and
Fernandez, 2017)

Apomorphine Intermittent subcutaneous injections
treat the motor symptoms of PD

Hallucinations, sleepiness,
and compulsive behaviors

(Patel et al, 2017; Antonini and Nitu,
2018)

MAO B
inhibitorsa.

rasagiline,
safinamide,
selegiline,

Prevent the breakdown of brain
dopamine

Nausea, insomnia, (Dezsi and Vecsei, 2017; Binde et al.,
2018; Szökő et al., 2018)

COMT
inhibitorsb

Comtan, Tasmar Block the enzyme that breaks down
dopamine;

Risk of serious liver damage,
diarrhea, dyskinesia

(Schlesinger and Korczyn, 2016;
Katsaiti and Nixon, 2018; Silva et al.,
2020)

Anticholinergb Cogentin,
trihexyphenid-yl

Used as monotherapy or combination
regimen, they work better on tremors

Impaired memory,
hallucinations, dry mouth, and
impaired urination.

(Nishtala et al., 2016; Mishima et al.,
2018; Morrow et al., 2018; Hong et al.,
2019)

Amantadineb Amantadine short-term relief of
mild symptoms, control involuntary
movements

Ankle swelling, skin purple
mottling, or hallucinations

(Wolf et al., 2010; Kim et al., 2018)

Creatineb Creatine Energy compound that exerts
neuroprotective effects

Weight gain, impairment of
renal function

(Xiao et al., 2014; Duarte-Silva et al.,
2018; Marques and Wyse, 2019)

Surgical
procedures

Deep brain
stimulationb

DBS Send electrical pulses to the patient’s
brain and reduces the symptoms of
PD

Infection, brain hemorrhage or
stroke.

(Follett et al., 2010; Lee et al., 2018)

Gene therapyc Gene therapy GAD, GABA Alter local neurotransmitters or
neurotrophic factors in the basal

Clinical results have been less
encouraging

(Bartus et al., 2014)

Immunotherapyc Immunotherapy a-syn
immunotherapies

Using antibodies against misfolded a-
synuclein

Induction of Th17 cell-
mediated inflammatory
autoimmunity,

(George and Brundin, 2015)

Cell
transplantationc

Embryonic
stem cells

Fetal
mesencephalic
tissue, stem cell

Introducing new dopamine cells into
the brain of PD

Unacceptable graft-induced
dyskinesia

(Normile, 2018)
Octo
aStandard therapeutic agents.
bAlternative therapeutic agents.
cTherapeutical agents under investigation.
ber 2020 | Volume 10 | Article 570658
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Dopamine Agonists
DA agonists mimic DA effects in the brain, the effective time is
longer than levodopa (Grall-Bronnec et al., 2018). Short-acting
injectable DA agonists such as Requip, Mirapex, and Neupro can
be used for quick relief in PD treatment (Pahwa and Lyons, 2009;
Kulisevsky and Pagonabarraga, 2010; Yu and Fernandez, 2017).
Apomorphine is a DA agonist that can be delivered by
intermittent subcutaneous injections to treat the fluctuations in
motor symptoms of PD (Antonini and Nitu, 2018). Side effects
including hallucinations, sleepiness, and compulsive behaviors
can be found (Patel et al, 2017).

MAO B Inhibitors
The brain enzyme monoamine oxidase B (MAO B) metabolizes
the brain DA (Tabakman et al., 2004). MAO B inhibitors can
prevent the breakdown of brain DA by inhibiting MAO B
enzyme activities (Finberg, 2019). These MAO B inhibitors
include rasagiline, safinamide, and selegiline (Deshwal et al.,
2017; Dezsi and Vecsei, 2017; Binde et al., 2018; Szökő et al.,
2018). Side effects including nausea or insomnia may happen
(Dezsi and Vecsei, 2017).

Catechol O-methyltransferase (COMT) Inhibitors
COMT inhibitors mildly prolong the effect of levodopa by
blocking an enzyme that can break down DA (Schlesinger and
Korczyn, 2016; Katsaiti and Nixon, 2018). The medication from
this class mainly includes Comtan and Tasmar (Olanow and
Watkins, 2007; Lees, 2008). This medicine has a risk of serious
liver damage and liver failure, other side effects include diarrhea
or increased risk of dyskinesia (Silva et al., 2020).

Anticholinergics
Anticholinergics including Cogentin and trihexyphenidyl were used
to control the tremor associated with PD (Olanow et al., 2001;
Nishtala et al., 2016; Mishima et al., 2018). It is reported that they
work better on tremors than on other PD characteristics (Lang and
Lees, 2002). They are common side effects such as impaired
memory, hallucinations, confusion, constipation, dry mouth, and
impaired urination (Morrow et al., 2018; Hong et al., 2019).

Amantadine
It can provide short-term relief of mild symptoms. It can be
used during the later stages of PD by giving together with
carbidopa-levodopa therapy to control involuntary movements
(Wolf et al., 2010). Side effects of amantadine may include
ankle swelling, skin purple mottling, or hallucinations (Kim
et al., 2018).

Creatine
Creatine is an energy compound that exerts neuroprotective effects
in animal models of PD (Duarte‐Silva et al., 2018; Marques and
Wyse, 2019). It also acts as an antioxidant protected against the loss
of both Nissl and tyrosine hydroxylase in the substantia nigra (Xiao
et al., 2014). Weight gain is the most common side effect of creatine,
impairment of renal function can also be found (Bender et al., 2008).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Surgical Procedures
Deep Brain Stimulation
DBS is offered to people with advanced PD (Lee et al., 2018). DBS
stabilizes medication fluctuations, reduces or prevents dyskinesias,
reduces tremors and stiffness, and improves movement slowness. In
deep brain stimulation (DBS), a surgeon first implants electrodes
into a specific part of the patients’ brain. Then the electrodes are
connected to a generator implanted in the chest near the patient’s
clavicle (Follett et al., 2010). Risks such as infections, brain
hemorrhage, or stroke may happen.

Gene Therapy
A lot of PD gene therapy clinical trials aim to alter local
neurotransmitters or neurotrophic factors in the basal. Although
these trials show that gene therapy can be safely delivered to the
brain and induce specific neuronal protein expression, the clinical
results have been less encouraging (Bartus et al., 2014).

Immunotherapy
Immunotherapy targeted mainly using antibodies against misfolded
a-syn (George and Brundin, 2015). Previous studies have tried to
remove a-syn from extracellular space, thereby reducing the
progressive deposition of a-syn aggregates throughout the brain
(Masliah et al., 2005; Masliah et al., 2011). A possible side effect of
immunotherapy is Th17 cell-mediated inflammatory autoimmunity
involving in neurodegenerative neuritis (Reynolds et al., 2010).

Cell Transplantation
Introducing new DA cells into the brain may help replace what is
lost in PD. To date, there have been cell transplantation clinical
trials using autologous and nonautologous cells, including the
use of the human embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPS) (Parmar et al., 2020). The Japanese
scientists have injected dopaminergic progenitor cells directly
into an area of the brain associated with neural degeneration in
PD in 2018 (Normile, 2018). The main challenge has been
unacceptable graft-induced dyskinesia (Piquet et al., 2012).
MICROBIOTA-TARGETED INTERVENTION
STRATEGIES TO MANAGE PD

Nowadays, it has been estimated that the human intestinal tract
harbors a diverse and complex microbial community which plays
an important role in many aspects of host physiology, including
nervous system development and human neurodegenerative
diseases (Thomas et al., 2017; Ceppa et al., 2020). The intestinal
flora is currently considered a key regulator of a smooth two-way
dialogue between the intestine and the brain (gut-brain axis). This
fact provides a promising opportunity for preventing or treating
neuropsychiatric conditions in PD. The relationship between gut
flora and the brain can be traced back to brain development. After
the fetus is born, the microorganisms obtained from themother and
the environment colonize the fetus’s intestine and play a critical role
in brain development (Codagnone et al., 2019). The functions of gut
microbiota include participation in the synthesis of multiple
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vitamins and fatty acids, and regulation of brain-derived
neurotrophic factor (BDNF), synaptophysin, post-synaptic density
protein 95 (PSD-95) (Sudo et al., 2004). A recent study has shown
that injections of LBs from PD into the striatum of baboons or the
intestine could induce the damage of the nigrostriatal pathway and
the pathological changes of the ENS. No pathological damage of a-
syn was detected in the vagus nerve and the DMV, suggesting that
DMV may not be the pathologic transmission route of a-syn. The
levels of a-syn in the blood of baboons injected were increased,
which was positively correlated with the levels of a-syn in ENS.
Endogenous a-syn may be transmitted long-distance and
bidirectional between ENS and the brain through the circulatory
system (Arotcarena et al., 2020).

It has been found in sterile animal research that the intestinal
flora is necessary for the healthy development of the nervous
system, and the nervous system function is challenging to mature
sterile animals because of the lack of intestinal flora (Luczynski
et al., 2016). It was found that compared with normal mice, the
expression of BDNF in the cerebral cortex and hippocampus of
sterile mice was significantly reduced (Arentsen et al., 2015). And
sterile mice were more likely to show anxiety and less activity
performance. After transplanting the healthy intestinal flora to
sterile mice, it was showed increased activity and decreased
anxiety in mice, and the 5-HT content of norepinephrine, DA,
and terminal brain striatum also significantly increased (De
Theije et al., 2014). The anxious behaviors and activities of SPF
mice indicated that the colonization rate of the GI flora during
colonization could affect the corresponding excitatory neuron
cell signaling mechanism to some extent.

The Association between Gut Microbiota
Alteration and PD
There are associations between the composition of gut microbiota
alteration and multiple prodromal markers of PD. Several studies
have proven that certain bacterial taxa can be used as biomarkers or
even drug targets for PD. A study showed that gut microbiota
dysbiosis was observed in the PD compared to the healthy group.
OTUs include Proteus sp., Bilophila sp., and Roseburia sp., were
increased with PD microbiomes and members of families
Lachnospiraceae, Rikenellaceae, and Peptostreptococcaceae, as well
as Butyricicoccus sp. were decreased (Scheperjans et al., 2015).
Another study was supporting that compared to the healthy
control, the levels of Lactobacillus, Prevotellaceae, Peptostreptococcus,
and Butyricicoccus spp. are lower and the levels of Proteus and
Enterobacter spp. are higher (Sampson et al., 2016). A recent
clinical trial including 666 elderly subjects was done to analyze the
association between PD risk factors and prodromal symptoms
markers with the composition of gut microbiota. The physical
activity, occupation-related solvent exposure, and constipation
were associated with the a-diversity of gut microbiota, and the
physical activity, gender, constipation, REM sleep behavior
disorder (RBD), as well as smoking, are associated with b-
diversity of gut microbiota, the age and uric acid-lowering drugs
are associated with both a- and b-diversity of gut microbiota.
Physical inactivity and constipation in individuals were highest
common with Firmicutes-enriched enterotype, while constipation
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
is the least common among individuals with Prevotella-enriched
enterotype (Heinzel et al., 2020). Another study showed Ralstonia,
Proteobacteria, Enteococcaceae concentration in the mucosa of PD
patients increased. These bacteria have pro-inflammatory
cytokine producing function. Anti-inflammatory bacteria
including Blautia, Coprococcus, Roseburia, and Faecalibacterium
in the stool samples of PD patients decreased (Keshavarzian et al.,
2015) The LPS (lipopolysaccharide) biosynthesis genes were also
reported significantly increased in the PD fecal samples
(Keshavarzian et al., 2015). Helicobacter pylori infection is also
related to trigger the pathogenesis in PD (Çamcı and Oğuz, 2016).
A two-year following study showed that low counts of Bacteroides
fragilis were related to worsening of motivation/activeness and
Bifidobacterium was associated with hallucinations/delusions
(Minato et al., 2017).

A study used the microbiome-wide association study
(MWAS) in two large datasets to specify the gut microbiota
alteration in PD. Cluster 1 which was composed of opportunistic
pathogens including Porphyromonas, Corynebacterium, Prevotella,
Porphyromonas, and Corynebacterium were increased in PD. Genera
in Cluster 2 including (Oscillospira, Lachnospiraceae_UCG-004,
Lachnospiraceae_ND3007_group) and (Agathobacter, Butyricicoccus,
Blautia, Faecalibacterium, Lachnospira, Fusicatenibacter, Roseburia)
were reduced in PD. Most increased groups belong to
Ruminococcaceae and Lachnospiraceae families which are already
known as SCFAs producing bacteria. Lactobacillus and Bifidobacteria
increased in PD in cluster 3. The genera in cluster 3 were probiotics
with carbohydrate-metabolizing and possible of becoming
opportunistic pathogens and immunogenic (Wallen et al., 2020).
Nishiwaki et al. use a meta-analysis method compared 223 PD
patients with 137 health controls and give a conclusion that genera
Akkermansia, Catabacter, and families Akkermansiaceae were
elevated, while Roseburia, Faecalibacterium, and Lachnospiraceae
ND3007 group were decreased in PD (Nishiwaki et al., 2020).
When the dietary fibers defected, Akkermansia muciniphila can
degrade the gut mucus layer and enhance enteric pathogen
infection risk (Desai et al., 2016). Abundance Akkermansia can
increase the permeability of intestine which exposes the intestinal
neural plexus to an oxidative or toxic environment, and this may lead
to a-syn fibrils aggregate in the intestine. Faecalibacterium and
Roseburia decreased in PD may provoke intestinal inflammatory,
these two genera are butyrate-producing bacteria and butyrate
belongs to SCFAs can induce anti-inflammatory cytokines gene
expression by inhibiting histone deacetylase (Sokol et al., 2008;
Canani et al., 2011). Cirstea also proved the intestinal function of
PD is related to gut microbiota composition andmetabolism (Cirstea
et al., 2020). The microbiota composition of fecal samples as well as
serum metabolomics were analyzed from 197 PD patients and 103
controls. There is a higher abundance of Christensenellaceae,
Desulfovibrionaceae, Bifidobacterium, Bilophila, Collinsella,
Akkermansia and lower abundance of Lachnospiraceae, Roseburia,
Faecalibacterium in PD. The microbiota in PD showed reduced
carbohydrate fermentation and low butyrate synthesis capacity,
while the proteolytic fermentation and deleterious amino acid
metabolites (p-cresol and phenylacetylglutamine) production were
increased. The interesting phenomenon is that butyrate-producing
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bacteria were negatively associated with stool firmness since
butyrate can regulate intestinal serotonin biosynthesis and
improve the motility of colonic (Vincent et al., 2018; Cirstea et al.,
2020). The SCFAs concentrations were significantly reduced in PD
fecal samples. The Bacteroidetes (phylum) and Prevotellaceae
(family) were reduced, and Enterobacteriaceae increased in PD.
SCFAs may induce ENS alterations and dysmotility of
gastrointestinal in PD (Unger et al., 2016). From all these studies,
we could conclude that the opportunistic pathogens were increased,
while potential benefit bacteria were reduced: Prevotellace decreased
and Enterobacteriaceae increased in PD. The microbiome changed
in PD is shown in Table 2.

The interplay between a‐syn and gut microbiota attracts a lot of
researchers’ interest. A previous study has already confirmed that
increased expression of a‐syn in the substantia nigra can cause
pathology of CNS, including motor and cognitive functions
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
impaired (Crowley et al., 2018). Nigral overexpression of a‐syn
reduced neuronal number in myenteric submucosal plexus,
increased glial expression in the myenteric plexus, modulated
myenteric and submucosal TH (tyrosine hydroxylase) intensity,
alter gut microbiota as well as bile acid composition (O’Donovan
et al., 2020). Plexus neuronal loss can affect epithelial barrier
integrity, secretomotor functions and immune cell migration,
which can increase the permeability of intestine and GI
inflammation. Potentially beneficial bacteria Faecalibacterium
prausnitzii, Prevotellaceae, and Lactobacillaceae were reduced in
PD, the abundance of Enterobacteriaceae was increased. Nigral
overexpression of a‐syn increased the level of fecal free bile acids.
The distributions of bile acid indicate the liver synthesis increased or
transporter deficiencies and reabsorption of bile acid in the small
intestine also reduced. CA (cholic acid) and DCA (deoxycholic acid)
have a role in cognitive decline (MahmoudianDehkordi et al., 2019).
TABLE 2 | Alterations of gut microbiota compositions associated with Parkinson’s disease.

Comparisona Microbiota Sample Mechanism Ref.

PD patients vs
Healthy control

Proteus sp.↑ Bilophila sp.↑and Roseburia
sp.↑Lachnospiraceae↓Rikenellaceae↓
Peptostreptococcaceae↓Butyricicoccus sp. ↓

Stool SCFA-producing families decrease (Scheperjans et al., 2015)

PD patients vs
Healthy control

Lactobacillus↓Prevotellaceae↓ Peptostreptococcus↓
Butyricicoccus spp.↓Proteus↑ Enterobacter spp.↑

Stool Decreased Prevotellace lead to increased
intestinal permeability, systemic exposure
of bacterial endotoxins

(Sampson et al., 2016)

PD patients vs
Healthy control

Firmicutes ↓
Prevotella ↑
Faecalibacterium ↓

Stool SCFA-producing taxon decrease (Heinzel et al., 2020)

PD patients vs
Healthy control

Ralstonia↑Proteobacteria↑ Enteococcaceae↑Blautia,
Coprococcus↓, Roseburia↓and Faecalibacterium↓

Stool Pro-inflammatory cytokine producing
bacteria increased, anti-inflammatory
bacteria decreased

(Keshavarzian et al., 2015)

PD patients vs
Healthy control

Helicobacter pylori↑ Stool Helicobacter pylori is a triggering factor in
PD pathogenesis

(Çamcı and Oğuz, 2016)

PD patients vs
Healthy control

Bacteroides fragilis ↓
Bifidobacterium↓

Stool Bacteroides fragilis were related with
worsening of motivation/activeness and
Bifidobacterium was associated to
hallucinations/delusions

(Minato et al., 2017)

PD patients vs
Healthy control

Porphyromonas↑Corynebacterium↑, Prevotella,
↑Porphyromonas, ↑
Ruminococcaceae ↓Lachnospiraceae↓
Lactobacillus ↑Bifidobacteria↑

Stool Opportunistic pathogens were increased,
SCFAs producing bacteria reduced,
probiotics with carbohydrate-metabolizing
increased

(Wallen et al., 2020)

PD patients vs
Healthy control

Akkermansia↑ Catabacter ↑Akkermansiaceae↑Roseburia,
↓Faecalibacterium↓ Lachnospiraceae↓

Stool Akkermansia can increase the permeability
of intestine, lead to a-syn fibrils aggregate
in intestine butyrate producing bacteria
decrease

(Nishiwaki et al., 2020)

PD patients vs
Healthy control

Christensenellaceae,
↑Desulfovibrionaceae↑Bifidobacterium↑Bilophila↑Akkermansia↑
Lachnospiraceae↓Roseburia↓, Faecalibacterium↓

Stool,
serum

Carbohydrate fermentation reduced, low
butyrate synthesis capacity proteolytic
fermentation and deleterious amino acid
metabolites production increased

(Cirstea et al., 2020)

PD patients vs
Healthy control

Bacteroidetes ↓Prevotellaceae ↓Enterobacteriaceae↑ Stool SCFAs may induce ENS alterations and
dysmotility of gastrointestinal in PD

(Unger et al., 2016)

PD patients vs
Healthy control

Lactobacillus casei shirota ↓staphylococci ↑ Stool Lactobacillus casei shirota can improve the
bowel movement by decreasing the
number of staphylococci in PD patients

(Cassani et al., 2011)

PD patients vs
Healthy control

Bacillus spp.↓ Stool convert L-tyrosine to L-DOPA (Surwase and Jadhav,
2011)

PD mice vs Healthy
control

Proteobacteria↑ Turicibacterales↑Enterobacteriales↑
Firmicutes↓ Clostridiales↓

Stool Fecal SCFAs concentration decrease,
increase DA and 5-HT levels, reduce
activation of microglia and astrocytes

(Sun et al., 2018)
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Increased DCA levels can inhibit the motility of GI. The DCA level
were significant positive correlations with Ruminococcaceae and
significantly negatively with Lactobacillus (O’Donovan et al., 2020).
Gorecki used a Thy1-aSyn PD mice model, and found LPS can
induce inflammation and alter the distribution of tight junction
proteins. The mucin-degrading Verrucomicrobiae and LPS-
producing Gammaproteobacteria were increased in PD patients.
LPS administration leads to the increasing of intestinal permeability,
motor impairment, nigral a‐syn aggregation, dopaminergic
neuronal loss and reduction in striatal dopamine. So LPS-
producing bacteria increasing can change the gut environment
and trigger the pathogenesis of PD by a‐syn aggregation (Gorecki
et al., 2019). LPS or inflammatory endotoxin modulate a‐syn
amyloidogenesis by the formation of intermediate nucleating
species. LPS-binding structural motif interacts with soluble
monomer stabilizes the a-helical intermediates in the a-syn
aggregation pathway. By saturation, transfer LPS can mediate the
nucleation probe. Finally, the nucleating intermediates mediated by
LPS mature into divergent fibrillary forms. LPS-induced can alter
the backbone motility of a‐syn, modulate a-syn aggregation, and
increase LPS-a‐syn fibril formation which is toxic in PD
(Bhattacharyya et al., 2019). Thus gut microbiota plays an
important role in the pathology of PD.

Microbial Regulation of Host Neuronal
System
The Prevotellaceace family members are important mediators of
host nutrition. They can ferment complex polysaccharides to
product SCFAs and modify bile acids through dietary
metabolism. (Arumugam et al., 2011). The SCFAs receptors 2
(FFAR2) and 3 (FFAR3) were found expressed in the ENS, portal
nerve and sensory ganglia system. The microbiota metabolites
can directly function to sensory neurons or can signal to neurons
via intermediate interactions with enteroendocrine or epithelial
cells and regulate the host behavior (Egerod et al., 2018). The
Prevotellaceae decreased which lead to intestinal permeability
increased and bacterial endotoxins exposure (Figure 1), thereby
initiating or retaining excess a-syn expression in the colon and
supporting its misfolding (Sarkar and Banerjee, 2019). The
increased Enterobacteriaceae in PD can raise the serum LPS
concentration and the relative abundance of the Enterobacter
spp. is also positively correlated with the severity of posture
instability and gait difficulties of PD patients (Lin et al., 2019).
LPS is derived from the gram-negative bacteria cell walls and
crosses the intestinal wall then enter into the bloodstream and
result in intestinal epithelial barrier disruption (Guo et al., 2013).
LPS in the bloodstream may induce systemic inflammation
(Tufekci et al., 2011), LPS as well as inflammatory cytokines
like tumor necrosis factor (TNF-a), interleukin (IL)-1b, and IL-6
can disrupt BBB and promotes a-syn misfolding (Block et al.,
2007), which lead to the destruction of DA neurons in the
substantia nigra (Rite et al., 2007). Thus the overgrowth of
Enterobacter spp. are correlated with the progression of PD
(Mulak and Bonaz, 2015; Nair et al., 2018).

The approach that gut microbial interventions can be used to
treat PD is supported by the fact that the gut microbiota can directly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
produce neurotransmitters or regulate the host biosynthesis of
neurotransmitters (Bested et al., 2013), as shown in Table 3. But
what are the functions of the neurotransmitters in gut microbiota
and how they function on the host neuronal system is still not clear.
A recent study shows that the Bacteroides fragilis can synthesis
GABA and supported the KLE1738 growth, which means the
GABA may be served as the growth substrate for KLE1738
(Strandwitz et al., 2019). Another study showed the 5-HT can
increase the colonization rate of Turicibacter sanguinis, suggesting
the role of neurotransmitter modulate bacterial colonization in the
gut (Fung et al., 2019). Almost half of the host dopamine is
produced by gut microbiota and up to 60% of colonic and blood
5-HT levels are biosynthesis by gut microbiota (Yano et al., 2015).
Microbiota modulates the 5-HT activates in the intestine and
increase the motility of GI. Microbiota also can regulate the local
5-HT to impact the central nervous system, an increasing number
of researches report that the microbiome affects the host neuronal
system (Sgritta et al., 2019). In the future, the microbiota specific
functions on the neurological disorders and use the microbiota as
the potential medical treatment for PD are needed to assess.

Gut Microbiota Approach to Treat PD
Antibiotics
Koutzoumis et al. test broad-spectrum antibiotics function on
oxidopamine injected rat PD model and found 90% of microbial
richness was reduced. The level of Firmicutes was reduced, while
Proteobacteria, Verrucomicrobia, Bacteroidetes, and Cyanobacteria
increased. Antibiotics treatment can decrease striatum IL-1b and
TNF-a levels, protect dopaminergic neuron cell loss and alleviate
motor deficits in the PD rodent model (Pu et al., 2019; Koutzoumis
et al., 2020).

Probiotics
Probiotics treatment has been proven to be a useful method to
improve the PD. Probiotics strain bifidobacteria and lactobacilli
have been reported to reverse PD conditions. The regular
intake of fermented milk beverages containing the probiotic
Lactobacillus casei shirota has been shown to improve the
bowel movement and inhibit staphylococci growth in PD
patients (Cassani et al., 2011). Probiotic bacterium Bacillus
spp. can convert L-tyrosine to L-DOPA, which can supply the
lost dopamine of PD (Surwase and Jadhav, 2011). Some
bacteria in the gut can convert levodopa to dopamine
through tyrosine decarboxylases(TDC). TDC has been
identified in the genome of more than 50 Enterococcus
strains, several Lactobacillus and Staphylococcus, which are
potential probiotics of the small intestine (Zoetendal et al.,
2012; van Kessel et al., 2019). Mediterranean diet (MeDi) which
contains a large quantity of Lactobacilli is shown have effective
in preventing Alzheimer’s disease, several clinical studies also
show that higher MeDi adherence was associated with reduced
odds for PD (Alcalay et al., 2012). A study showed that
pretreatment with a probiotic mixture containing B. animalis
lactis, L. rhamnosus GG, and L. acidophilus has neuroprotective
effects in PD models. Possibility because of butyrate can induce
the BDNF and glial cell line-derived neurotrophic factor
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(GDNF) upregulated, and monoamine-oxidase was inhibited
in the brain. Furthermore, probiotics mixture pretreatment can
reduce DA neurons loss, increase the level of DA and reduce
the activity of inflammatory cells of brain (Srivastav et al., 2019).

Prebiotics
Butyrate produced from bacteria is likely an interesting candidate
for PD treatment. Butyrate can induce Atg5- and PI3K/Akt/mTOR-
related autophagy way to cause a-syn degradation in a pesticide-
induced PD rat model. The abundance of butyrate-producing
bacteria elevated in the gut can prevent intestinal barrier
dysfunction and increase striatal DA levels (Qiao et al., 2020).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
Fecal Microbiota Transplantation (FMT)
FMT has a 1700-year history and was proposed to treat human GI
diseases (Zhang et al., 2012). Currently, there are multiple ways to
modulate gut microbiota, including antibiotics, probiotics, and
prebiotics. Moreover, FMT remains an effective method to restore
the gut microbiota ecosystem. FMT including screening for a
specific microbial population, homogenizing, filtering, and
resuspending stool samples, followed by colonoscopy, enema,
orogastric tube, or oral delivery in the form of capsules containing
lyophilized material (Biagi et al., 2013). Besides PD, FMT has been
used to treat various diseases, such as Irritable bowel syndrome
(IBS), type 2 diabetes, ulcerative colitis, and neurodegenerative
TABLE 3 | Functions of gut microbiota on Parkinson’s disease.

Functions Bacterial species Functional
substance

Mechanism of action Ref.

Neurotransmitters secretion Lactobacillus spp.,
Bifidobacterium spp. (Y2)
Streptococcus salivarius subsp.
thermophilus

GABA GABA secretion, regulate neural signaling in the enteric
nervous system, control the growth of hormone
secretion, control brain function and behavior

(Barrett et al., 2012;
Pokusaeva et al., 2017)

Escherichia spp.,
Saccharomyces spp. and
Bacillus spp.

Noradrenaline Noradrenaline secretion, regulate neural signaling in the
enteric nervous system

(Shishov et al., 2009; Rogers
et al., 2016)

Streptococcus pp., Candida
spp., Enterococcus spp. and
Escherichia spp.

Serotonin Serotonin secretion, regulate neural signaling in the
enteric nervous system

(Özoğul, 2004; Shishov
et al., 2009; Özoğul et al.,
2012)

Bacillus spp., E. coli, Hafnia
alvei,
Proteus vulgaris,
Serratia marcescens

Dopamine Convert L-tyrosine to L-DOPA, regulate neural signaling
in the enteric nervous system

(Özoğul, 2004; Shishov
et al., 2009; Rogers et al.,
2016)

Lactobacillus spp. Acetylcholine Acetylcholine secretion, induce epithelial cells to release
molecules can regulate neural signaling in the enteric
nervous system

(Reid, 2019; Rogers et al.,
2016)

Fermentation of dietary
fiber

Prevotellaceae Butyrate,
acetate and
propionate

Production of mucin and SCFAs, decreased SCFAs lead
to increased intestinal permeability, exposure
endotoxins, initiate excess a-syn expression and
misfolding

(Sampson et al., 2016;
Sarkar and Banerjee, 2019)

Rise serum
lipopolysaccharide(LPS)

Enterobacteriaceae
Gammaproteobacteria

LPS Rise the serum LPS population, induce systemic
inflammation, promotes a-synuclein deposition, increase
LPS-a‐syn fibril formation

(Guo et al., 2013; Lin et al.,
2019; Gorecki et al., 2019;
Bhattacharyya et al., 2019)

Induce inflammatory
responses

Ralstonia, Proteobacteria,
Enteococcaceae

Pro-
inflammatory
cytokine

Increase of pro-inflammatory cytokine (Keshavarzian et al., 2015)

Anti-inflammatory Blautia, Coprococcus,and
Roseburia and
Faecalibacterium

Butyrate The butyrate-producing bacteria such as Blautia,
Coprococcus,Roseburia and
Faecalibacterium decreased which have anti-
inflammatory function

(Keshavarzian et al., 2015;
Qiao et al., 2020)

Triggering factor in PD
pathogenesis

Helicobacter pylori Triggering factor in PD pathogenesis (Keshavarzian et al., 2015;
Çamcı and Oğuz, 2016)

Worsening of motivation Bacteroides fragilis,
Bifidobacterium

Low counts of Bacteroides fragilis related with worsening
of motivation/activeness and Bifidobacterium decreasing
related with hallucinations/delusions

(Minato et al., 2017)

Improve the bowel
movement

Lactobacillus casei shirota Improve the bowel movement, the number of fecal
staphylococci was decreased

(Cassani et al., 2011)

Increase bile acid Ruminococcaceae
Lactobacillus

CA and DCA Have a role in cognitive decline (MahmoudianDehkordi et al.,
2019; O’Donovan et al.,
2020);

Converting levodopa to
dopamine

Enterococcus, Lactobacillus
Staphylococcus

Tyrosine
decraboxylase
(TDC)

TDC in genome of bacterias, have the ability of
converting levodopa to dopamine

(Zoetendal et al., 2012; van
Kessel et al., 2019)

Neuroprotective effects B. animalis lactis,
L. rhamnosus GG L.
acidophilus

Butyrate Induce BDNF and glial cell line-derived neurotrophic
factor (GDNF) upregulated

(Srivastav et al., 2019)
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diseases (Glass et al., 2010). Patients with PD often suffer from
changes in GI motility. For example, chronic or idiopathic
constipation is often found as a co-comorbid condition in PD
patients and is associated with colonic and anorectal dyskinesias
(Abbott et al., 2007; Mertsalmi et al., 2017; Yu et al., 2018). Several
studies have shown that FMT is beneficial for the treatment of
constipation in PD and can also significantly improve the non-GI
symptoms of patients with neurological diseases (Sun et al., 2018;
Huang et al., 2019). The discovery of the gut microbiota regulatory
mechanism of PD pathogenesis has been highly valued (Borody and
Khoruts, 2012; Cryan and Dinan, 2012). The proposed approach to
evaluate FMT as a potential treatment for PD is primarily to assess
direct communication of the vagus nerve, changes in
neurotransmitter metabolites, activation of immune responses, and
production of neuroactive metabolites as well as neurotoxins
(Aroniadis and Brandt, 2013). A recent study using a PD mouse
model as a recipient found that fecal transplantation from PD
patients exacerbates dyskinesias and is associated with a decrease
in Lachnospiraceae andRuminococceae, which is a genus significantly
reduced from PD patients’ stool samples (Keshavarzian et al., 2015).
Besides, compared with healthy controls, FMT from PD patients
may exacerbate a-syn-related motor dysfunction in a-syn
overexpressing mice (Sampson et al., 2016). When transferring the
gut microbiota from PD mice to normal mice, striatal
neurotransmitter decreasing and motor impairment can be
observed in normal mice. In fecal samples of PD, several changes
can be observed: fecal SCFAs concentrations were significantly
increased, the number of bacteria Proteobacteria, Turicibacterales
and Enterobacteriales increased, while Firmicutes and Clostridiales
decreased. FMT can suppress the TLR4/TNF-a signaling pathway
which is involved in inflammation of the gut and brain. Finally, FMT
administration can improve the gut dysbiosis, decrease fecal SCFAs
concentration, increase DA and 5-HT levels, reduce activation of
microglia and astrocytes in the substantia nigra, restore motor
impairment of PD (Sun et al., 2018). Several clinical cases of PD
have shown that FMT treatment can reduce symptoms of co-morbid
GI, including bowel disorders, constipation, and ulcerative colitis.
Compared to the traditional PD treatment methods mentioned in
table 1, FMT has fewer side effects. In future, FMT treatment may
also help relieve several non-GI comorbid disorders and provide
additional support for the association between gut microbiota and
PD. Possible microbiota-targeted intervention strategies can improve
health status and prevent PD in the near future.
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CONCLUSION

The most possible conclusion about the connection between gut
microbiota and PD is that: The GI dysfunction could be found in
the early stage of PD, a-syn was found in both the gut and brain.
The gut disorder exacerbates a-syn deposition and will aggravate
neurodegeneration. a-syn deposition may start in the ENS of
PD, then accumulate and transfer to the CNS via a trans-synaptic
cell-to-cell transmission (Lionnet et al., 2018). The imbalance of
the gut tract shows a pro-inflammatory environment, the
number of the pathogen was elevated, the permeability of the
intestinal epithelial barrier also increased. The inflammatory
signals could be transferred to the brain through the gut-brain
axis and cause brain & behavior dysfunction.

Gut microbiota has been shown as the potential modulator of
human health. They play an important role in the intestine
system and brain function. Current studies indicate that modify
gut microbiota composition can affect brain neurochemistry via
neural, immune and endocrine. Through antibiotics, probiotics,
prebiotics or FMT approach could restore the gut ecosystem and
improve brain functions. In the future, more new GI biomarkers
need to discovery and the mechanism of specific bacteria through
which pathway effect on the host system needs to be clarified.
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Özoğul, F. (2004). Production of biogenic amines by Morganella morganii,
Klebsiella pneumoniae and Hafnia alvei using a rapid HPLC method. Eur.
Food Res. Technol. 219, 465–469. doi: 10.1007/s00217-004-0988-0

Pahwa, R., and Lyons, K. E. (2009). Levodopa-related wearing-off in Parkinson’s
disease: identification and management. Curr. Med. Res. Opin. 25, 841–849.
doi: 10.1185/03007990902779319

Parashar, A., and Udayabanu, M. (2017). Gut microbiota: Implications in Parkinson’s
disease. Parkinsonism Related Disord. 38, 1–7. doi: 10.1016/j.parkreldis.2017.02.002

Park, J. H., Lee, S. H., Kim, Y., Park, S. W., Byeon, G. H., Jang, J. W., et al. (2020).
Depressive symptoms are associated with worse cognitive prognosis in patients
October 2020 | Volume 10 | Article 570658

https://doi.org/10.1016/j.expneurol.2019.113159
https://doi.org/10.1016/j.expneurol.2019.113159
https://doi.org/10.2165/11319860-000000000-00000
https://doi.org/10.1002/ana.25564
https://doi.org/10.1016/j.bbih.2020.100037
https://doi.org/10.1002/mds.5554
https://doi.org/10.1017/cjn.2017.284
https://doi.org/10.4103/1673-5374.235220
https://doi.org/10.1111/j.1755-5949.2007.00035.x
https://doi.org/10.1016/j.parkreldis.2015.09.021
https://doi.org/10.1016/S0092-8674(00)80849-1
https://doi.org/10.1159/000353560
https://doi.org/10.1002/mds.22786
https://doi.org/10.3389/fneur.2019.00652
https://doi.org/10.1038/nature05292
https://doi.org/10.1186/s12974-019-1528-y
https://doi.org/10.1016/j.tips.2009.03.001
https://doi.org/10.1007/s00401-017-1777-8
https://doi.org/10.1155/2017/5012129
https://doi.org/10.3390/ijms20010141
https://doi.org/10.1093/ijnp/pyw020
https://doi.org/10.1016/j.jalz.2018.07.217
https://doi.org/10.1096/fj.12-223842
https://doi.org/10.1007/s12640-019-00053-7
https://doi.org/10.1007/s11910-013-0409-5
https://doi.org/10.1016/j.neuron.2005.05.010
https://doi.org/10.1371/journal.pone.0019338
https://doi.org/10.1111/ene.13398
https://doi.org/10.1111/ene.13398
https://doi.org/10.1212/WNL.0b013e318278fe32
https://doi.org/10.1212/WNL.0b013e318278fe32
https://doi.org/10.1371/journal.pone.0187307
https://doi.org/10.1016/j.parkreldis.2017.11.296
https://doi.org/10.1016/j.jns.2017.11.028
https://doi.org/10.3748/wjg.v21.i37.10609
https://doi.org/10.5056/jnm17105
https://doi.org/10.1002/mds.28119
https://doi.org/10.1517/14740338.2016.1165664
https://doi.org/10.1126/science.aau9466
https://doi.org/10.1056/NEJM2003ra020003
https://doi.org/10.1097/wnf.0b013e318038d2b6
https://doi.org/10.1212/WNL.56.suppl_5.S1
https://doi.org/10.1111/nmo.13726
https://doi.org/10.3136/fstr.18.795
https://doi.org/10.3136/fstr.18.795
https://doi.org/10.1007/s00217-004-0988-0
https://doi.org/10.1185/03007990902779319
https://doi.org/10.1016/j.parkreldis.2017.02.002
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Liu et al. Gut Microbiota Approach to Treat Parkinson’s Disease
with newly diagnosed idiopathic Parkinson disease. Psychogeriatrics. doi:
10.1111/psyg.12601

Parkkinen, L., Pirttilä, T., and Alafuzoff, I. (2008). Applicability of current staging/
categorization of a-synuclein pathology and their clinical relevance. Acta
Neuropathol. 115, 399–407. doi: 10.1007/s00401-008-0346-6

Parmar, M., Grealish, S., and Henchcliffe, C. (2020). The future of stem cell therapies
for Parkinson disease. Nat. Rev. Neurosci. 21, 1–13. doi: 10.1038/s41583-019-
0257-7

Patel, S., Garcia, X., Mohammad, M. E., Yu, X. X., Vlastaris, K., O'Donnell, K., et al.
(2017). Dopamine agonist withdrawal syndrome (DAWS) in a tertiary
Parkinson disease treatment center. J Neurol Sci 379, 308–311. doi: 10.1016/
j.jns.2017.06.022

Piquet, A. L., Venkiteswaran, K., Marupudi, N. I., Berk, M., and Subramanian, T. (2012).
The immunological challenges of cell transplantation for the treatment of Parkinson’s
disease. Brain Res. Bull. 88, 320–331. doi: 10.1016/j.brainresbull.2012.03.001
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