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The pe/ppe genes are found in pathogenic, slow-growing Mycobacterium tuberculosis
and other M. tuberculosis complex (MTBC) species. These genes are considered key
factors in host-pathogen interactions. Although the function of most PE/PPE family
proteins remains unclear, accumulating evidence suggests that this family is involved in
M. tuberculosis infection. Here, we review the role of PE/PPE proteins, which are believed
to be linked to the ESX system function. Further, we highlight the reported functions of PE/
PPE proteins, including their roles in host cell interaction, immune response regulation,
and cell fate determination during complex host-pathogen processes. Finally, we propose
future directions for PE/PPE protein research and consider how the current knowledge
might be applied to design more specific diagnostics and effective vaccines for global
tuberculosis control.
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INTRODUCTION

Mycobacterium tuberculosis (Mtb), the causative pathogen of tuberculosis (TB), is an extremely
successful intracellular pathogen. The interactions between Mtb and host immune system
determine the outcome of Mtb infection. PE/PPE families are seemingly related to mycobacteria
pathogenicity, as its members are abundant in pathogenic mycobacteria (Akhter et al., 2012; Li et al.,
2019) and less present in nonpathogenic mycobacteria (McGuire et al., 2012). Previous reviews have
discussed the pe/ppe genes evolution (Fishbein et al., 2015), the expression and regulatory role of PE/
PPE proteins (Li et al., 2019), as well as the relation with virulence and host cell fate (Yu et al., 2019).

Given the importance of the PE/PPE family in host-pathogen interactions, herein, we summarize
the latest experimental advances in PE/PPE protein interactions with host cells and provide a
comprehensive overview of the involvement in macrophage processing of Mtb, such as adhesion,
receptor interactions, immune response, environmental stress resistance, phagocytosis, intracellular
survival, and cell fate regulation. This information may contribute to tuberculosis future
intervention strategies, such as improved diagnostic tools and vaccine candidates.
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FUNCTIONAL RELATIONSHIPS BETWEEN
PE/PPE PROTEINS AND THE ESX
SECRETION SYSTEM

Currently, the original evolution of the pe/ppe gene families remains
unclear. However, the ancestral pe/ppe gene family is reportedly
related to the ESX (early secretory antigen target 6 system) protein
family (Gey van Pittius et al., 2006). The pe/ppe genes seem to have
evolved and duplicated in association with the duplication of the
five esx gene cluster regions in the Mtb genome (Gey van Pittius
et al., 2006; Akhter et al., 2012; Fishbein et al., 2015) that can be
inferred from the most primitive ESX-4, which has no PE/PPE
proteins among its components, in contrast to the more recent
ESX-5, which has two PE (PE18 and PE19) and three PPE (PPE25,
PPE26, and PPE27) proteins (Majlessi et al., 2015). Besides, the
recently evolved PE_PGRS (polymorphic GC-rich sequences) and
PPE_MPTR (major polymorphic tandem repeats) subfamilies are
believed to have originated from pe/ppe genes within the ESX-5
cluster (Gey van Pittius et al., 2006).

Recent studies have indicated that the ESX system contributes
to PE/PPE protein export, and, likewise, ESX system protein
secretion is related to that of PE/PPE proteins. Genes in ESX-1
locus that encode secreted proteins EsxA and EsxB are flanked
directly upstream by pe35 and ppe68 (Majlessi et al., 2015).
PPE68 and PE35 are required for Mtb virulence (Sassetti and
Rubin, 2003; Jiang et al., 2016), and PE35 is required for EsxA
and EsxB secretion (Brodin et al., 2006; Chen et al., 2013).

ESX−5 is related to the virulence of pathogenic mycobacteria.
Deletion of ppe25, pe18, ppe26, ppe27, and pe19 significantly
attenuated the virulence in mouse models. Further, ESX-5
inactivation Mtb and Mycobacterium marinum mutants fail to
secrete several PE/PPE proteins, many of which are not encoded by
the esx-5 locus, suggestive of a loss of the ability to transport PE/
PPE proteins across mycobacterial cell envelope (Bottai et al., 2012).
In addition, the expression of PE19 enhances envelope permeability
inducing higher pathogenic sensitivity (Ramakrishnan et al., 2016).
These results strongly suggest that PE/PPE proteins of ESX-5 locus
are required for ESX-5 mediated protein export.

Although, to a lesser extent than ESX-1 and ESX-5, the
correlation between ESX-3 and PPE-related functions has also
been studied. Products of the esx-3 gene locus, which contains
pe5 and ppe4, carry out the essential function of iron/zinc
acquisition (Serafini et al., 2009; Siegrist et al., 2009). PE5
forms a heterodimer with PE4 to utilize iron from the
intracellular host space (Tufariello et al., 2016). In contrast to
other members, the exact function of esx-2, including pe36 and
ppe69, remains undefined.

Overall, due to the difficulty of recovering stable soluble
recombinant PE/PPE proteins, knowledge of their biophysical
structure remains insufficient to clarify the secretory interaction
between PE/PPE proteins and the ESX system. However, it is
worth mentioning that the ESX secretion-associated protein G
(EspG), the homolog of the ESX system, recognizes its cognate
PE/PPE protein, maintaining it in a stable conformation and
promoting secretion (Daleke et al., 2012). The crystal structure of
the PE25-PPE41-EspG5 complex yielded valuable information
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regarding the cross-talk between EspGs and different PE/PPE
proteins (Ekiert and Cox, 2014; Korotkova et al., 2014).
ROLE OF PE/PPE PROTEINS IN HOST–
PATHOGEN INTERACTIONS

Based on the different stages of interaction with the host, we
summarize the function and localization of PE/PPE proteins in
Supplementary Table 1 and highlight the intriguing roles in
Figure 1A: (i) mediating immune responses through cell surface
adhesion or receptor binding; (ii) surviving under intracellular
stress, phagocytosis, and phagolysosome maturation; (iii)
determination of cell fate.

Roles of PPE Proteins in Interactions With
Host Cells and Immune Regulation
Surface exposure or secretion into the extracellular environment
allows PE/PPE proteins to interact with their host targets
directly. Some proteins reportedly interact with receptors like
TLR2/4 on the surface of macrophages, activating downstream
signaling pathways. The PE9-PE10 complex (Tiwari et al., 2015),
PPE39 (Choi et al., 2019), and PE_PGRS5 (Grover et al., 2018)
interact with TLR4 to activate downstream signaling and
modulate cytokine production. Furthermore, various PE/PPE
proteins can interact with TLR2, including PPE26 (Su et al.,
2015), PPE32 (Deng et al., 2014), PPE57 (Xu et al., 2015), PPE65
(Qureshi et al., 2019), PE_PGRS33 (Basu et al., 2007; Zumbo
et al., 2013; Palucci et al., 2016), and PE_PGRS11 (Bansal et al.,
2010). PPE18 can stimulate IL-10 secretion, which might induce
Th2 type response via interacting with TLR2 (Nair et al., 2009),
and further was defined to inhibit the production of NF-kB/rel-
mediated pro-inflammatory cytokine by upregulating suppressor
of cytokine signaling 3 protein (SOCS3) (Nair et al., 2011).
Besides, PE_PGRS17 was found to mature DCs via TLR2
(Bansal et al., 2010) and cause host cell death and cytokine
secretion via Erk kinase, eventually enhancing intracellular
survival (Chen et al., 2013).

Generally, the binding of PE/PPE proteins to cell surface
receptors activates downstream signaling pathways, including
NF-kB and MAPK (p38, JNK, and ERK), which affect cytokine
production, leading to a pro-inflammatory or anti-inflammatory
response. PPE27 overexpressed strain showed a strengthened
ability to induce nitric oxide (NO) and inhibiting IL-6
production, which was abolished by NF-kB, p38, and ERK
inhibitors (Yang G et al., 2017). PPE39, a PE/PPE protein
defined in hypervirulent strain Beijing/K, exhibited its ability
to mature DCs and activate Th1 immune response through NF-
kB and MAPK, which functioned as TLR4 agonist (Choi et al.,
2019). A series of proteins, including PE13 (Li et al., 2016), PE27
(Kim et al., 2016), PPE26 (Su et al., 2015), PPE32 (Deng et al.,
2014), PPE44 (Yu et al., 2017), PPE57 (Xu et al., 2015),
PE_PGRS11, and PE_PGRS17 (Bansal et al., 2010) similarly
regulate the cytokine profile via NF-kB and MAPK signaling.

PE/PPE protein effects on mycobacterial invasion and
macrophage phagocytosis have also been suggested. PPE38-
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mutant of Mycobacterium marinum exhibited significantly
higher invasion efficiency (Dong et al., 2012), while the
phagocytosis ratio of PPE29 mutants was expectedly reduced
(Meng et al., 2017).

Adherence to the cell surface is another prerequisite for
bacterial invasion. Recent reports revealed that PE11 knockdown
strains could significantly enhance fibronectin attachment protein
production, contributing to the attachment to the host
extracellular matrix (Rastogi et al., 2017). PE_PGRS60 can bind
to fibronectin, which results in enhanced adhesion and invasion
(Meena and Meena, 2016).
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Roles of PE/PPE Proteins
in Intracellular Survival

Upon entry into macrophages, pathogens adapt to the
intracellular environment, such as low pH, reactive oxygen,
and nitrogen species, thus creating its own niche. Besides,
PPE60 (Gong et al., 2019) and PE13 (Li et al., 2016) can
enhance cell resistance to low pH, surface stresses, and
antibiotic exposure to increase intracellular survival. PPE11 has
also increased early bacterial survival rate under conditions
similar to the intracellular macrophage environment, such as
A

B

FIGURE 1 | Effects of PE/PPE proteins on the interaction between Mtb and macrophage. (A) PE/PPE proteins in each frame are shown to affect each stage of
host-pathogen interaction, including in cell adhesion and binding to TLR2 or TLR4 receptors, mediating downstream immune signal pathway, inhibiting or increasing
phagocytosis of the bacilli, surviving under intracellular stress, and inhibiting phagolysosome maturation in macrophage. (B) PE/PPE proteins regulate four major
outcomes observed in macrophage after Mtb infection.
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the presence of lysozymes, acidic, and active nitrogen
intermediates (RNI), and maintains a high bacterial load in
mouse tissue, worsening organ pathology (Peng et al., 2018).

Once adapted to the harsh conditions, Mtb survives in
macrophages by preventing phagosomal acidification and
phagosome-lysosome fusion. PE_PGRS30 and PE_PGRS47
knockout strains lost the ability to inhibit phagosome fusion
(Iantomasi et al., 2012; Saini et al., 2016). Similarly,
overexpressed PE_PGRS62 significantly inhibits phagosome
maturation (Huang et al., 2012; Thi et al., 2013; Long et al.,
2019). During phagocytosis, the transcription level of PPE25 is
upregulated, and PPE25 mutant strain loses its ability to replicate
within macrophages and prevent phagosome-lysosome fusion
(Jha et al., 2010).

PE/PPE Proteins Are Involved in the
Determination of Cell Fate
Further, PE/PPE proteins are believed to have roles in host
defense mechanism which limit Mtb survival or are closely
associated with the intracellular persistence and proliferation,
eventually inducing host cells three major outcomes as shown in
Figure 1B: (i) apoptosis, a form of programmed cell death that is
proactively regulated by host cells (Fink and Cookson, 2005); (ii)
autophagy, a host degradation system that can resolve infection
(Mariño et al., 2014); and (iii) necrosis, a form of passive cell
death triggered by external stimuli (Fink and Cookson, 2005).

Cell apoptosis can affect intracellular bacterial viability (Duan
et al., 2002). Recent studies indicate that PPE32 (Deng et al., 2016)
and PE_PGRS5 (Grover et al., 2018) are involved in ER stress-
mediated cell apoptosis. Conversely, PE_PGRS62 (Long et al., 2019)
and PE_PGRS18 (Yang W. et al., 2017) can decrease apoptosis and
enhance survival rate. PE31 increased guanylate-binding protein-1
(GBP-1) expression and inhibited caspase-3 activation and
macrophage apoptosis through the NF-kB pathway (Ali et al.,
2020). Although apoptosis caused by some bacterial proteins
favors bacterial survival, it also helps to kill intracellular bacteria
and activate adaptive immunity (Schaible et al., 2003; Srinivasan
et al., 2014). PE/PPE proteins with pro-apoptotic activity might
serve as candidates for vaccine development.

Autophagy is related to autolysosome formation, which helps
host cell clear out the pathogen, but an aberrant autolysosome
may consume most cellular proteins and organelles, thus
inducing autophagic cell death (Mariño et al., 2014). PE_
PGRS41 (Deng et al., 2017) and PE_PGRS47 (Saini et al.,
2016) have been proved to inhibit autophagy from allowing
pathogen survival. A recent report revealed that ubiquitinated
PE_PGRS29 could recruit autophagy receptor p62 and deliver
Mtb into autophagosomes. Disruption of the interaction between
PE_PGRS29 and ubiquitin attenuates Mtb xenophagic clearance,
leading to an enhanced bacterial load and an elevated
inflammatory response (Chai et al., 2019).

Cell necrosis is involved in the dissemination and virulence of
Mtb because it results in the release and spread of tuberculosis-
causing pathogens (Behar et al., 2010). Such a function has been
reported for PE25-PPE41 complex (Tundup et al., 2014),
PE_PGRS33 (Dheenadhayalan et al., 2006), and PPE27 (Yang
G. et al., 2017).
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In addition, a PPE60-overexpressing strain has recently been
found to increase intracebllular survival and shift cell fate to
pyroptosis, a newly defined form of programmed cell death,
which is correlated with restriction of intracellular growth and
enhanced host immune response (Gong et al., 2019; Chai et al.,
2020), and with the maturation of IL-1b and IL-18 (Beckwith
et al., 2020).
FUTURE APPLICATIONS OF PE/PPE
FAMILY PROTEINS IN TB VACCINE
DESIGN AND DIAGNOSTIC TOOL
DEVELOPMENT

Serological antibody assays are routinely performed; however,
there is no gold standard in TB serological diagnosis. PE35, an
RD1-encoded antigen, can significantly discriminate pulmonary
or extra-pulmonary TB patients with healthy BCG-vaccinated
individuals (Mukherjee et al., 2007). Another good example is
PPE17, whose N-terminal induces high immunogenic response
and had greater potential to be a sero-diagnostic marker than
full-length PPE17 (Abraham et al., 2017), which could screen the
latently infected subjects (Abraham et al., 2018). PPE2 may also
serve as a serodiagnosis marker to detect the extra-pulmonary
and smear-negative pulmonary cases (Abraham et al., 2014).

The highly immunogenic properties of PE/PPE proteins have
been demonstrated by the investigation of IFN-g T cell responses
generated during infection. CD4+-specific epitope-rich PE/PPE
proteins, including PE18, PE19, PPE25, PPE26, and PPE27, are
potent inducers of cell-mediated immune responses (Sayes et al.,
2012). Vordermeier et al. examined cellular immune responses
against a panel of 36 PE/PPE proteins during human and bovine
infection and observed that many were major targets of the
cellular immune response to tuberculosis. The specific HLA-
A*0201-restricted epitopes of PPE68 also elicit a potent cellular
response (Duan et al., 2015). Additionally, the PE5 protein and
EsxI have been proven as a diagnostic antigen of bovine
tuberculosis during intradermal tests (Melo et al., 2015). A
combination of PPE57 can also increase the sensitivity of
ESAT-6 or CFP-10 in the IFN-g releasing assay for detecting
active TB (Chen et al., 2009). The highly cellular immune
response indicates that PE/PPE proteins may be better
diagnostic and vaccine candidates (Vordermeier et al., 2012).

Numerous studies have also been carried out to assess the
potential of PE/PPE proteins as candidate vaccine antigens.
Several attempts seem promising. In dendritic cells, which
serve as the most efficient antigen-presenting cells, PE27 (Kim
et al., 2016), PPE39 (Choi et al., 2019), and PPE60 (Su et al.,
2018) could change the cytokine profile toward a pro-
inflammatory immune response, suggesting the possibility to
be subunit vaccines for tuberculosis. In macrophages, PPE57 (Xu
et al., 2015), PPE26 (Su et al., 2015), and PE3 (Singh et al., 2013)
were also found to generate a protective immune response.
Further, PPE44, HspX, and EsxV could enhance BCG
protective efficacy (Mansury et al., 2019). Another vaccine
candidate worth mentioning is the attenuated MtbDppe25-pe19
November 2020 | Volume 10 | Article 594288
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strain, which outcompeted BCG protective capacity (Sayes et al.,
2012). Notably, the contribution of PE-specific and PPE-specific
T helper cell 1 (Th1) effector cells in protective immunity against
mycobacteria has been recently identified (Sayes et al., 2016).

However, there is a downside to the use of PE/PPE proteins in
vaccines, as many of them are believed to hamper the host
inflammatory response to evade immune surveillance, thus
supporting the development of an immunopathological
response. PE32/PPE65 (Khubaib et al., 2016), PPE37 (Daim
et al., 2011), and PE25/PPE14 (Chen et al., 2015) were found to
tilt the Th1 response toward a Th2 response, which favors the
intracellular survival of bacteria. In addition, PE/PPE proteins are
polymorphic within clinical isolates (Hebert et al., 2007) and can
be degradation-resistant, limiting MHC processing (Koh et al.,
2009). However, researchers surprisingly found that the PPE18
protein, which upregulated IL-10 production (Nair et al., 2009)
and inhibited the inflammatory response, could be explored as a
therapeutic for sepsis caused by exaggerated inflammatory
responses (Ahmed et al., 2018). Thorough characterization of
candidates or exclusive use of the immunodominant epitopes of
PE/PPE proteins may facilitate vaccine development.
DISCUSSION

Since its discovery over 20 years ago, PE/PPE family has been
recognized as exclusive to mycobacteria, especially in pathogenic
species. Several studies have defined that PE/PPE protein
expression is linked to ESX gene clusters is now well-established
(Bottai et al., 2012; Sayes et al., 2012). Improved knowledge of
the ESX system function has dramatically advanced our
understanding of the biological function of specific PE/PPE
proteins. Moreover, structural biology studies have started to
solve and explain the roles of protein complexes involved in PE-
PPE and ESX secretion (Ekiert and Cox, 2014). However, the
biology and structure of PE/PPE proteins remain far less
understood than other mycobacterial proteins. Elucidating the
structure of PE/PPE proteins and their complexes with ESX
systems will be pivotal to a more comprehensive mechanistic
understanding of how the PE/PPE protein family, in association
with the ESX secretion system, contributes to the pathogenicity of
Mtb. This is of importance for obtaining further insights into the
virulence strategies of mycobacteria, and may provide novel
targets for antimycobacterial treatment.

Another feature of the PE/PPE proteins is that they are often
found as co-operonic pairs of mostly one PE- and one PPE-
coding gene, whose products interact with each other (Akhter
et al., 2012) and are believed to assemble as heterodimers (Strong
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et al., 2006; Tundup et al., 2006; Tiwari et al., 2014). Such
interactions have been predicted using bioinformatic tools
(Riley et al., 2008) and proven through experimental evidence,
as in the cases of PPE41 and PE25 (Tundup et al., 2006), PE35
and PPE68 (Tiwari et al., 2014), as well as PE19 and PPE51
(Wang et al., 2020). Korycka-Machała et al. found that PPE51
deletion rendered Mtb cells unable to replicate in propionamide,
glucose, or glycerol. Further, some PE/PPE proteins, such as
PE20/PPE31 and PE32/PPE65, are required by Mtb during Mg2+

and PO32− restriction (Wang et al., 2020). PPE36/PPE62 (Mitra
et al., 2019) and PPE37 (Tullius et al., 2018) are essential for
heme-iron acquisition and Mtb growth. Additionally, mutant
PPE51 and PE19 strains developed resistance to 3bMP1, a
compound with anti-tuberculosis activity (Wang et al., 2020).
These data suggest that at least some PE/PPE proteins appear to
act as solute-selective pores, allowing the access of exogenous
agents or nutrients required for proliferation. Thus, focusing on
genetic mutations of pe/ppe family members, which are often
eliminated when analyzing next-generation sequencing data of
clinically drug-resistant strains, may help discover anti-
tuberculosis drug resistance mechanisms. In summary, we
believe that the PE/PPE family will remain a highly active area
of research with various exciting features yet to be discovered.
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