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Stapylococcus aureus is a common infectious agent in e.g. sepsis, associated with both high
mortality rates and severe long-term effects. The cytolytic protein a-hemolysin has repeatedly
been shown to enhance the virulence of S. aureus. Combined with an unhindered spread of
multi drug-resistant strains, this has triggered research into novel anti virulence (i.e. anti a-
hemolysin) drugs. Their functionality will depend on our ability to identify infections that might
be alleviated by such. We therefore saw a need for detection methods that could identify
individuals suffering from S. aureus infections where a-hemolysin was a major determinant.
Molecular imprinted polymers were subsequently prepared on gold coated sensor chips.
Used in combination with a surface plasmon resonance biosensor, a-hemolysin could
therethrough be quantified from septic blood samples (n = 9), without pre-culturing of the
infectious agent. The biosensor recognized a-hemolysin with high affinity (KD = 2.75 x 10-7 M)
and demonstrated a statistically significant difference (p < 0.0001) between the a-hemolysin
response and potential sample contaminants. The detection scheme proved equally good, or
better, when compared to antibody-based detection methods. This novel detection scheme
constitutes a more rapid, economical, and user-friendly alternative to many methods currently
in use. Heightening both reproducibility and sensitivity, molecular imprinting in combination
with surface plasmon resonance (SPR)-technology could be a versatile new tool in clinical-
and research-settings alike.

Keywords: sepsis, Staphylococcus aureus, alpha hemolysin, molecular imprinting, SPR
INTRODUCTION

Although commonly isolated as an asymptomatic colonizer, Staphylococcus aureus is also the
leading cause of blood- (Pfaller et al., 1999), skin- and soft tissue-infections (Fridkin et al., 2005)
worldwide. The rapid spread of multidrug resistant strains, now endemic in many parts of the world
(Diekema et al., 2001), is making treatment increasingly challenging and prompting research into
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novel anti-virulence drugs (Kane et al., 2018). Numerous
virulence factors, with functions ranging from modification of
neutrophil responses (Thammavongsa et al., 2013) and
complement activation (Rooijakkers et al., 2005) to host cell
lysis (Powers et al., 2012), are secreted during S. aureus
infections. The latter, a ß-barrel-forming cytotoxin termed a-
hemolysin (a-toxin, Hla), is heavily involved in the pathogenesis
of sepsis due to e.g. its negative effect on endothelial integrity
(Powers et al., 2012). Produced to some degree by approximately
80–99% of clinical isolates (Tabor et al., 2016), a-hemolysin
expression has furthermore been shown to correlate with
virulence (Jenkins et al., 2015). The performance of future anti-
virulence drugs depends on our ability to identify infections that
would be alleviated by such. We consequently saw need for a
novel detection method that could rapidly, with high sensitivity
and selectivity, recognize patients suffering from an S. aureus
infection where a-hemolysin is a major determinant.

Current guidelines state that for any suspected S. aureus
infection, almost irrespective of the infection site/syndrome,
samples should be taken for culturing (David and Daum, 2017).
The sensitivity of culture-based systems is generally low (Vincent
et al., 2006),meaning that for septic patients, where delayed or sub-
optimal treatment is associated with increased mortality (Josefson
et al., 2011), culture-based systems struggle to provide accurate
results within a clinically relevant time-frame (Gaibani et al., 2009).
Comparatively, nucleic acid based tests are generally quicker and
could provide not only a precise pathogen identification, but also
antimicrobial susceptibility profiles (Lehmann et al., 2008). Other
alternatives includeWestern blots, ELISA systems, and/orMALDI-
TOF-MS (Song et al., 2017).Althougharguablymore sophisticated,
these methods raise different concerns in the form of repeatability,
throughput, total cost, and the risk of detecting overall DNAemia
rather than solely the pathogenic agent of interest. We therefore
suggest a novel surface plasmon resonance (SPR)-based detection
scheme in which S. aureus a-hemolysin can be quantified directly
from patient samples, within a matter of minutes, eliminating the
need for intermediate processing.

The popularity of biosensors, in particular those based on SPR-
technology, has drastically increased since they were first
introduced in the 1980’s (Liedberg et al., 1983). They couple the
use of biological components, such as proteins ornucleic acids, with
an optical signal transducer to relay information about affinity,
concentrations and binding kinetics (Situ et al., 2010). Biosensor
applications range from clinical (Gupta et al., 2012) and
pharmaceutical (Cooper, 2002) to biological warfare detection
(Gupta et al., 2010). While most studies make use of the inherent
binding between an antibody and its antigen,we elected to combine
SPR technologywith imprinting techniques.Amolecular imprinted
polymer (MIP) consists of a cross-linked polymeric matrix formed
arounda templatemoleculeof interest (herea-hemolysin).A three-
dimensional cavity, complementary to the template in shape, size
and placement offunctional groups, is created in the polymer (Shea
and Sasaki, 1989). These artificially created recognition sites can
subsequently re-bind free template molecules with high affinity
during, for instance, protein extraction or biomarker detection/
quantification (Boysen, 2019). It excludes not only the need for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
molecular labelling, but also that of antibody manufacturing and
hence the use of research animals therein.

In this study, we have established a novel MIP- and SPR-
based a-hemolysin detection scheme. Our results suggest that
MIP technology could be useful in detection of this diagnostic,
prognostic and potentially predictive (i.e. response to anti-
virulence drugs) biomarker of sepsis.
METHODS

Ethics
The study was approved by the regional committee in Lund,
Sweden (ref. no. 2018/830). Informed written, and oral, consent
was obtained from all patients included before enrolment.

Preparation of a-Hemolysin Imprinted
(MIP) and Non-Imprinted (NIP) Chips
A detailed description of MIP chip preparation procedures can be
found elsewhere (Ertürk Bergdahl et al., 2019). Briefly, a-hemolysin
(H9395, Sigma Aldrich) was dissolved in phosphate buffer (10 mM,
pH7.4) to a concentration of 0.1mg/ml and immobilized onto a pre-
treated glass surface, forming a protein (a-hemolysin)mold. A 1.3 µl
aliquot of monomer solution [(N-2-Hydroxyethyl methacrylate,
10 %, v/v, Sigma Aldrich, 245801), (Polyethylene glycol
dimethacrylate, 50 %, v/v, Sigma Aldrich, 409510), MQ water
(40 %, v/v) and (10 mM 1,1’-Azobis cyclohexanecarbonitrile, Sigma
Aldrich, 380210)] was placed on the gold surface of a pre-treated
Biacore sensor chip (SIA kit Au, Cytiva). Subsequently placed upon
the protein mold, all components received 10 min of UV irradiation
(Dymax, 400W,365nm).Anon-imprinted (NIP) chipwasprepared
using the same method but excluding the template protein.

Preparation of Anti-a-Hemolysin
Immobilized Chips
The Amine Coupling Kit (BR100050, Cytiva) containing
ethanolamine, N-hydroxysuccinimide (NHS) and N-ethyl-N’-
dimethylaminopropylcarbodiimide (EDC), was used throughout
the process. The procedure for amine coupling, available on the
Biacore x100 instrument (Cytiva), was followed. Anti-a-hemolysin
(S7531,SigmaAldrich)diluted inacetatebuffer (10mM)pH5.0was
immobilized to a level of 1200 RU.

Sensitivity Analysis
Prepared chips were calibrated with HBS-EP+ buffer (BR100669,
Cytiva), using the Biacore x100 (Cytiva), until a stabile baseline was
reached. An a-hemolysin (H9395, Sigma Aldrich) dilution series
(0.012-0.76 µM) was prepared in the same buffer and subsequently
injected into the system (imprinted and immobilized) in
technological triplicates. The NIP chip was used as a negative
control for MIP measurements.

In order to analyze the samples with Biacore X100, sample
solution is injected over the sensor surface using an autosampler.
All steps including surface preparation, binding and regeneration
are monitored in a sensorgram which is a plot of response against
November 2020 | Volume 10 | Article 571578
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time, showing the progress of the interaction. Binding is displayed
directly on the computer screen during the course of the interaction
which makes the whole analysis real-time. The response is
measured in resonance units (RU) which is directly proportional
to the concentration of biomolecules accumulated on the surface.

Selectivity Analysis
Solutions containing putative cross-reactants (0.1 mg/ml), including
cholera toxin (C8052), IgG (I4506), albumin (H0900000), fibrinogen
(F3879), collagen (CC050), and keratin (K0253) (all purchased from
Sigma Aldrich), were prepared in HBS-EP+ buffer (BR100669,
Cytiva). The solutions were injected into each system (MIP, NIP
and the antibody-immobilized) separately, using the Biacore x100
(Cytiva). Response units (RU) were recorded, and the NIP chip was
used as a negative control for MIP measurements.

Sample Collection
Blood samples were collected at Lund University hospital, clinic of
infectious diseases, between 2018 and 2019, from patients with
confirmedblood infections (n=14).Whole bloodwas collected into
serum tubes before the serum fraction could be manually isolated
following centrifugation (1500 g, 10min). Patient samples thatwere
culturenegative forS.aureus, butpositive forother infectious agents
(n = 5), were used as negative controls during establishment of
calibration curves (Figure S3).

Quantification of a-Hemolysin From
Patient Samples
Serum samples collected from the patients with confirmed S. aureus
infection (n=9) and control serumsampleswere initially centrifuged
by using 100K spin columns (88503, Thermo Fischer) to remove the
most abundant proteins with MW ≥100 kDa and subsequently
diluted 1:10 in HBS-EP+ buffer (BR100669, Cytiva) before being
analyzed using the MIP chip, the antibody immobilized chip, and
ELISA. Patient samples that were culture negative for S. aureus, but
positive for other infectious agentswere used as negative controls and
spikedwith alpha hemolysin (0.047–3.03 µM) to generate calibration
curves (Figure S3) which were then used to calculate serum alpha
hemolysin concentrations in patient samples.

Sandwich ELISA Analysis
A96-well plate (Nunc,MaxiSorp)was coatedO/N, at 4 °C,with 100
µl anti-a-hemolysin (S7531, SigmaAldrich) diluted 1:12 500 (V/V)
in sodium carbonate buffer (0.05 M, pH: 9.5). Wells were then
blocked for 2 h, RT, using 250 µl BSA (1 %, W/V) in wash buffer.
Patient samples and alpha-hemolysin spiked serum samples,
diluted 1:10 (V/V) in PBS, were subsequently added to the wells
in duplicates (100 µl/well) and incubated for 2 h. Anti-a-hemolysin
(S7531, Sigma Aldrich) diluted 1:12 500 (V/V) were added (100 µl/
well) for an additional 2 h before secondary HRP-conjugated goat
anti-rabbit-antibodies (Bio-Rad, 1721019), diluted 1:4000 (V/V) in
wash buffer, was finally added (1 h, RT). Wells were incubated for
10–15 min with substrate 3,3′,5,5′-Tetramethylbenzidine (TMB,
SigmaAldrich,T4444) (100µl/well)before stop solution in the form
of 100 µl H2SO4 (1 M) was added and the absorbance was read at
450nm.Between each steps, wellswerewashed3 timesusing 0.05%
Tween 20 in PBS (V/V). The absorbance values recorded from the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
alpha-hemolysin spiked serum samples were used to draw a
calibration curve which was then used for the quantification of
alpha hemolysin in patient samples.
RESULTS

Sensitivity and Selectivity of the a-
Hemolysin Imprinted (MIP) Chip
An a-hemolysin dilution series, with concentrations ranging
between 0.012–0.76 µM, were injected into the MIP system using
Biacore x100. A calibration curve, with a high degree of fit (R2 =
0.999), could subsequently be created (Figure 1A). Data from this
experiment confirmed that the biosensor was able to recognize the
templatemoleculewith high affinity (KD=2.75 x 10

-7M), andwhen
a saturation curve was established, the maximum response was
strong, around 600 RUs (Figure S1). Analysing the formerly
described dilution series with the non-imprinted (NIP) chip, left
the intensityof the responsemarkedly lowered (Figure1B). Limitof
detection (LOD) values were calculated from the respective
formulas (3xSD from blank measurements) and found to be
0.022 and 2.256 µM for the MIP- and NIP-chip respectively.
These results illustrate how, although some unspecific binding to
the polymer surface can be detected, template imprinting is crucial
for accurate and uniquely determined measurements to be made.

Selectivity of the system was analyzed in terms of the MIP
chip’s interaction with potential cross-reactants, i.e. other proteins
that might be found in blood samples such as IgG, fibrinogen and
albumin. Since the system could potentially also be used for other
types of S. aureus infections, such as skin, additional possible
contaminants, such as keratin and collagen were also tested for
selectivity (Figure 1C). Cholera toxin was included to ensure that
structural similarity between analyte and template protein was not
enough to cause noteworthy interaction with the MIP. When all
analytes were added at a concentration of 0.1 mg/ml, a-hemolysin
generated the greatest response by far (732.98 RU), followed by
keratin (mean difference 486.4 RU or 66.4%) and collagen (mean
difference 589.5 RU or 80.4%). A one-way ANOVA analysis
confirmed statistically significant differences between the MIP’s
response to a-hemolysin, compared to all potential cross reactants
(p < 0.0001). It is clear from the selectivity profile of the NIP chip
(Figure 1D), that a lack of artificially created recognition sites left
the system without any selectivity for a-hemolysin (p > 0.05 or
higher RU for cross-reactants).

Sensitivity and Selectivity of the Anti-a-
Hemolysin Immobilized Chip
Inorder tocompare theMIP-baseddetection system toonewhich is
more commonly used in combination with SPR-technology today,
an anti-a-hemolysin antibody was immobilized onto a
commercially available Biacore sensor chip. A calibration curve
was established by analyzing the same a-hemolysin dilution series
as before (0.012–0.76 µM) using the new chip (Figure 2A).
Compared to that of the imprinted chip, degree of fit was less
satisfying (R2 = 0.829), affinitywas similar (KD= 3.21 x 10

-7M), and
LOD was 10 times better (0.002 µM) for the anti-a-hemolysin
immobilized chip. The saturation curve generated for the
November 2020 | Volume 10 | Article 571578
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immobilized system showed a slightly higher R2 value but
saturation with a much lower maximum response (Figure S2).
Even though it displayed better sensitivity, as indicated by the low
LOD value, the antibody immobilized system reached saturation at
lower concentrations, suggesting that the MIP chip might perform
better in clinical settingswhere a wider dynamic range is preferable.

The antibody immobilized system proved furthermore to be
highly selective for a-hemolysin (Figure 2B). The response
triggered by a-hemolysin (9.40 RU) was much greater than, yet
followed by, cholera toxin (mean difference 8.5 RU or 90.4%) and
keratin (mean difference 9.07 RU or 96.5%). Responses for
fibrinogen and IgG were non-detectable (ND). Like in the MIP
chip measurements, a one-way ANOVA analysis confirmed
statistically significant differences between the immobilized chip’s
response to a-hemolysin compared to all potential cross reactants
(p < 0.0001). For easy comparison, selectivity coefficients (response
a-hemolysin/response cross-reactant)were established for all chips
(MIP, NIP and the antibody-immobilized chip) (Table 1).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Quantification of a-Hemolysin Directly
From Patient Samples
The MIP chip, demonstrating good sensitivity (especially at high
a-hemolysin concentrations) and selectivity (especially for
albumin, the most abundant protein in blood), was subsequently
used for direct quantification of a-hemolysin in patient samples
(Figure 4). A schematic representation of the procedure used is
shown in Figure 3. Serum samples were collected from individuals
with systemic bacterial infections (n = 14) and diluted 1:10 in
HBS-EP+ buffer before analysis. Those that were culture positive
for S. aureus (n = 9) were termed 1–9, while non- S. aureus
positive infections (n = 5) were used as negative controls in the
making of calibration curves. Serum a-hemolysin concentrations
could be directly extracted from patient data by using the equation
presented in the calibration curves in Figure S3. As the procedure
was not culture based, these quantifications were related to the
level of toxin in patient blood, rather than the bacterial strain’s
expression of toxin in vitro. High serum alpha hemolysin
A B

C D

FIGURE 1 | Chip sensitivity and selectivity is heavily dependent on the formation of template-molecular imprints. Calibration curves were established using an a-
hemolysin dilution series of 0.012–0.76 µM. The molecular imprinted polymer (MIP) (A) yielded a considerably higher response and showed a much broader dynamic
range as compared to the non-imprinted polymer (NIP) (B). The MIP essentially demonstrated a double binding response (RU) for every doubling in a-hemolysin
concentrations. Although some unspecific binding, low for potential blood-sample contaminants but higher for potential skin-swab contaminants, could be detected,
the MIP proved to be highly selective for a-hemolysin (C). The NIP showed no a-hemolysin selectivity (D). All presented values represent the mean of triplicates with
corresponding SD values. One-way ANOVA analysis was used to evaluate selectivity results (C, D). ****P < 0.0001; ns, non-significant.
November 2020 | Volume 10 | Article 571578
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A B

FIGURE 2 | The antibody-immobilized chip generated a sub-optimal calibration curve but displayed a better a-hemolysin selectivity. The calibration curve for the
antibody-immobilized chip was established in the same way as for the MIP (A). Here, a double response (RU) was not seen as a result of doubling in a-hemolysin
concentrations which effectively decreased both the dynamic range and the degree of fit (R2 = 0.829). Contrarily, the antibody-immobilized chip proved to be highly
selective for a-hemolysin, with little or no response recorded for all potential blood-sample contaminants (B). Values are presented as the mean of triplicates with
standard deviations. A one-way ANOVA analysis was used to evaluate selectivity results. ****P < 0.0001; ND, Non-Detectable.
TABLE 1 | With the exception of albumin, the antibody-immobilized chip showed greater selectivity coefficients for all potential cross-reactants.

Analyte Response (RU) MIP chip K(MIP chip) Response (RU) NIP chip K(NIP chip) Response (RU) Immobilized chip K(Immobilized chip)

Alpha hemolysin 733.0 – 67.82 – 9.4 –

Keratin 246.6 2.97 965.4 0.07 0.3267 28.77
Collagen 143.5 5.10 222.7 0.30 0.2833 33.18
Cholera Toxin 71.44 10.26 420.2 0.16 0.9 10.44
Fibrinogen 91.21 8.04 69.1 0.98 ND ND
IgG 59.49 12.32 88.44 0.77 ND ND
Albumin 4.723 155.20 61.29 1.10 0.08 117.50
Frontiers in Cellular and
 Infection Microbiology | www
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No interaction could be detected between the immobilized chip and fibrinogen or IgG. Interactions with potential skin-swab contaminants were also lower (generating a higher selectivity
coefficient). Only albumin had a percentually lower binding to the MIP. Selectivity coefficients (K) were calculated using: Response (a-hemolysin)/Response (cross-reactant).
FIGURE 3 | The procedure used for a-hemolysin analysis from patient samples includes 5 main steps. The initial MIP chip construction (A) can be divided further into gold
chip surface preparation for introduction of free vinyl groups (AI), glass surface treatment for subsequent template protein immobilization (AII), and UV polymerization around
the immobilized template protein (AIII). Because the MIP is stabile for month/years if stored under the right conditions, (AIII) can take place long before actual use. Once a
blood sample is drawn (B), coagulation and a 10 min centrifugation (C) will enable separation of serum. Diluted serum can subsequently be injected into the MIP/SPR-
system (D) from which results can be read directly, and potentially sent to the treating physician, within 30 min of blood being drawn (E).
| Article 571578
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concentrations seemed furthermore to be correlative with
increased mortality rates. Within the high scoring half, and the
low scoring half, of the samples tested, mortality rates were 40 and
0% respectively.

To verify the accuracy of the patient sample alpha hemolysin
concentrations calculated by using the MIP chip, both the anti-
alphahemolysin immobilized chip and the ELISA systemwere used
to quantify serum alpha hemolysin concentrations in the same
samples. While the biosensor recorded slightly higher values for
each sample when the antibody immobilized chip was used, the
trend (the individual ranking of patients) was similar to the MIP
chip (Figure 4). The ELISA analysis gave values highly similar to
those recorded using the MIP chip (Figure 4).
DISCUSSION

Here, we designed a novel a-hemolysin detection scheme and
evaluated its potential usability as a tool for (primarily) clinical
testing. Enabling rapid diagnosis of alpha hemolysin expressing S.
aureus strains in critically ill patients, results were generated in only
minutes (< 0.5 h) after sampling. We purpose that this technology,
used in combination with e.g. anti-virulence drugs, could constitute
an important new tool in both clinical and research settings.

Today, antibodies are widely used in both basic and applied
medical sciences, notably also in combination with SPR-based
systems. Although many display KD-values between 10-6–10-9 M
(Liu et al., 2015), production of high affinity antibodies against
poorly immunogenic antigens remain a big challenge, and batch-
to-batch variations are frustratingly common (Couchman, 2009).
The MIP chip used in the course of this study had a KD value of
2.75x10-7 M and a LOD value of 0.022 µM. As such, the a-
hemolysin affinity was well within the range of normal antibody-
antigen interaction, and the detection limit was 1000 times lower
than the recorded bottom patient value, which confirms its
usability in clinical settings. Previous research has shown that
MIP techniques can instead be combined with capacitive
biosensors to reach a detection limit of 2.5x10-19 M (Ertürk
et al., 2018). However, as a-hemolysin concentrations that low
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
are unlikely to be of any clinical significance, the increased
robustness of the user-friendly SPR biosensor is here preferable.

In a previous study, comparing the reproducibility of an
antibody-immobilized system to that of an imprinted one, it was
found that the former began to lose its detection ability after 25
sample injections while the latter lasted twice that amount (Erturk
et al., 2015). Additionally, using aMIP surface eliminates the risk of
the chip becoming a target for secreted bacterial enzymes, such as
hydrolases, present in the media/sample.

The polymer composition used for MIP chip preparation was
chosen based on detailed former characterization and optimization
studies, specifically in terms of functionality (sensitivity and
selectivity) and on nanosized topographical differences (then
assessed using cyclic voltammetry, atomic force microscopy, and
scanning electron microscopy) (Ertürk Bergdahl et al., 2019).
However, unspecific binding to the polymer surface could still be
detected. Both the potential blood- and skin-sample contaminants
showed a stronger percentual binding to theMIP chip as compared
to the antibody-immobilized chip. Albumin, being the most
abundant protein in blood plasma by far (Moman and Varacallo,
2020), was the only exception. Though, when all disadvantages of
antibodies, such as short half-life, high cost, use of animals in
production and subsequent batch-to-batch variations, are taken
into consideration, the MIP system again appear preferable.

More rigorous evaluation, including more patient samples, is
required for actual implementation of the scheme into clinical
settings. However, this study demonstrates how the use of MIP
and SPR based technology could allow physicians to make
informed decisions regarding treatment much earlier, as they
would not have to wait for the result of bacterial culturing. This,
in turn, could help reduce the use of broad-spectrum antibiotics
(frequently administered early on) and consequently the spread
of antimicrobial resistance (Rhee et al., 2020).

Previously linked to increased virulence (Jenkins et al., 2015),
and here linked to increased mortality rates, blood a-hemolysin
concentrations also appeared to serve as a prognostic biomarker
of sepsis. Despite not including anti-virulence drugs in this study,
we speculate that a-hemolysin could also serve as a predictive
biomarker (i.e. response to anti-a-hemolysin drugs) and hope to
FIGURE 4 | Blood a-hemolysin levels can be determined using MIP- and SPR-technology. Serum was separated from whole blood and diluted 1:10 in HBS-EP+
buffer before injection into Biacore x100. Both the MIP, the immobilized system, and the ELISA generated comparable, and similarly ranking, values. Values in are
presented as the mean of triplicates with standard deviations.
November 2020 | Volume 10 | Article 571578
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test this hypothesis at a later stage. Should adaptation to larger-
scale analysis be made, in which more controls and anti-
virulence drugs were included, it is likely that the performance
of the scheme should improve further.

Our results suggest that MIP technology could be useful in
detection of this diagnostic, prognostic and potentially predictive
biomarker of sepsis. The detection scheme is inexpensive, robust,
easily carried out, and easily manipulated.
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