
Frontiers in Cellular and Infection Microbiolo

Edited by:
Frederic Antonio Carvalho,
INSERM U1107 Douleur et

Biophysique Neurosensorielle
(Neuro-Dol), France

Reviewed by:
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Colorectal cancer (CRC) incidence increases yearly, and is three to four times higher in
developed countries compared to developing countries. The well-known risk factors have
been attributed to low physical activity, overweight, obesity, dietary consumption including
excessive consumption of red processed meats, alcohol, and low dietary fiber content. There
is growing evidence of the interplay between diet and gut microbiota in CRC carcinogenesis.
Although there appears to be a direct causal role for gut microbes in the development of CRC
in some animal models, the link between diet, gut microbes, and colonic carcinogenesis has
been established largely as an association rather than as a cause-and-effect relationship. This
is especially true for human studies. As essential dietary factors influence CRC risk, the role of
proteins, carbohydrates, fat, and their end products are considered as part of the interplay
between diet and gut microbiota. The underlying molecular mechanisms of colon
carcinogenesis mediated by gut microbiota are also discussed. Human biological
responses such as inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage
can all influence dysbiosis and consequently CRC carcinogenesis. Dysbiosis could add to
CRC risk by shifting the effect of dietary components toward promoting a colonic neoplasm
together with interacting with gut microbiota. It follows that dietary intervention and gut
microbiota modulation may play a vital role in reducing CRC risk.

Keywords: colorectal cancer, colon carcinogenesis, diet, gut microbiota, protein, fat, carbohydrate,
bacteria interaction
INTRODUCTION

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second most deadly
cancer in the world, with about 1.8 million new cases and almost 881,000 deaths in 2018, comprising
5.8% of all cancer deaths that year (Rawla et al., 2019). The CRC global burden is expected to
increase by 60% by 2030, to approximately 2.2 million new cases and 1.1 million deaths per annum
(Rawla et al., 2019). CRC incidence is three to four times higher in developed countries than
developing countries, reflecting the state of CRC as a marker of socioeconomic development (Bray
et al., 2018). The known risk factors are low physical activity; overweight and obesity; dietary habits
including excessive consumption of red, processed meats and alcohol, and low dietary fibers (World
Cancer Research Fund/American Institute for Cancer Research, 2018). The rapid rise of CRC
gy | www.frontiersin.org December 2020 | Volume 10 | Article 6030861
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incidence among individuals younger than 50 years old
especially in high-income countries (Araghi et al., 2019; Siegel
et al., 2019; Vuik et al., 2019) coupled with the fact that most
CRC incidents arise sporadically (Yang and Yu, 2018) further
point to the influence of lifestyle factors on CRC development.

Human gut microbiota is dominated by three primary phyla,
namely Firmicutes (30–50%), Bacteroidetes (20–40%),
and Actinobacteria (1–10%) (Gagnière et al., 2016). Strict
anaerobes such as Bifidobacterium, Fusobacterium, Bacteroides,
Eubacterium, Peptostreptococcus, and Atopobium are the major
groups of bacteria in the human gut, whereas facultative
anaerobes such as Lactobacilli, Enterococci, Streptococci, and
Enterobacteriaceae are present in numbers that are 1,000-fold
lower (Davis and Milner, 2009). The gut microbiota changes
swiftly in terms of variety and composition during the first year
of birth and remains relatively constant upon adulthood.
Nevertheless, the composition of the resident microbiota may
be altered due to environmental factors, predominantly, by the
influence of diet (Chassaing et al., 2017; Jahani-Sherafat et al.,
2018; Yang and Yu, 2018). It is increasingly apparent that when
dietary components change the gut microbial composition and
its diversity, the balance between beneficial and detrimental gut
microbiota could be disrupted, and the resulting impaired gut
homeostasis can set the stage for cancer development (Davis and
Milner, 2009; Yang and Yu, 2018; De Almeida et al., 2019).
Indeed, many studies have revealed a consistent link between
colorectal carcinogenesis and gut microbiota. Fusobacterium
nucleatum (Kostic et al., 2013; Tahara et al., 2014; Fukugaiti
et al., 2015; Viljoen et al., 2015; Li et al., 2016; Mima et al., 2016;
Tunsjø et al., 2019), Streptococcus gallolyticus (Abdulamir et al.,
2010; Butt et al., 2016; Corredoira et al., 2017; Kumar et al., 2017;
Kwong et al., 2018), Clostridium difficile (Fukugaiti et al., 2015;
Zheng et al., 2017), Clostridium septicum (Corredoira et al., 2017;
Kwong et al., 2018), Enterococcus faecalis (Zhou et al., 2016;
Rezasoltani et al., 2018; Geravand et al., 2019), Escherichia coli
(Buc et al., 2013; Bonnet et al., 2014; Kohoutova et al., 2014;
Dejea et al., 2018), Peptostreptococcus stomatis (Zeller et al., 2014;
Yu et al., 2017), and Bacteroides fragilis (Boleij et al., 2015; Zhou
et al., 2016; Purcell et al., 2017; Dejea et al., 2018; Kwong et al.,
2018; Haghi et al., 2019) are differentially enriched in the fecal or
colonic mucosa samples of CRC patients relative to healthy
individuals, or in the CRC patient’s tumor tissue relative to
adjacent healthy tissue, wherein in some cases, CRC disease
status is associated with the abundance of CRC-associated gut
microbiota. CRC risk is also associated with the seroprevalence
of Helicobacter pylori antibodies (Zhang et al., 2012; Epplein
et al., 2013; Teimoorian et al., 2018; Butt et al., 2019;
ChangxiChen et al., 2019). Table 1 summarizes the common
gut microbiota associated with CRC risk obtained from CRC
patients’ and healthy subjects’ mucosa, blood, and stool. This is
not an exhaustive summary.

In this article, an overview of the dietary components of
various food classes that have been implicated in the
pathogenesis of CRC, the mediating roles of gut microbiota
and the different mechanisms involved in CRC initiation or
progression are deliberated.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
THE INTERACTIONS BETWEEN DIET, GUT
MICROBIOTA, AND COLORECTAL
CANCER

Protein
Red Meat and Processed Meat
Epidemiological studies have linked excessive processed meat,
and to a lesser extent red meat, consumption to increased risk of
CRC (Cross et al., 2010; Oostindjer et al., 2014; Demeyer et al.,
2016). Reports published by the Word Cancer Research Fund in
2007 and 2018 indicated a strong evidence that a consumption
of red and processed meat can increase CRC risk (World Cancer
Research Fund/American Institute for Cancer Research, 2018).
Processed meat has been classified as group I carcinogen by the
World Health Organization’s International Agency for Research
on Cancer (2015), that is similar to the risk category of
cigarettes and alcohol. Red meat was classified as Group 2A
carcinogen, dictating its probable carcinogenicity (Bouvard
et al., 2015). In a meta-analysis published in 2017, a 16 and
22% increment of CRC risk was reported for every 100 and 50g/
day additional intake of red meat and processed meat,
respectively (Zhao et al., 2017). Several mechanisms have been
purported to expound the disease-promoting effect of red and
processed meat.
N-Nitroso Compounds
N-Nitroso compounds (NOCs) consist of a nitroso group
attached to a nitrogen atom and are formed by the reaction of
a nitrite compound with amines or amides. NOCs comprise two
major chemical classes, namely nitrosamines and nitrosamides.
Humans are exposed to the highly mutagenic NOCs either by
exogenous or endogenous means. The main source of exogenous
NOCs includes meats that have been processed, smoked or cured
(Bouvard et al., 2015). Alternatively, NOCs can be produced
endogenously in the human gut from the intake of nitrite: amino
acids are converted to amines via bacterial decarboxylation,
followed by n-nitrosation in the presence of nitrite as
nitrosating agent to generate NOCs (Parnaud et al., 2000;
Fahrer and Kaina, 2013).

NOCs are multi-site carcinogens that can form DNA
adducts—the outcome of covalent binding between reactive
electrophilic species and the nucleophilic sites in DNA (Ewa
and Danuta, 2017). Malignant transformation is initiated when
N-nitrosamines form diazomethane by the activation of p450
isoenzymes (CYP2E1), resulting in the formation of O6-
carboxymethyl guanine (O6-CMG) and O6-methylguanine
(O6-MeG) DNA adducts, which, when unrepaired, could
induce G:C!A:T transition mutation that is typically
detected in the K-ras gene associated with human CRC
(Fahrer and Kaina, 2013). Red meat was shown to be able to
stimulate the production of O6-CMG (Lewin et al., 2006;
Hemeryck et al., 2016) and O6-MeG (Le Leu et al., 2015). The
formation of DNA adducts may account for the association
between dietary NOC intake and rectal cancer (Loh et al., 2011;
Zhu et al., 2014).
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TABLE 1 | Gut microbiota associated with colorectal cancer (CRC) risk.
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bacterial analysis

Association

Phylum Genus Species

Fusobacteria Fusobacterium – Rectal mucosa,
colorectal tissue

qPCR Significantly higher in CRA patients than in healthy controls, and
adjacent normal tissue

Stool sample 16S rRNA
pyrosequencing

Significantly higher in CRC patients than in healthy controls

nucleatum Colorectal tissue, stool
sample

qPCR Significantly higher in CRA and CRC patients than in healthy co

Stool sample qPCR Significantly higher in CRC patients than in healthy controls or p
Stool sample qRT-PCR Significantly higher in CRA patients than in healthy controls
Colonic mucosa qPCR Significantly higher in tumor tissue than in adjacent normal tissu

Colorectal tissue qPCR Higher abundance was associated with significantly higher CRC
Colorectal tissue FQ-PCR, FISH Significantly higher in tumor tissue than in adjacent normal tissu

significantly associated with lymph node metastasis
Firmicutes Streptococcus gallolyticus Blood Blood culture test Patients with history of S. gallolyticus bacteremia had significan

those without
Blood Multiplex serology Antibody response to pilus protein Gallo2039, Gallo2178 and G

associated with CRC risk
Blood Blood culture test 62.7% of 204 patients with S. gallolyticus bacteremia had conc
Colorectal tissue, fecal
sample

PCR, ISH Significantly higher in CRC patients than in healthy controls

Colorectal tissue qPCR Significantly higher in tumor than in adjacent normal tissue
Clostridium difficile Fecal sample qRT-PCR Significantly higher in CRA patients than in healthy controls

Fecal sample Multiplex RT-PCR Significantly higher in CRC patients with lymph node metastasis
septicum Blood Blood culture test 45.2% of 42 patients with C. septicum bacteremia had concurr

Blood Blood culture test Patients with history of C. septicum bacteremia had significantly
those without
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Colorectal tissue PCR E. coli of phylogenetic group D was significantly higher in CRC
controls; E. coli of phylogenetic group B2 was significantly high
advanced CRA than in patients with non-advanced CRA

Colonic tissue PCR Significantly higher in colon cancer tumors than in diverticulosis
normal tissue, and in colon cancer patients of stages III/IV than

Colonic mucosa FISH Significantly higher pks+ E. coli in FAP patients than in healthy c
Peptostreptococcus stomatis Stool sample 16S rRNA

sequencing
Significantly higher in CRC patients than in healthy controls

Stool sample qPCR Significantly higher in CRC patients than in healthy controls
Helicobacter pylori Blood ELISA Significantly higher seroprevalence of H. pylori antibodies in CR

controls
Blood ELISA Significantly higher seroprevalence of H. pylori antibodies in pat
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Blood Multiplex serology Seropositivity of antibodies against VacA was associated with o
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The Interaction Between N-Nitroso Compounds and
Gut Microbiota
Studies have highlighted the involvement of gut microbiota in
the production of NOCs (Engemann et al., 2013; Kobayashi,
2018; Yoon and Kim, 2018). Generally, the population of these
NOC-producing bacteria is low in healthy individuals, but
excessive dietary nitrate and nitrite intake will facilitate the
growth of NOC-producing bacteria as nitrate or nitrite are
used as electron acceptors during NOC production (Kobayashi,
2018). The resulting microbial dysbiosis can potentially
participate in colon carcinogenesis, leading to an elevated CRC
risk (Sobhani et al., 2013; Jahani-Sherafat et al., 2018; Zou et al.,
2018). The presence of nitrate generated through bowel
inflammatory responses was associated with an enrichment of
E. coli in the large intestine of colitis mice (Winter et al., 2013).
Several studies have associated a significantly higher prevalence
of pathogenic strains of E. coli (usually belong to phylogenetic
group B2 or D) with CRC (Buc et al., 2013; Bonnet et al., 2014;
Kohoutova et al., 2014; Dejea et al., 2018). Nonetheless, it
remains unclear whether the bloom of E. coli caused by nitrate
or NOCs can contribute to the initiation of intestinal
inflammation or colon carcinogenesis.

Heterocyclic Amines and Polycyclic Aromatic
Hydrocarbons
When muscle meat is cooked at high temperature, its creatinine
or creatine, amino acids, and sugars are converted into
heterocyclic amines (HCAs) (Helmus et al., 2013). The
common types of HCA in meats cooked at high temperature
are 2-amino-1-methyl-6-phenylimidazo(4,5-b) pyridine (PhIP),
2-amino-3,8-dimethylimidazo(4,5-f) quinoxaline (MeIQx), 2-
amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ), 2-amino-
3,4,8-dimethylimidazo(4,5-f) quinoxaline (DiMeIQx), and
amino-3-methylimidazo(4,5-f) quinolone (IQ). PhIP, MeIQ,
and MeIQx have been categorized by International Agency for
Research on Cancer (IARC) as possible human carcinogens
(group 2B) while IQ has been classified as probably
carcinogenic to humans (group 2A) (Cascella et al., 2018). A
colonoscopy-based study among Japanese reported a high MeIQ
but not MeIQx and PhIP exposure to be positively associated
with an increased risk of CRC in females (Budhathoki et al.,
2015). However, PhIP intake but not MeIQx and DiMeIQx
showed a significantly associated risk of colorectal adenoma
(CRA) in an European population-based study (Rohrmann
et al., 2009). Conversely, other studies have reported that a
higher intake of any type of HCA (PhIP, MeIQx, and
DiMeIQx) had significant associated risk for CRA (Barbir
et al., 2012; Chiavarini et al., 2017). A study also reported a
significant association between CRC risk and red-meat derived,
but not white-meat derived HCAs and PAHs (Helmus et al.,
2013). Although the definite contribution of each HCA type to
colonic neoplasm remains tentative, the findings so far converge
to imply that HCAs as a whole are associated with an increased
CRC risk, as corroborated by mice studies (Cheung et al., 2011;
Lee et al., 2013).

Incomplete combustion of organic materials from industrial
processing and domestic cooking at high temperature produces
T
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polycyclic aromatic hydrocarbons (PAHs), which could
contaminate food when they are in contact. Thus, meat cooked
over an open flame is highly prone to PAH contamination
(Zelinkova and Wenzl, 2015). Similar to HCA, PAH, primarily
benzo(a)pyrene (B(a)P), could also increase the risk of CRA in
humans (Sinha et al., 2005; Chiavarini et al., 2017). It has been
shown experimentally that B(a)P could bind directly to DNA to
form DNA adducts, as well as induce oxidative and nitrosative
stress along with increased expression of pro-inflammatory
cytokines and dysregulated wnt/b-catenin signaling in mice
colon (Diggs et al., 2013; Ajayi et al., 2016). Moreover, there
was a synergistic genotoxic effect of HCA and PAH with a five-
fold increase in PhIP-derived DNA adducts when B(a)P and
PhIP were used in combination compared to HCA alone (Jamin
et al., 2013).

The Interaction Between Heterocyclic Amine and Polycyclic
Aromatic Hydrocarbon and Gut Microbiota
Exposure to PhIP (Defois et al., 2018) and B(a)P (Defois et al.,
2017) could shift the volatile pattern of human fecal microbiota,
indicating a deviation in the microbial metabolic activities that
may in the long run disrupt gut homeostasis. Of note, these
studies exposed microbiota to doses of HCA and PAH that were
higher than expected daily consumption for a very short time
(24 h), making the results less reflective of the actual effect of
chronic HCA and PAH exposure. In murine models, B(a)P also
induced a shift in the abundance and composition of the gut
microbiota, in addition to colonic inflammation (Khalil et al.,
2010; Ribière et al., 2016). On the other hand, human colon
microbiota could directly induce the bioactivations and
transformations of PAH into estrogenic metabolites,
influencing the toxicity of PAH (Van de Wiele et al., 2005).
Human gut microbiota with beta-glucuronidase and glycerol/
diol dehydratase activity could transform HCA to HCA-M1,
mitigating HCA-associated carcinogenic risk (Zhang et al.,
2019). Specifically, Eulonchus halli were able to convert PhIP
to PhIP-M1, whose mutagenic potency is only 5% of that of PhIP
(Fekry et al., 2016). Just as HCA and PAH can induce dysbiosis
to exert detrimental effect in the human body (Khalil et al., 2010;
Ribière et al., 2016; Defois et al., 2017; Defois et al., 2018), there
are some gut microbiota that could reduce the detrimental effects
of dietary HCA and PAH (Van de Wiele et al., 2005; Fekry et al.,
2016; Zhang et al., 2019).

Trimethylamine-N-Oxide
Trimethylamine-N-oxide (TMAO) is a gut microbiota-
dependent metabolite of saltwater fish, eggs, dairy products,
and especially, red meat (Velasquez et al., 2016; Chan et al.,
2019; Wang et al., 2019). In the human gut, TMAO precursors
including dietary choline, phosphatidylcholine, betaine, and L-
carnitine undergo gut microbial degradation to be converted into
trimethylamine (TMA). TMA is absorbed and delivered to the
liver via the portal circulation, and subsequently reacts with
hepatic flavin monooxygenase, primarily FMO3, to produce
TMAO (Velasquez et al., 2016; Subramaniam and Fletcher,
2018; Zou et al., 2018).
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Elevated TMAO level is associated with a higher mortality
risk of chronic kidney disease (Tang et al., 2015; Missailidis et al.,
2016), major adverse cardiovascular events such as coronary
artery disease (Senthong et al., 2016), myocardial infarction
(Tang et al., 2013; Suzuki et al., 2020), heart failure (Tang
et al., 2014; Troseid et al., 2015), and liver cancer (Liu et al.,
2018b). Besides, an epigenetic interaction network analysis
indicated the role of TMAO on colon carcinogenesis, as many
genetic pathways implicated in colon carcinogenesis were shared
by TMAO (Xu et al., 2015). From the Women’s Health Initiative
(WHI) Observational Study, a higher plasma choline
concentration was found to be associated with a greater risk of
rectal cancer; women with low plasma vitamin B12 in particular,
showed significant association between plasma TMAO level and
CRC risk (Bae et al., 2014). A male matched case-control study
has indicated that a higher serum concentration of choline was
significantly associated with a three-fold increase CRC risk
(Guertin et al., 2017). However, other studies have reported a
null (de Vogel et al., 2011) and even an inverse (Nitter et al.,
2014) association between plasma choline concentration and
CRC risk.

TMAO has been found to promote inflammatory gene
expression in both human aortic endothelial cells and smooth
muscle cells via the activation of nuclear factor‐kB (NF‐kB)
signaling (Seldin et al., 2016); its concentration was also
positively identified to be associated with the concentration of
tumor necrosis factor alpha (TNF-a) and its soluble receptors,
both of which constitute a key regulator of inflammatory
responses (Rohrmann et al., 2015). Additionally, TMAO could
upregulate the expression of proinflammatory molecules such as
IL-6, CXCL1, and CXCL2 in H. pylori infected-gastric epithelial
cells, demonstrating the possible synergistic effect of TMAO and
H. pylori in the development of gastritis or gastric ulcers (Wu
et al., 2017). TMAO could also activate NLRP3 inflammasome
and the production of reactive oxygen species (ROS) in fetal
human colon cells by inhibiting ATG16L1-induced autophagy, a
process that is vital for the regulation of inflammation (Yue et al.,
2017). The roles of TMAO in inflammatory process implicated
by these findings provide a plausible mechanism by which
TMAO could contribute to colon carcinogenesis.

The Interaction Between Trimethylamine-N-Oxide and
Gut Microbiota
The composition of intestinal microbiota influences the
production of TMAO from its precursors (Chan et al., 2019).
Following antibiotics treatment that suppressed intestinal
microbiota, dietary supplementation of TMAO precursors
failed to enhance TMAO synthesis in mice (Koeth et al., 2013)
or healthy adults (Tang et al., 2013), implying the dependence of
TMAO production on the metabolism of gut microbiota.
Besides, serum TMAO level could be lowered by a natural
compound known as berberine via altering the composition of
gut microbiota, in particular Firmicutes and Verrucomicrobia,
leading to an anti-atherosclerotic effect (Shi et al., 2018). When
compared to a non-TMA producing bacterial species, TMA-
producing species brought about a significantly higher serum
TMAO in germ-free mice (Romano et al., 2015). In a study
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involving healthy young men, those with a higher Firmicutes to
Bacteroidetes ratio demonstrated a greater response to dietary
TMAO, implying the influence of gut microbiota composition on
TMAO production (Cho et al., 2017). There are evidences
implying the role of gut microbiota as a mediator of the
association between diet, TMAO, and diseases, with alteration
in the composition or structure of intestinal microbiota
influencing TMAO production and hence, affecting the risk of
colonic lesions (Koeth et al., 2013; Tang et al., 2013; Romano
et al., 2015; Cho et al., 2017; Shi et al., 2018; Chan et al., 2019). Of
note, although most of the intestinal microbiota promote TMAO
production from its precursors, Eubacterium limosum was
shown to be able to metabolize TMA precursors through
carnitine demethylation to form a product that cannot be
readily converted into TMA, revealing the potential of this gut
bacterium in reducing TMAO level in the gut (Kountz
et al., 2020).

Heme Iron
Red meat but not white meat, is associated with an elevated risk
of CRC, and this has been linked to heme iron (Cross et al., 2010;
Bastide et al., 2011; Oostindjer et al., 2014). Heme is enriched in
hemoproteins including myoglobin, hemoglobin and
cytochrome. Red meat in relation to white meat, has higher
concentration of myoglobin, with a 10-fold higher heme content
(Bastide et al., 2011). Heme-induced CRC risk is linked to two
reactions catalyzed by heme, namely N-nitrosation and
lipoperoxidation. The former is characterized by the
decarboxylation of amino acids by nitrosating agents to form
NOCs (Bastide et al., 2011). In comparison with diet containing a
negligible amount of heme, heme-rich red meat and processed
meat could significantly increase fecal NOCs level, confirming
the contribution of heme to endogenous NOC production
(Joosen et al., 2009). Processed meat generally contains a
higher amount of NOCs than fresh meat as heme iron in
processed meat products is nitrosylated (curing salt contains
nitrite or nitrate), resulting in the formation of nitrosyl heme
(Cammack et al., 1999). In a cohort study, both nitrosylated and
non-nitrosylated heme iron were found to be associated with
CRA risk, but a higher risk was associated with the former,
implying its higher carcinogenicity. This provides a possible
explanation for the stronger link between CRC risk and
processed meat intake than fresh meat intake (Bastide et al.,
2016). Additionally, consumption of a large amount of red meat
also results in the formation of N-nitrosothiols, which together
with nitrosyl heme, leads to the accumulation of carboxymethylated
adducts (Steinberg, 2019). Indeed, the mutagenicity of NOCs has
been attributed to the formation of DNA adducts such as O6-CMG
and O6-MeG, which could potentially accelerate the malignant
transformation in the colon (Lewin et al., 2006; Bugni et al., 2009;
Le Leu et al., 2015).

Lipoperoxidation is characterized by the free-radicals attack
of membrane lipids which gives rise to aldehydes such as
malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE)
(Bastide et al., 2011). Heme-induced lipoperoxidation can
result in an increased fecal thiobarbituric acid reactive
substances (TBARs). Previously, an increased fecal TBARs
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level was observed in mice (Martin et al., 2015) and human
subjects (Pierre et al., 2013) who were given heme-rich diets,
thus, substantiating the role of heme in promoting lipoperoxidation.
In a recent study, ex vivo trapping of aldehyde counteracted
inflammation and DNA damage in murine colonic epithelial cells,
attributing these heme-induced deleterious effects to lipoperoxidation
(Martin et al., 2019b).

In addition to NOCs and aldehydes, hemin, a porphyrin with
iron bound to chloride derived from a heme group, is also related
to colon tumor growth (Kim et al., 2019a). Hemin could exert
cytotoxic effect on colonic epithelial cells via the production of
ROS such as hydrogen peroxide (Ishikawa et al., 2010; Gemelli
et al., 2014). Hemin could also mimic the effect of freeze-dried
ham in inducing aberrant crypt foci and mucin depleted foci in
rodent models, both of which are the precancerous lesions of the
colon (Pierre et al., 2010).

The Interaction Between Heme and Gut Microbiota
The consumption of heme-rich diet was shown to alter the
composition of gut microbiota in mice, which was exemplified
by a reduction of Firmicutes and Deferribacteres, in addition to
an increase of Proteobacteria or Bacteroidetes (Ĳssennagger
et al., 2012; Constante et al., 2017; Martin et al., 2019b). The
dysbiosis could reduce the colonic level of butyrate, a short chain
fatty acid important for the digestive health, leading to adenoma
formation (Constante et al., 2017). Interestingly, the dysbiosis
could be ameliorated by the supplementation of calcium to
heme-rich diet (Martin et al., 2019b). Other study has
demonstrated the ability of gut microbiota to modulate the
lipoperoxidation associated with heme-induced colon
carcinogenesis (Martin et al., 2015). An antibiotic treatment
was able to prevent epithelium damages and hyperproliferation
in mice fed with heme-rich diet compared to antibiotics absence,
substantiating the involvement of gut microbiota in enhancing
heme-induced hyperproliferation and deteriorating the colonic
mucus barrier (Ijssennagger et al., 2015).

Other Protein Sources
Fish consumption has no association (Engeset et al., 2007; Lee
et al., 2009; Sugawara et al., 2009; Pham et al., 2013) or an inverse
association (Wu et al., 2012; Aglago et al., 2019) with CRC risk.
The association between egg intake and CRC risk is inconsistent,
with some studies reporting a positive association (Aune et al.,
2009; Lee et al., 2009) while others reported a null association
(Franceschi et al., 1997; Järvinen et al., 2001). On the other hand,
dairy products are associated with a decreased colon cancer risk
(Huncharek et al., 2008; Aune et al., 2012), particularly cheese
and milk (Lee et al., 2009; Aune et al., 2012; Murphy et al., 2013;
Barnung et al., 2019).

Several studies have indicated the CRC-promoting effects in
red and processed meat but not in other protein sources which
also contain the CRC-inducing components found in red and
processed meats. The other protein sources such as fish, eggs,
and dairy products also contain the precursors of TMAO,
choline, phosphatidylcholine, and L-carnitine (Velasquez et al.,
2016; Subramaniam and Fletcher, 2018), while baked or grilled
fish contain HCA and PAH (Alisson-Silva et al., 2016). The lack
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of a link between CRC and the consumption of protein sources
other than meat may be explained by various health-promoting
dietary components. For instance, studies have attributed the
protective effect of fish due to its omega-3 polyunsaturated fatty
acids (n-3 PUFAs) (Pietrzyk, 2017; Aglago et al., 2019). n-3
PUFAs are known to exhibit an anti-inflammatory effect through
the mediation of the expression of inflammatory genes, or by
modulating intracellular signaling pathways that regulate T-cell
activation, leading to a decreased risk of colon carcinogenesis
(Chapkin et al., 2007; Wall et al., 2010). Calcium from dairy
products is found to inhibit tumorigenesis in human colon
cancer cells and CRC mouse models (Wang et al., 2011; Ju
et al., 2012). The CRC-protective effect of calcium has been
linked to its ability to reduce lipid peroxidation induced by heme
(Hemeryck et al., 2016; Martin et al., 2019b), and to restore the
upregulation of inflammatory genes induced by Western diet in
the human colons (Protiva et al., 2016). Importantly, only
calcium from dairy products, but not the non-dairy products,
was associated with a decreased CRC risk (Murphy et al., 2013).

Although it is unclear whether certain health-promoting
dietary components could counteract the harmful effects of
CRC-associated dietary components, it is evident that colon
carcinogenesis is not attributed to a single nutrient but a
combination of them, such that the dietary impact of a
particular food chemical may be influenced by the absence or
presence of another (Pietrzyk, 2017). This may explain why
protein sources containing the same carcinogens exhibit opposite
effects in CRC.

Carbohydrates
Carbohydrates are macronutrients categorized as simple or complex
carbohydrates based on their degree of polymerization (Ludwig
et al., 2018). Simple carbohydrates such as monosaccharides,
disaccharides, and oligosaccharides are found in sugar-sweetened
food and beverage or refined plant-based food, whereas complex
carbohydrates including polysaccharides such as dietary fibers and
resistant starches are enriched in unrefined plant-based food
(Hansen and Sams, 2018; Ludwig et al., 2018). Carbohydrate
polymer length influences not only its digestion and absorption
into the human body, but also the subsequent impacts on body
functions (Ludwig et al., 2018). Thus, simple and complex
carbohydrates will be discussed separately in terms of their
contributions to CRC.

Complex Carbohydrates
The contribution of dietary fibers in reducing CRC risk has been
well established in case-control studies (Dahm et al., 2010b; Luo
et al., 2015), meta-analysis (Ben et al., 2014; Gianfredi et al.,
2018) and European Prospective Investigation into Cancer and
Nutrition (EPIC) studies (Murphy et al., 2012; Bradbury et al.,
2014). The protective effect of dietary fibers is attributed to short
chain fatty acids (SCFA) such as acetate, propionate, and
butyrate, which are formed following the fermentation of fibers
by gut microbiota along the colon tract (Wu et al., 2018). Among
the different types of SCFA, butyrate has been most extensively
studied for its protective efficacy against CRC. Its inhibitory effect
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against human colon cancer cell proliferation was shown
superior compared with acetate and propionate (Zeng
et al., 2020).

Butyrate exerts its anti-proliferative effect in CRC cells via
several mechanisms. Firstly, butyrate decreases the expression of
neuropilin-1, a receptor of vascular endothelial growth factor
(VEGF) that is commonly upregulated in colon cancer cells. As
VEGF is a key regulator of angiogenesis, the downregulation of
neuropillin-1 exerts an inhibitory effect on the expansion of
colon cancer cells (Yu et al., 2010; Yu et al., 2011). Second,
butyrate induces apoptosis and suppresses the proliferation and
invasion of CRC cells by regulating the expression of microRNA
such as miR-92a (Hu et al., 2015) and miR-203 (Han et al.,
2016). Thirdly, butyrate reduces motility of CRC cells by
inhibiting the Akt/ERK signaling pathway (Li et al., 2017),
revealing the potential of butyrate as part of the therapeutic
strategy for blocking metastatic CRC. The protective effect of
butyrate was substantiated in another study that reported a
significant downregulation of free fatty acid receptor 2
(FFAR2), a butyrate receptor, in human colon cancer tissues
than in healthy tissues, while mice deficient in FFAR2 also
developed significantly more colon polyps than wild-type mice
(Sivaprakasam et al., 2016).

Interestingly, butyrate stimulates cell growth in normal
colonocytes but exerts an anti-proliferative effect in cancerous
colonocytes. Such discrepancy in function was termed the
“butyrate paradox.” The “Butyrate paradox” is explained by the
“Warburg effect” which describes the differential metabolism of
butyrate in cancerous and non-cancerous cells: non-cancerous
cells mainly undergo oxidative metabolism, using butyrate as a
primary energy source, whereas cancerous cells favor glycolysis
as a means of metabolism, resulting in an inefficient metabolism
of butyrate (Donohoe et al., 2012). In cancerous colonocytes,
butyrate also downregulates its own oxidation by reducing the
expression of short chain acyl-CoA dehydrogenase (SCAD), an
enzyme that is responsible for butyrate oxidation (Han et al.,
2018). Accordingly, butyrate could accumulate and function as a
histone deacetylase inhibitor to stall the proliferation of cancer
cells (Donohoe et al., 2012). A corroborative study has shown
that butyrate suppressed the proliferation of the underlying
colonic stem cells by inhibiting histone deacetylase only in
damaged colonocytes but not in normal colonocytes (Kaiko
et al., 2016). Hence, although butyrate serves as a primary
source of energy for the proliferation of normal colon cells, it
inhibits the growth of cancerous colonocytes, which highlights
the tremendous advantages of dietary fiber intake.

The Interaction Between Complex Carbohydrates and Gut
Microbiota
Studies have provided evidence that dietary carbohydrates are able
to modify gut microbiota and hence, could modulate the
physiological conditions in the colonic environment. For
instance, children from rural African villages whose diet consists
of mostly fibers showed a significant enrichment in Bacteroidetes
compared with Italian children. Within the Bacteroidetes phylum,
several cellulose-degrading bacteria from the genus Prevotellawere
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found to be completely lacking in European children (De Filippo
et al., 2010). A dominance of Prevotella, along with depletion of
Bacteroides was also found in the gut microbiota of Bangladeshi
children compared with children from the United States (Lin et al.,
2013), as well as in native Africans compared with African
Americans (Ou et al., 2013). Indeed, diet serves as a driving
force for shaping the intestinal microbiome, where long-term
adherence to fiber-rich food leads to the abundance of
Prevotella, whereas adherence to Western diet low in fiber
results in abundance of Bacteroides (Wu et al., 2011; De Filippis
et al., 2016; Gorvitovskaia et al., 2016). Bacteroides species, in
particular Bacteroides fragilis, were found to be prevalent in the
colonic mucosa of CRC patients (Boleij et al., 2015; Haghi et al.,
2019). Their ability to induce DNA damage via ROS production in
colonic epithelial cells (Goodwin et al., 2011) and colitis along with
colon tumors in mice (Wu et al., 2009) has also been documented,
indicating the possible role of Bacteroides species in promoting
colonic neoplasm in individuals with low fiber intake.

On the other hand, although Prevotella is frequently linked to
high fiber diet, strains such as Prevotella copri and Prevotella
intestinalis have been linked to HIV-associated (Dillon et al.,
2016) or intestinal inflammatory conditions (Scher et al., 2013;
Iljazovic et al., 2020). Given Prevotella constitutes a large genus
with great species diversity, more studies are warranted to clarify
its beneficial or detrimental roles in the human body, including
the mechanisms underlying its interaction with dietary
components to clarify its role in the pathogenesis of CRC (Ley,
2016; Larsen, 2017). Other studies have reported the association
of dietary fiber with a lower risk for F. nucleatum-positive CRC
but not for F. nucleatum-negative CRC, suggesting the role of F.
nucleatum as a mediator of the association between dietary fibers
and colorectal neoplasms (Mehta et al., 2017; Liu et al., 2018a).
Whether or not this hypothesis can be generalized to Bacteroides
or Prevotella remains to be explored.

As discussed above, the protective effect of dietary fibers could
be largely attributed to butyrate production. Of note, the
fermentation of dietary fibers to produce butyrate is largely
mediated by gut microbiota including Faecalibacterium
prausnitzii, Eubacterium rectale, Roseburia faecis, E. halli, and
others (Baxter et al., 2019). Thus, it is relevant to propose that the
gut microbiome could influence the dietary impact of butyrate. A
smaller population of butyrate-producing bacteria such as
Roseburia, Clostridium, and Eubacterium was observed in
advanced CRA patients along with a lower production of
butyrate, highlighting the importance of gut microbiota in
modulating the production of butyrate to protect hosts from
colonic neoplasm (Chen et al., 2013). Conversely, butyrate could
change the composition of gut microbiota to attenuate the
detrimental effect of high-fat diet, resulting in an improve
intestinal barrier and attenuated obesity or steatohepatitis
(Zhou et al., 2017; Fang et al., 2019). Similarly, sodium
butyrate supplementation was shown to beneficially restore the
dysbiosis in CRC liver metastasis mouse model, resulting in a
better host immune system characterized by an increase in
natural killer T cells and T helper 17 cells (Ma et al., 2020).
Hence, the interaction between butyrate and gut microbiota
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
appears to be bidirectional. More investigations would need to
be conducted to define the mechanistic link between dietary
butyrate, gut microbiota, and CRC.

Simple Carbohydrate
A conclusive link between high sugar intake and CRC risk in
healthy humans has not been reported by cohort studies
(Galeone et al., 2012; Tasevska et al., 2012; Pacheco et al.,
2019), but a moderately heightened risk did emerge in smaller
case-control studies (Pou et al., 2012; Wang et al., 2014; Chun
et al., 2015). Nonetheless, the detrimental effect of simple
carbohydrates on CRC is more evident in animal studies.
Sucrose supplementation aggravated colonic inflammation in
colitic rats by inducing DNA changes in the colon mucosal cells
(Mahmoud, 2011). Ingestion of high-fructose corn syrup could
enhance colon tumorigenesis via the action of ketohexokinase, a
fructose-converting enzyme that changes the tumor cell
metabolism to increase the production of fatty acids needed for
tumor growth. Importantly, the enhanced tumor growth was
observed in the absence of obesity, supporting the detrimental
role of simple sugars in the etiology of CRC independently from
their effect on obesity (Goncalves et al., 2019). This finding
points to the consequences of consumption of simple sugars,
especially of high-fructose corn syrup that is widely used as a
sweetener in carbonated drinks, condiments, and baked foods
(Payne et al., 2012).

Simple carbohydrates, especially monosaccharides, are easily
hydrolyzed and absorbed in the small intestine, resulting in a
rapid rise in blood glucose level. Although a consistent link
between total sugar intake and CRC risk has not been
established, a number of studies did find a positive association
between glycemic index (GI) and glycemic load (GL) with CRC
risk (Gnagnarella et al., 2008; Sieri et al., 2015). The GI measures
the elevation in blood sugar level following consumption of a
particular food independent of quantity, while GL takes into
account of both GI and the quantity of available carbohydrates
in a portion of food consumed (Vega-López et al., 2018).
Interestingly, GI has been significantly linked to CRC risk
more frequently than GL (George et al., 2009; Choi et al.,
2012; Turati et al., 2015). Two studies reported that high
carbohydrate intake from high GI food was significantly
associated with increased CRC risk, but high carbohydrate
intake from low GI food was significantly associated with
decreased CRC risk, indicating the greater dependence of
CRC risk on the ability of carbohydrate-rich food to post-
prandially raise blood glucose level rather than the overall
amount of carbohydrates consumed (Sieri et al., 2015; Sieri
et al., 2017). In fact, hyperglycemia (high blood sugar level) and
hyperinsulinemia (high insulin level) resulting from high GI-
diet could contribute to the initiation or progression of CRC
through the induction of DNA damage in colon cells (Othman
et al., 2013; Othman et al., 2014), or the action of insulin-like
growth factor (Aleksandrova et al., 2013) which has a known
role in the pathogenesis and progression of CRC (Vigneri et al.,
2015; Kasprzak and Adamek, 2019). Other etiological
hypotheses for the CRC-promoting effect of high GI/GL diet
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include insulin resistance, oxidative stress and abnormal sex
hormone production (Sieri et al., 2017; Li et al., 2019), but these
mechanisms have not been extensively studied.

The Interaction Between Simple Carbohydrates
and Gut Microbiota
The association between simple carbohydrate consumption and
microbiota-mediated CRC risk remains poorly documented.
Martinez-Medina et al. (2014) reported an increased
colonization of adherent-invasive E. coli and mucin-degrading
bacterium Ruminococcus torques in the gut of mice fed with
high-fat, high-sugar Western diet. The change in microbiota
composition subjected the mice to an increased susceptibility to
inflammation, as reflected by the decreased mucus thickness and
an increased release of pro-inflammatory cytokines (Martinez-
Medina et al., 2014). Of note, the study examined the combined
effect of a high-fat and a high-sugar diet, hence it cannot be
concluded whether the microbial dysbiosis was induced by fat or
sugar exposure. Nevertheless, it has been postulated that a
prolonged exposure to fructose and sugar substitutes through a
Western diet can subject gut microbiota to extensive
conditioning, leading to the formation of “Western gut
microbiome” characterized by low microbial genetic and
phylogenic diversity (Payne et al., 2012; Segata, 2015).
Supporting this hypothesis, studies have shown that
individuals living in non-urban settings harbor a gut
microbiome of greater diversity and complexity, relative to
individuals from urban-industrialized settings (Obregon-Tito
et al., 2015; Rampelli et al., 2015). The loss or depletion of
certain gut microbiota may in the long run lead to microbial
dysbiosis or aberrant host-microbe interactions, and ultimately,
disorders (Payne et al., 2012).

Fat
Epidemiological studies examining the link between dietary fat
intake and CRC risk are sparse and to date, have not drawn a
definitive conclusion regarding the CRC-promoting effect of
dietary fats. While total dietary fat intake is infrequently linked
to CRC risk (Dahm et al., 2010a; Williams et al., 2010; Kim and
Park, 2018), an elevated CRC risk has been detected among
individuals with a high saturated fat intake (Chun et al., 2015;
Tayyem et al., 2015; Kim et al., 2017b). In contrast, consumption
of n-3 polyunsaturated fat (n-3 PUFA) has been inversely
associated with CRC (Zhong et al., 2013; Kim and Kim, 2020).
A more consistent link between fat intake and colon
carcinogenesis has been inferred from mice studies, that
showed an associated increased risk due to an altered
expression of inflammatory mediators (Padidar et al., 2012;
Day et al., 2013).

Investigations of the dietary fat-associated CRC risk often cite
bile acids as being responsible for increasing CRC risk. Human
pr imary bi le ac ids , namely chol ic ac id (CA) and
chenodeoxycholic acid (CDCA), are synthesized in the liver
from cholesterol. Conjugated with glycine and taurine, the
primary bile acids are secreted into the hepatobiliary system
and enter the duodenum to emulsify dietary fats after a meal.
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Subsequently, the majority of the primary bile acids will be
deconjugated and reabsorbed, but a small amount can escape
and enter the colon, where they are biotransformed by colonic
bacteria via 7a-dehydroxylation to form secondary bile acids
such as deoxycholic acid (DCA) and lithocholic acid (LCA).
Most human gut microbiota that participate in the 7a-
dehydroxylation belong to the genus Clostridium (Ocvirk and
O’Keefe, 2017; Zou et al., 2018).

Given bile acids are cholesterol derivatives, their synthesis is
likely to be promoted by a high-fat diet that is also rich in
cholesterol. A high-fat diet will upregulate bile discharge for the
emulsification of excessive dietary fats, which further raises the
bile acid level (Ajouz et al., 2014). A study reported an increased
fecal bile acid concentration in mice fed with high-fat, low-fiber
Western diet, which was observed along with a defective bile acid
transport and an increased colon tumor number (Dermadi et al.,
2017). Accumulation of fecal bile acid was also observed in DCA-
treated mice, along with a significantly increased intestinal
inflammation (Xu et al., 2020). Extending to human studies,
African Americans who consumed a high-fat diet were shown to
have a 3–4 times higher level of secondary bile acids than native
Africans who subsisted on a low-fat diet, providing a possible
explanation for the much higher CRC risk among African
Americans (Ou et al., 2012). In the follow-up study that
involved switching African Americans to a high-fiber, low-fat
diet for 2 weeks, the dietary change led to a suppressed secondary
bile acid synthesis and showed a remarkable decrease in colonic
mucosal inflammation and proliferation biomarkers of cancer
risk (O’Keefe et al., 2015).

Although the exact mechanism of how bile acids induce the
pre-cancerous state of colonocytes is unclear, it has been
hypothesized that bile acids as cholesterol derivatives with
detergent-like properties, could damage the intestinal
epithelium when they are present at high concentration. Such
destruction will trigger inflammation and a compensatory
hyperproliferation of undifferentiated cells, which drives their
transition into a precancerous state (Nguyen et al., 2018).
Moreover, DCA and LCA could induce cancer stem cell
growth in the colonic epithelium via the modulation of M3R
and Wnt/b-catenin signaling. Given cancer stem cells are
notorious for their ability to initiate and sustain tumor growth
or proliferation, this finding provides a probable mechanism on
how bile acids promote CRC (Farhana et al., 2016). Interestingly,
it has been hypothesized that bile acid could exert a dichotomous
effect on the apoptosis of colonocytes (Nguyen et al., 2018): a
short-term exposure to high concentration of bile acid was able
to induce apoptosis, primarily via the production of ROS
(Ignacio Barrasa et al., 2011), whereas a prolonged exposure
gave rise to colon carcinogenesis (Bernstein et al., 2011), which
can be attributed to the inhibited accumulation of tumor
suppressor p53 (Qiao et al., 2001), or the activation of PI3K/
Akt signaling (Raufman et al., 2008). The effect of bile acids on
CRC development was shown to be mediated by the farnesoid X
receptor (FXR), a primary bile acid nuclear receptor. One study
reported that inactivation of FXR could increase cancer risk by
inducing bile acid dysregulation (Dermadi et al., 2017).
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Conversely, in another study, the ability of DCA to compromise
colonic epithelial restitution appeared to be mediated by the
activation of FXR, and such effect was linked to colonic barrier
dysfunction and intestinal inflammation, both of which could
increase susceptibility to CRC (Mroz et al., 2018). Although the
role of FXR remains incompletely defined, these studies pinpoint
the importance of FXR in mediating bile acid-associated
CRC risk.

Although DCA and LCA are notorious for their tumorigenic
effect especially in the course of CRC development, it is vital to
note that not all bile acids could cause adverse effects.
Ursodeoxycholic acid (UDCA), a secondary bile acid used as
the first-line therapy for primary biliary cirrhosis, is found to
have profound chemopreventive effect against colorectal
carcinogenesis (Serfaty et al., 2010). The antiproliferative
action of UDCA in colon cancer cells has been well
documented and attributed to its ability to regulate the
production of ROS (Kim et al., 2017a), to suppress the pro-
proliferative c-Myc proteins (Peiro-Jordan et al., 2012), or to
sustain the hyperphosphorylation of ERK1 kinase (Krishna-
Subramanian et al., 2012). UDCA could also reverse DCA-
induced effect on colonic epithelial cells by inhibiting DCA-
induced secretion of epithelial defensins (Lajczak et al., 2017).
Evidently, while other secondary bile acids drive CRC
progression, UDCA emerges as a potential chemopreventive
agent for CRC. Their differential actions on CRC-related
inflammatory signals or growth factors are likely to account for
such contrasting effect (Serfaty et al., 2010).

The Interaction Between Dietary Fat and Gut
Microbiota
Several studies have associated the prolonged intake of high-fat
diet with a shift in the relative proportion of Firmicutes to
Bacteroidetes (F/B ratio), where Firmicutes dominate at the
expense of Bacteroidetes in most cases (Murphy et al., 2010;
Islam et al., 2011; Taira et al., 2015). Given the shift in the F/B
ratio has been repeatedly linked to obese individuals (Ferrer
et al., 2013; Kasai et al., 2015; Koliada et al., 2017), it could be
contended that the dysbiosis is more likely to be associated with
the host obese state rather than the high-fat diet itself. However,
it was found that even in the absence of an obese genotype, mice
fed with high-fat diet demonstrated profound changes in
microbial communities characterized by increase in Firmicutes
and decrease in Bacteroidetes (Hildebrandt et al., 2009). A
high-fat diet could also promote tumorigenesis in the murine
small intestine independently of obesity by inducing a dysbiosis
that was associated with an attenuated antimicrobial host
defense (Schulz et al., 2014). These findings collectively show
that microbial dysbiosis is inducible by high-fat diet alone,
and such dysbiosis could promote colon carcinogenesis
independently of obesity.

Moreover, a high-fat diet could increase the proportion of the
phylum Actinobacteria with an accompanying increase in the
expression of proinflammatory cytokines and a decrease in tight
junction proteins (Kim et al., 2019b). Given Actinobacteria are
known mucin-degrading bacteria (Tailford et al., 2015), an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
increase in abundance could induce gut barrier impairment
and subsequent colonic inflammation, which may help explain
the CRC-promoting effect of dietary fat in the colon. In mice, a
high-fat diet also diminished the beneficial gut microbiota
including Bifidobacterium, Lactobacillus, and Akkermansia
(Kim et al., 2012; Lecomte et al., 2015; He et al., 2018), all of
which play significant roles in mediating the intestinal
metabolism and immunity (Naito et al., 2018). The high-fat
diet-induced reduction of these beneficial gut microbiota could
possibly increase the susceptibility to inflammation, facilitating
subsequent neoplastic progression.

As conversion of bile acids into secondary bile acids involves
the action of gut microbiota, changes in the composition of gut
microbiota can potentially influence the metabolic effect of bile
acids in the host. A dysbiosis characterized by a decrease in the
ratio between Faecalibacterium prausntizii and E. coli was
associated with an impaired bile acid metabolism in patients
with inflammatory bowel diseases (IBD), as reflected by their
higher level of fecal bile acids (Duboc et al., 2013). In a recent
metagenomics analysis, a lower abundance of genes of bile-
metabolizing Firmicutes was detected in the gut microbiota of
IBD individuals, again linking microbial dysbiosis with the
disease state (Das et al., 2019). Of note, the interaction
between bile acids and gut microbiota is bidirectional as bile
acids serve as antimicrobial agents that help shape the gut
microbiome structure (Ridlon et al., 2016). Administration of
cholic acid into rats could expand Firmicutes to approximately
95% of the total gut microbiome in relation to 54% in control rats
(Islam et al., 2011). DCA treatment could induce a dysbiosis
characterized by an increase in opportunistic pathogens and a
decrease in Lactobacillus, Lactococcus, and Roseburia, which was
linked to intestinal tumorigenesis (Cao et al., 2017). Indeed,
while gut microbiota can affect the metabolism of bile acid, bile
acid can shape the composition of gut microbiota.

Recently, Bilophila wadsworthia, a sulfur-metabolizing
microbe that convert dietary sulfur into genotoxic hydrogen
sulfide (H2S) have been associated with the development of CRC
(David et al., 2014; Ijssennagger et al., 2016; Nguyen et al., 2020).
Excessive gut-derived H2S could break down the disulfide bonds
of the mucus bilayer of the gastrointestinal tract and expose gut
epithelium to immunogenic luminal bacteria (Ijssennagger et al.,
2016). Moreover, it could cause epithelial DNA damage, promote
alterations in immune cell populations associated with
inflammation and CRC. David et al. (2014) reported that
participants fed with a high-meat, high-fat diet for several days
showed an increase in Bilophila, which coincided with an
increased abundance of microbial DNA and RNA encoding for
H2S-producing enzymes (David et al., 2014). In a large cohort of
patients with precancerous polyps and CRC, Yachida et al.
(2019) found that DCA concentration was significantly
increased in subjects with multiple polypoid (MP, more than
three adenomas) adenomas with low grade dysplasia as
compared to healthy controls; and Bilophila wadsworthia was
the only species that was significantly associated with DCA
increase in this MP group (Yachida et al., 2019). Nguyen et al.
(2020) reported that long-term adherence to a dietary pattern
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associated with sulfur-metabolizing bacteria in stool was
associated with an increased risk of distal CRC in men but
how this bacteria contribute to CRC pathogenesis remains
unclear (Nguyen et al., 2020).

Figure 1 illustrates the interactions between diet, gut
microbiota, and increased risk of CRC risk. Table 2 recapitulates
the interactions between dietary compounds and gut microbiota
that purportedly influence CRC risk.
THE UNDERLYING MOLECULAR
MECHANISMS OF COLON
CARCINOGENESIS MEDIATED
BY GUT MICROBIOTA

Inflammation and Host Defense
Mechanism
The connection between inflammation and malignant diseases
has been well-established based on evidence from epidemiological,
genetic, or pharmacological studies. In the case of colon
malignancies, IBDs especially ulcerative colitis and Crohn’s
disease exhibit consistent association with an elevated risk of
CRC (Choi et al., 2019; Zhou et al., 2019; Olén et al., 2020). IBD-
associated CRC is characterized by early onset (Keller et al., 2019),
increased formation of synchronous, and poorly differentiated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
tumors (Reynolds et al., 2017) as well as elevated mortality rate
(Sebastian et al., 2014), in relation to sporadic CRC.

Importantly, recent studies have indicated the role of gut
microbiota in mediating inflammatory responses during the
course of colon carcinogenesis, most of which are through the
activation of nuclear factor-kB (NF-kB) signaling pathway. NF-
kB are a family of transcription factors that actively regulate
genes of various immune and inflammatory responses, and
strong evidence has indicated its involvement in the
pathogenesis of IBD and IBD-associated cancers (Liu et al.,
2017). In a mice study, colon tumors with a higher abundance
of Fusobacterium nucleatum had a higher nuclear translocation
of the p65 NF-kB subunit, representing an increase in the
activation of NF-kB pathway (Kostic et al., 2013). Importantly,
the tumorigenic property of F. nucleatum was indicated as its
administration into ApcMin/+ mice and human CRC cell lines
accelerated the colonic tumorigenesis, which was attributed to
the activation of NF-kB that in turn induced miR21 expression
(Yang et al., 2017). Analysis of colonic epithelial tissue of CRC
patients showed a higher expression of NF-kB in the S.
gallolyticus-seropositive group compared to the S. gallolyticus-
seronegative group (Abdulamir et al., 2009). In the follow-up
study, the colorectal tissue of S. gallolyticus-seropositive CRC
patients had a higher expression of IL-1 and COX-2, both of
which constitute the products of NF-kB activity (Abdulamir
et al., 2010). Likewise, infection of human macrophages with
FIGURE 1 | Diet, gut microbiota, and increased colorectal cancer (CRC) risk. Red and processed meat, saturated fat, and simple sugar could independently
promote colon carcinogenesis via different mechanisms. Similarly, they can induce microbial dysbiosis in the intestine, further elevating CRC risk. Gut microbiota
modulates the metabolism of ingested food via different processes to produce carcinogenic metabolites such as NOC, TMAO, and secondary bile acids. The
interaction between diet and gut microbiota is hence bidirectional. TMAO, trimethylamine-N-oxide; NOC, N-nitroso compounds, HCA, heterocyclic amines; PAH,
polycyclic aromatic hydrocarbons; DCA, deoxycholic acid; LCA, lithocholic acid; IGF, insulin-like growth factor.
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CRC-associated E. coli strains promoted a sustained COX-2
expression (Raisch et al., 2015). These studies together
underscore the role of gut microbiota together with the
involvement of NF-kB during the course of colon carcinogenesis.

The infection of colonocytes by certain gut microbiota can
activate a wealth of immune cells that together mediate the
colonic inflammatory responses. Enterotoxigenic B. fragilis for
instance, could induce distal colon tumorigenesis by recruiting
polymorphonuclear immature myeloid cells following NF-kB
activation (Chung et al., 2018). Peptostreptococcus anaerobius
interacts with colonic cells via a2/b1 integrin, a receptor that is
commonly overexpressed in CRC to promote a pro-
inflammatory state, characterized by an expansion of tumor-
associated macrophages, myeloid-derived suppressor cells, and
granulocytic tumor-associated neutrophils (Long et al., 2019).
Macrophages of Enterococcus faecalis-colonized mice could
produce pro-inflammatory cytokine TNF-a, which in turn
increased the colon epithelial cell production of netrin-1, a
neuronal guidance molecule capable of inhibiting apoptosis to
accelerate malignant transformation (Yang et al., 2012).

Obesity is known to produce a chronic, low-grade state of
inflammation. Some of the mediator for inflammation are
cytokines and inflammation-related molecules (Hursting et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
2012). A study reported that increased body mass index (BMI)
was associated with increase in two proinflammatory colonic
cytokines, namely TNF-a and interleukin 6 (IL6), while obesity
coincided with precancerous changes in the transcriptome
(Pfalzer et al., 2018). Considering the existing correlation
between obesity and gut microbiota changes (Boulangé et al.,
2016), finding from Pfalzer et al. (2018) implies that
inflammation may be one of the mechanisms of how obesity-
associated dysbiosis contributes to increased CRC risk.

Although the above describe mainly the detrimental effects of
microbiome, Parabacteroides distasonis, a commensal organism,
has been shown to exert an anti-inflammatory effect. When fed
to BALB/C mice, P. distasonis could reduce the severity of
intestinal inflammation of acute and chronic colitis (Kverka
et al., 2011). Likewise, Koh et al. (2020) has reported the
beneficial role of P. distasonis in attenuating colonic
tumorigenesis and maintaining intestinal epithelial barrier in
azoxymethane (AOM)-treated mice (Koh et al., 2020).
Bacterial Toxin
CRC-associated gut microbiota also exerts tumorigenic effect
through the production of genotoxin, which induces DNA or
TABLE 2 | Interactions between dietary compounds and gut microbiota that purportedly influence colorectal cancer (CRC) risk.

Food type Compounds
involved

Action of dietary compounds on gut
microbiota

References Action of gut microbiota on
dietary compounds

References

Red and
processed
meat

N-nitroso
compounds (NOCs)

Promote the growth of NOC-producing
bacteria, leading to disease- causing
dysbiosis

(Kobayashi, 2018) – –

Heterocyclic amines
(HCAs) and
polycyclic aromatic
hydrocarbons
(PAHs)

Alter the abundance, composition, or
metabolic activities of gut microbiota,
accompanied by colonic inflammation

(Khalil et al., 2010; Ribière
et al., 2016; Defois et al.,
2017; Defois et al., 2018)

Bioactivate and transform
HCAs and PAHs into
compounds with lower toxicity

(Van de Wiele et al.,
2005; Fekry et al.,
2016; Zhang et al.,
2019)

Trimethylamine-N-
oxide (TMAO)

– – Involved in TMAO synthesis;
microbial composition could
define body response toward
TMAO intake

(Koeth et al., 2013;
Tang et al., 2013;
Romano et al., 2015;
Cho et al., 2017)

Heme Promote the enrichment of Proteobacteria
and Bacteroidetes; reduce Firmicutes and
Deferribacteres; promote adenoma formation;
decrease fecal butyrate level

(Ĳssennagger et al.,
2012; Constante et al.,
2017; Martin et al.,
2019b)

Increase heme-induced
lipoperoxidation,
hyperproliferation and
exacerbation of colonic mucus
barrier

(Ijssennagger et al.,
2015; Martin et al.,
2015)

Dietary
fibers

Butyrate Promote the enrichment of Bacteroidetes,
especially Prevotella; restore high-fat diet-
induced dysbiosis, resulting in an improved
host immune response and intestinal barrier
as well as attenuated obesity and
steatohepatitis

(De Filippo et al., 2010;
Lin et al., 2013; Ou et al.,
2013; Zhou et al., 2017;
Fang et al., 2019; Ma
et al., 2020)

Mediate the fermentation of
dietary fiber to form butyrate

(Chen et al., 2013;
Baxter et al., 2019)

Simple
sugar

– Promote the enrichment of pathogenic and
mucin degrading bacteria; form “Western gut
microbiome” characterized by low genetic
and phylogenic diversity

(Payne et al., 2012;
Martinez-Medina et al.,
2014; Segata, 2015)

– –

Fats Bile acids Increase the Firmicutes to Bacteroidetes ratio,
which was linked to obesity; promote the
enrichment of mucin-degrading
Actinobacteria; decrease beneficial gut
microbiota such as Bifidobacterium,
Lactobacillus, and Akkermansia

(Murphy et al., 2010;
Islam et al., 2011; Kim
et al., 2012; Lecomte
et al., 2015; Taira et al.,
2015; Cao et al., 2017;
He et al., 2018)

Mediate the conversion of bile
acids into secondary bile acids;
dysbiosis is associated with
impaired bile acid metabolism
and inflammatory bowel
diseases

(Duboc et al., 2013;
Zou et al., 2018; Das
et al., 2019)
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chromosomal damage to facilitate malignant transformation.
Interestingly, the production of genotoxin is not restricted to
only the typically pathogenic bacteria but also commensal
bacteria. E. coli constitutes a normal component of the gut
microbiome, but certain strains that acquire pathogen-like
features can produce cyclomodulin genotoxin including
colibactin, cytotoxic necrotizing factor (CNF), and cytolethal
distending toxin (CDT) (Kurnick et al., 2019), all of which have
been examined for their promoting effect in CRC. The
pathogenicity island encoding colibactin, known as polyketide
synthase (pks), are detected in up to 66.7% of CRC patients
(Arthur et al., 2012). Moreover, experimental studies show that
colibactin could sustain tumor growth by generating DNA cross
links in cellulo, which were later transformed into DNA double-
strand breaks (Bossuet-Greif et al., 2018; Kawanishi et al., 2019;
Wilson et al., 2019), or by favoring the emergence of senescent
cells (Cougnoux et al., 2014; Dalmasso et al., 2014). Senescent
cells are cells with an irreversible cell cycle arrest. Although early-
stage senescence usually protects cells against malignant
transformation, a long-term senescence stage changes cellular
microenvironment leading to cancer development (Zeng et al.,
2018). In the case of CRC, colibactin-induced cellular senescence
could lead to the continuous secretion of growth factors that
promote tumor growth (Cougnoux et al., 2014; Dalmasso et al.,
2014). On the other hand, CNF-encoding gene was found
significantly more prevalent in the resection specimens of CRC
patients than diverticulosis patients, suggesting the specific role
of CNF in promoting colon cancer (Buc et al., 2013). Like
colibactin, CNF could induce cellular senescence in human
colon cells. Of note, such senescence was reversible, where the
polyploid cells re-entered cell cycle, depolyploidised and
eventually produced more aneuploid progeny. Given
aneuploidy is the hallmark of solid tumor development, the
reversible senescence induced by CNF is relevant to colon
tumorigenesis (Zhang et al., 2018b). Likewise, CDT that are
produced by pathogenic E. coli could drive colon carcinogenesis
in genetically altered premalignant human colon epithelial cells
(Graillot et al., 2016). Another gram-negative bacterium,
Salmonella enterica, also produces CDT, which has been
classified as typhoid toxin due to being a unique virulence
factor of S. enterica subspecies enterica serotype Typhi (Miller
and Wiedmann, 2016). Typhoid toxin of S. enterica was found to
synergize with the loss of the adenomatous polyposis coli (APC)
gene to promote microenvironment conducive for malignant
transformation, purportedly through the inhibition of DNA
repair and DNA damage‐induced cell cycle arrest (Martin
et al., 2019a).

Besides E. coli, other types of CRC-associated gut microbiota
also produce CRC-promoting cytotoxins. The gene encoding B.
fragilis toxin was detected in the colonic mucosa of both the
early-stages and late-stages CRC patients, with a 100% prevalence
in the latter (Boleij et al., 2015). Studies investigating the
tumorigenicity of B. fragilis toxin reported its capability to
disrupt or cleave E-cadherin, leading to barrier permeability
dysfunction, activation of Wnt/bcatenin and NF-kB signaling
pathways as well as expression of IL-8 and IL-17, which
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
altogether form a carcinogenic inflammatory cascade (Wu et al.,
2007; Hwang et al., 2013; Chung et al., 2018). B. fragilis toxin could
also upregulate spermine oxidase, a polyamine catabolic enzyme
and subsequently led to the generation of ROS and DNA damage
(Goodwin et al., 2011). Although the overall H. pylori
seroprevalence was not associated with CRC risk, seropositivity
to a specific H. pylori protein called VacA significantly increased
the odds of developing CRC (Epplein et al., 2013; Butt et al., 2019).
It was posited that VacA cytotoxin may contribute to CRC by
disrupting the ionic equilibrium in enterocytes, primarily through
the modulation of chloride concentration in the cellular
microenvironment (Ponzetto and Figura, 2019). This
mechanism, however, remains as a postulation; the effect of H.
pylori on CRC is far from clear as previous studies only assessed
the antibody responses against VacA in serum samples but did not
confirm the presence of H. pylori or its associated protein in
colorectal tissue samples (Epplein et al., 2013; Butt et al., 2019).
Bacterial Adherence Factor
Throughout their phylogenetic evolution, bacteria gradually
attained virulence factors such as adhesins, pili, and flagella to
develop their ability to breach the gut mucosal barrier, as well as
to adhere to and to invade intestinal epithelial cells (Gagnière
et al., 2016). Studies have elucidated the mechanism to which F.
nucleatum utilizes its adhesins to bind to and invade host cells:
Fusobacterium adhesin A (FadA) binds and shifts away the
vascular endothelial cadherin at the endothelial cell-cell
junctions to enable the passage of F. nucleatum through the
loosened junctions of endothelium (Fardini et al., 2011), whereas
fibroblast activation protein 2 (Fap2) binds to the D-galactose-b
(1-3)-N-acetyl-D-galactosamine (Gal-GalNAc) carbohydrate
moiety, which is overexpressed in CRC host, to promote F.
nucleatum enrichment (Abed et al., 2016). Of note, experimental
evidence has indicated that the interaction between bacterial
adhesins and their receptors on host cells does not only facilitate
bacterial attachment, but also its subsequent pathogenic activities
via the modulation of different mechanisms. FadA could bind
and interact with E-cadherin to induce b-catenin signaling, pro-
inflammatory cytokines, and CRC tumor growth in xenograft
mice (Rubinstein et al., 2013). A higher expression of FadA was
detected in patients with CRC and precancerous adenomas in
comparison with non-CRC individuals, further corroborated the
facilitative role of FadA in F. nucleatum-associated colon
carcinogenesis (Rubinstein et al., 2013; Kashani et al., 2020).
Similarly, the binding of Fap2 to the human inhibitory receptor
T-cell immunoreceptor with Ig and tyrosine based inhibitory
motif domains (TIGIT) potentially sustain tumor growth by
reducing natural killer cell cytotoxicity and tumor infiltrating
lymphocyte cell activities (Gur et al., 2015).

E. coli, another CRC-associated gut microbe, also has its
adherence and disease-promoting effect mediated by its
afimbrial adhesin (afa). Diffusely-adhering E. coli expressing
afa demonstrates the potential as a pathobiont that promotes
IBD or intestinal cancer progression due to its ability to induce
intestinal lesions, pro-inflammatory responses, and angiogenesis
December 2020 | Volume 10 | Article 603086
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(Servin, 2014). A study has shown afa-possessing E. coli confer
better adherence and invasion of intestinal epithelial cells than
the afa-negative clones. Moreover, afa had the ability to
upregulate the expression of VEGF, which could be linked to
angiogenesis and tumor development (Prorok-Hamon et al.,
2014). The prevalence of afa-possessing E. coli was also found
to be higher in CRC as compared to healthy patients, indicating
the potential role of afa in mediating the pathogenesis of E. coli
(Prorok-Hamon et al., 2014; Eklof et al., 2017).

The role of pil3 pilus is essential to the attachment of S.
gallolyticus to human mucus-producing cells or to the
colonization of murine colon (Martins et al., 2015).
Interestingly, pil3 bound equally well to the human mucins
MUC2 which predominates in healthy colon, and to MUC5AC
which is overexpressed only in cancerous colon. It was posited
that the ability of S. gallolyticus to bind MUC2 mucin via pil3
facilitates commensal colonization, while binding to MUC5AC
confers a growth advantage over other colon microbiota species
in the tumor microenvironment. This helps explain the higher
carriage rate of S. gallolyticus in the presence of colon tumors
(Martins et al., 2016).

Oxidative Stress and DNA Repair Defects
As discussed above, dysbiotic microbiota provokes chronic gut
inflammation via different mechanisms. These chronic
inflammatory cells may stimulate the release of endogenous ROS
and nitrogen species (RONs), which are responsible for the
accumulation of different types of DNA damage including single
and double strand DNA breaks, DNA crosslinks, thymine glycol,
and abasic sites (Ray andKidane, 2016).One of the gutmicrobiotas
that is capableof triggering suchdetrimental inflammatory cascade
is E. faecalis. E. faecalis could produce ROS such as extracellular
superoxide, which induced tumor-associated chromosomal
instability, anaphase bridging, and multipolar mitosis in human
colonic epithelial cells (Wang and Huycke, 2007; Wang et al.,
2008). P. anaerobius interacts with toll-like receptor (TLR) 2 and 4
on colon cells to stimulate an increased ROS level, rate of
cholesterol biosynthesis, and colon cell proliferation (Tsoi et al.,
2017). Of note, the effect of ROS in carcinogenesis is dichotomous;
while it contributes to tumor growth and survival, it induces the
apoptosis of cancer cells when present at excessively high level (Lin
et al., 2018). There is increasing evidence that ROS involvement in
various pathways can lead to the natural resolution of
inflammation (Chelombitko, 2018). Hence, the microbiota-
induced tumorigenic effect observed in the aforementioned
studies could be interpreted as a consequence of oxidative stress,
which occurs with prolonged ROS overproduction that could not
be compensated by antioxidant systems, rather than the direct
tumor promoting effect of ROS itself.

The DNA damage caused by ROS could be repaired by several
DNA repair mechanisms including the DNA mismatch repair
system (MMR) and base excision repair system (BER), both of
which are highly conserved from bacteria to humans (Bridge
et al., 2014). The disruption of either of these antioxidant
mechanisms by dysbiotic microbiota has been shown to
promote carcinogenesis by the accumulation of oxidative
stress, which is responsible for the severe cellular and tissue
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
damage as well as chronic inflammation (Chelombitko, 2018).
S tudies have uncovered the detr imenta l e ffec t o f
enteropathogenic E. coli (EPEC), which has been shown to
significantly reduce the expression of two key MMR proteins,
namely MSH2 and MLH1 via a post-translation mechanism
involving the EPEC effector protein EspF. The MMR dysfunction
could also induce microsatellite instability, a phenomenon
characterized by the accumulation of DNA replication errors
particularly in the area of short repetitive DNA stretches
(Maddocks et al., 2009; Maddocks et al., 2013). Considering
the fact that microsatellite instability is detected in up to 20% of
CRC (Nojadeh et al., 2018), investigations into how other gut
microbiota cause MMR dysfunction become a matter of great
clinical importance. Besides, it has been proposed that dysbiotic
microbiota may promote the accumulation of carcinogenic BER
intermediates, primarily AP sites, leading to genomic instability
and colon carcinogenesis (Ray and Kidane, 2016). Moreover, the
polymorphism of BER genes could modulate CRC risk,
presumably, by influencing the BER processes (Brevik et al.,
2010; Kabzinski et al., 2016). Nonetheless, whether or not specific
gut microbiota could interfere with BER, causing its loss of
biological function and subsequently influence risk of colon
carcinogenesis is yet to be explored. Figure 2 summarizes the
mechanisms to which dysbiosis may set the stage for
colon carcinogenesis.
POSSIBLE PREVENTIVE AND
THERAPEUTIC STRATEGY FOR
COLORECTAL CANCER: THE
PROBIOTICS

Probiotics are typically defined as living microorganisms, which
when administered in adequate amounts, confer health benefits
to the host. The potential contribution of probiotics to the
preventative or therapeutic strategies for CRC is attributed to
its ability to first, inhibit colonization by pathogenic bacteria;
second, to modulate the gut immunity; and third, to strengthen
the gut barrier (Fong et al., 2020). The inhibitory effect of
probiotics against pathogenic bacteria has been demonstrated
by several studies. The consumption of Bacillus bacteria was
shown to inhibit intestinal colonization by Staphylococcus aureus
via the interference of its quorum sensing signaling (Piewngam
et al., 2018). Clostridium butyricum exhibited inhibitive effect
against biofilm formation by enterotoxigenic B. fragilis, via the
regulation of several B. fragilis virulence and efflux pump-related
genes (Shi et al., 2020). Specific Lactobacillus strains, namely
Lactobacillus fermentum 88 and Lactobacillus plantarum 9,
demonstrated high adhesion values to the human enteric cell
line HT29 while inhibiting the adhesion of E. coli to HT29
(Gharbi et al., 2019). Pre-treatment with Lactobacillus
rhamnosus GG prior to the experimental induction of
periodontitis in mouse model also exerted protective effect
against F. nucleatum and Porphyromonas gingivalis-induced
caecum dysbiosis, as well as significantly reduced intestinal
inflammation (Gatej et al., 2020).
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As mentioned, probiotics play an immunomodulatory role in
the gut and can reduce colonic inflammation. Through the
suppression of Wnt/b‑catenin signaling, Lactobacillus species
was shown to ameliorate colonic inflammation and tumor
growth in azoxymethane (AOM) and dextran sulfate sodium
(DSS)-induced CRC murine model (Ghanavati et al., 2020).
Treatment with a specific strain of L. rhamnosus decreased
tumor incidence by inhibiting inflammation and promoting
apoptosis (Gamallat et al., 2016). In APCMin/+ mouse model
of colon cancer, L. plantarum strain YYC-3 prevented colon
tumor development, putatively by suppressing the production of
inflammatory cytokines and infiltration of inflammatory cells
(Yue et al., 2020). Administration of a mixture of Lactobacillus
acidophilus, L. rhamnosus and Bifidobacterium bifidum
decreased colitis and resulted in a 40% lower number of
tumors than the control group (Mendes et al., 2018).

It is known that a dysregulation of tight junction proteins
including occludin, claudins, junctional adhesion molecules, and
zona occludens (ZO) can lead to a leaky epithelial barrier, setting
the stage for intestinal inflammation and IBD-associated CRC
(Landy et al., 2016). The ability of probiotics to enhance gut
barrier integrity can hence play a preventive role. A study
previously reported that the probiotic E. coli Nissle 1917 could
enhance intestinal barrier function via the upregulation and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
redistribution of the tight junction proteins ZO-1, ZO-2, and
claudin-14 (Alvarez et al., 2016). A probiotic mixture comprising
Bifidobacterium, L. acidophilus, and Enterococcus attenuated
colitis in mice by upregulating the expression levels of occludin
and claudin-4 (Zhang et al., 2018a). In 1,2-dimethylhydrazine
dihydrochloride (DMH)-induced CRC mouse model,
administration of L. acidophilus, B. bifidum, and Bifidobacterium
infantum enhanced TLR2 signaling and gut mucosa epithelial
barrier integrity, both of which correlated with decreased tumor
incidence (Kuugbee et al., 2016). Figure 3 illustrates the
interactions between diet, gut microbiota, and decreased risk
of CRC.
CONCLUSION AND FUTURE DIRECTIONS

This report has examined recent scientificfindings thathighlighted
the active participation of gut microbiota in the pathogenesis of
CRC via different types of mechanisms. The purported
mechanisms, however, do not indicate whether the state of the
gutmicrobiota is a cause or a consequence of colon carcinogenesis.
CRC-associated microbiota have long been grouped into driver
species comprising pro-carcinogenic gut bacteria that initiate CRC
development, or passenger species comprising opportunistic
FIGURE 2 | Dysbiosis and colon carcinogenesis. Dysbiotic gut microbiota may drive the malignant transformation of colon cells via the induction of inflammation, the
secretion of bacterial toxin, the action of bacterial adherence factors and the induction of DNA damage. The transformation of early neoplastic lesions (adenomatous
polyps) to colorectal cancer (CRC) may take up to 15 years depending on the characteristics of the lesions and other risk factors including body weight, gender,
physical inactivity, etc. (De Palma et al., 2019). NF-kB, nuclear factor-kB; CNF, cytotoxic necrotizing factor; CDT, cytolethal distending toxin; bft, Bacteroides fragilis
toxin; VacA, vacuolating toxin A; FadA, Fusobacterium adhesin A; Fap2, fibroblast activation protein 2; afa, afimbrial adhesin; pil3, pilus 3; ROS, reactive oxygen
species; MMR, mismatch repair system, BER, base excision repair system.
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pathogens that outcompete the driver species in the tumor
microenvironment (Tjalsma et al., 2012). In that sense, driver
species can be regarded as the initiator of colon carcinogenesis
while the passenger species is the consequence which further
aggravates tumor progression after gaining colonization
advantage in the established tumor microenvironment. Several
recent studies however, redefine the roles of CRC-associated
microbiota differently from what was originally proposed: E. coli,
initially thought to be a driver species, may be a passenger species
capable of replacing other gut microbiota through the action of
colibactin (Wassenaar, 2018); S. gallolyticus, initially thought to be
a passenger species, may be a driver species capable of inducing
colon carcinogenesis on its own (Pasquereau-Kotula et al., 2018).
Indeed, the existing scientific evidence is insufficient to provide a
definitive answer for the cause-or-effect debate revolving around
the role of gut microbiota in CRC. With more robust studies that
could decipher the mechanisms underlying the pathogenicity of
CRC-associated gutmicrobiota, the causative role of particular gut
microbiotamay one day be established, analogous to howH. pylori
has been proven to be a strong risk factor for the development of
gastric cancer (Wroblewski et al., 2010). Investigations into the
exact effect ofmicrobial dysbiosis onCRCdevelopment is a subject
of tremendous clinical importance as gut microbiota is postulated
to contribute to CRC progression and maintenance, as well as to
define patients’ prognosis (Mima et al., 2016;Wei et al., 2016; Chen
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
et al., 2019) and response to anti-cancer therapies (Pouncey et al.,
2018; Lin et al., 2019; Villéger et al., 2019).

Evidence from epidemiological, animal, and human cell line
studies also strongly support the influence of dietary factors on
CRC risk. The findings so far converge to indicate that CRC risk
could be reduced by an increased intake of dietary fiber while an
elevated CRC risk is associated with the excessive intake of red
and processed meat, saturated fats and to a smaller extent, simple
sugar. These dietary components exert their detrimental effect by
altering the composition and diversity of the gut microbial
community to increase dysbiosis-associated CRC risk. On the
other hand, dietary impact on the human body is itself mediated
by the gut microbiota activity, which means dysbiosis triggered
by any factor can add to CRC risk by shifting the effect of dietary
components toward promoting colonic neoplasm. In either
direction of this two-way interaction, dietary components
mediate the risk of malignant transformation in the colon by
interacting with gut microbiota. Of note, the evidence of dietary
impacts on gut microbiota obtained from animal studies must be
interpreted with caution as the gut microbiota of in-bred animal
may not reflect the real-life gut microbiota of humans, which is
shaped by many factors other than diet (Nguyen et al., 2015).
Additionally, many human studies linking dietary habits, gut
microbiota and CRC risk are cross-sectional. There is a pressing
need to establish more well-designed longitudinal studies that
FIGURE 3 | Diet, gut microbiota, and decreased colorectal cancer (CRC) risk. The fermentation of dietary fiber by gut microbiota results in the production of butyrate.
Butyrate exerts inhibitory effect against colon carcinogenesis through several mechanisms, including the restoration of gut dysbiosis induced by high-fat diet. Probiotics
such as Lactobacillus and Bifidobacterium prevents gut colonization by pathogenic bacteria, modulates gut immunity, and maintains gut barrier integrity.
December 2020 | Volume 10 | Article 603086

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Loke et al. Colon Carcinogenesis, Diet, and Gut Microbiota
assess the gut microbiota composition, dietary habits and
gastrointestinal health status across different life stages, in
order to determine the causal effects of dysbiosis and dietary
compounds on CRC development and progression. It would also
be of interest to determine if a stool-based screening of microbial
dysbiosis can be utilized as a non-invasive and affordable CRC
screening tool, which is eminently useful in resource-poor
regions where colonoscopy is not readily available. Certainly, a
standardized protocol with higher specificity and sensitivity must
be developed before such screening tool can be implemented.

Probiotics have long been posited as a prophylactic and even
therapeutic measure in colon carcinogenesis. While probiotics
have demonstrated great health benefits, it should be noted that
probiotics use is accompanied by risk; host response toward gut
microbiome intervention varies from individual to individual,
with likelihood of adverse effect among individuals with
impaired gut barrier and compromised immunity (Doron and
Snydman, 2015). More studies are warranted to confirm the risk
and benefits associated with probiotics use in individuals with
underlying medical conditions, to ensure that only probiotics
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 17
with definitive protective effects against CRC are integrated into
the clinical management of CRC. A personalized microbiome
therapy taking into account the host genetics, physiology, and
immunity will contribute to a higher success rate of
such intervention.
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Ewa, B., and Danuta, M.-Š. (2017). Polycyclic aromatic hydrocarbons and pah-
related DNA adducts. J. Appl. Genet. 58 (3), 321–330. doi: 10.1007/s13353-016-
0380-3

Fahrer, J., and Kaina, B. (2013). O6 -methylguanine-DNAmethyltransferase in the
defense against N-nitroso compounds and colorectal cancer. Carcinogenesis 34
(11), 2435–2442. doi: 10.1093/carcin/bgt275

Fang, W., Xue, H., Chen, X., Chen, K., and Ling, W. (2019). Supplementation with
sodium butyrate modulates the composition of the gut microbiota and
ameliorates high-fat diet-induced obesity in mice. J. Nutr. 149 (5), 747–754.
doi: 10.1093/jn/nxy324
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