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Paracoccidioidomycosis (PCM) is the most relevant systemic endemic mycosis limited to
Latin American countries. The etiological agents are thermally dimorphic species of the
genus Paracoccidioides. Infection occurs via respiratory tract by inhalation of propagules
from the environmental (saprophytic) phase. In the lung alveoli the fungus converts to the
characteristic yeast phase (parasitic) where interact with extracellular matrix proteins,
epithelial cells, and the host cellular immunity. The response involves phagocytic cells
recognition but intracellular Paracoccidioides have demonstrated the ability to survive and
also multiply inside the neutrophils, macrophages, giant cells, and dendritic cells.
Persistence of Paracoccidioides as facultative intracellular pathogen is important in
terms of the fungal load but also regarding to the possibility to disseminate penetrating
other tissues even protected by the phagocytes. This strategy to invade other organs via
transmigration of infected phagocytes is called Trojan horse mechanism and it was also
described for other fungi and considered a factor of pathogenicity. This mini review
comprises a literature revision of the spectrum of tools and mechanisms displayed by
Paracoccidioides to overcame phagocytosis, discusses the Trojan horse model and the
immunological context in proven models or the possibility that Paracoccidioides apply this
tool for dissemination to other tissues.

Keywords: dissemination, transmigration, internalized parasitic cells, Paracoccidioidomycosis, immune
response evasion
INTRODUCTION

Onygenalean (Ascomycota) organisms including Paracoccidioides, have typically adapted to
saprobic conditions in soil but also to the live tissues of animal hosts. This biotrophic lifestyle is
possible thanks to genomics adaptations allowing them the capability to degrade animal substrates
suggesting a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from
soil to animal hosts (Desjardins et al., 2011). The potential of this thermodimorphic fungi to become
a pathogen and to invade a host it’s based on numerous fungal strategies to escape and to bypass the
host defense mechanisms (Teixeira et al., 2014; De Oliveira et al., 2015; Camacho and Niño-
Vega, 2017).
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Paracoccidioides species complex is widely distributed on Latin
American soils with high incidence in South America (Negroni,
1993; Restrepo et al., 2012). Paracoccidioidomycosis (PCM) process
start after inhalation of the environmental morphotype, when
reaches the lung alveoli. At this point, the dimorphic transition to
the yeast form and the interaction with the extracellular matrix
(ECM) proteins, epithelial cells, and the host cellular immunity
mediated by the phagocytic cells of the innate immune and adaptive
systems, they are the first steps in a complex relationship between
Paracoccidioides and the host that can lead to a granulomatous
disease. This multi-factorial host–pathogen interactions involves
fungal virulence factors, adaptation, adhesion and invasion
depending on the host immune status and its response (Negroni,
1993; González et al., 2005; González et al., 2008a; De Oliveira et al.,
2015; Hernández-Chávez et al., 2017).

In this damage-response framework, the host attempt to kill
the infecting microbe causing none or the minimum possible
damage. On the other hand, Paracoccidioides spp. develops
several tools as strategies to evade the host immune response
(González and Hernández, 2016; Camacho and Niño-Vega,
2017). One of the most interesting mechanism is the ability to
survive inside the phagocytes as a facultative intracellular
pathogen (Brummer et al., 1989; Moscardi-Bacchi et al., 1994).
This strategy could allow Paracoccidioides to leave the lung and
to penetrate other tissues protected by the phagocytic cells
(Silvana dos Santos et al., 2011). This important mechanism of
pathogenesis, involving carriage inside the infected macrophage
or dendritic cell, allowing extrapulmonary dissemination
phagocytes associated, is named Trojan horse model.

Phagocytes Activation
Phagocytosis followed by degradation of the fungal particles
internalized by phagocytic cells is an essential innate immune
response to prevent the dissemination. Initially, the response
involves neutrophils, alveolar macrophages, and dendritic cells
(DCs) recognition. Their digestive and killing capabilities will be
decisive to the destiny of the infectious process, then they will
stimulate the adaptive immune system through their cytokines and
chemokines. All phagocytes exist in degrees of readiness. During an
infection, they receive chemical signals which prepares for its
specific function. Resistance against Paracoccidioides infection
depends mainly on the phagocytes being activated, which exhibit
an increasedcapacity to ingest and fungicidal functions. Suchevents
are modulated by fungal components and host factors. Therefore,
activation of these cells is essential (Cano et al., 1998; Rodrigues
et al., 2007; Thind et al., 2015; González and Hernández, 2016;
Marcos et al., 2016; Camacho and Niño-Vega, 2017).

The recognition of fungal wall components named pathogen-
associated molecular patterns (PAMPs) by pathogen recognition
receptors (PRRs) initiates the complex host innate immune
response. These conserved transmembrane or intracytoplasmatic
PRRs include the Toll-like receptors (TLRs), mannose receptors
(MR), complement receptors (CR), and the family of C-type lectin
receptors (CLRs) such as CRL dectin-1, 2, and 3, among others.
This interaction drive to the activation of the innate immune
system cells and the succeeding production of mediators involved
into the removal of the agent and to the control of the adaptative
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
immune responses (Calich et al., 2008; Loures et al., 2014; Loures
et al., 2015; Preite et al., 2018).

Knowledge about the immunopathogenesis of PCM is based
on in vivo and in vitro experimental studies (González et al.,
2008b; González and Hernández, 2016). Human and murine
models showed de crucial role of TLRs inducing the production
of inflammatory cytokines that drives naive T cells to Th and
Treg cells. Patients with T cell deficiencies are more susceptible
to fungal infections such as PCM. T cells are the major source of
cytokines and lead to generate Th1 cytokines in order to activate
macrophages and DCs in a next step. Th1 cells secrete interferon
gamma (IFN-g) and tumor necrosis factor (TNF-a), both
cytokines activates macrophages and DCs enhancing their
ability to kill or inhibit intracellular fungi and to present
antigens to T lymphocytes (Cano et al., 1998; González et al.,
2003; Silvana dos Santos et al., 2011; Thind et al., 2015; Marcos
et al., 2016; Camacho and Niño-Vega, 2017).

The cytokine balance limited by the mutual regulation between
Th1, Th2, Th17, and Treg polarization is necessary in order to
optimize clearance and minimize inflammatory damage to the
infected tissues. There are two possible outcomes of this balance
that can result in control and removal of the fungal infection or
lead to persistence of the infection and progress to a severe
pathology (Olszewski et al., 2010; de Castro et al., 2013). Th1
and Th2 patterns of cytokine expression have been associated with
PCM resistance and susceptibility, respectively (Cano et al., 1998;
Mamoni et al., 2002; Benard, 2008; de Castro et al., 2013).

How to Survive and Even Multiply Into the
Phagocytes
The phagosome has a powerful antimicrobial effect. A combination
of factors gives this organelle sufficient capability to eliminate
pathogens, from inducing nutrients and trace elements
deficiencies to producing different antimicrobial compounds that
stress the internalized microbe (González and Hernández, 2016).
Several studies trying to elucidate how the parasitic yeast-like form
of Paracoccidioides manage to survive inside phagocytic cells. The
strategy to evade the hostile host conditions includes a multiplex
approach (Figure 1).

Polymorphonuclear Neutrophils
They are the most abundant leukocytes and the main effector
cells in the prevention of fungal infections. Polymorphonuclear
neutrophils (PMNs), the primary phagocytic cells of the innate
immune system, when activated via TLRs initiate the
inflammatory response against Paracoccidioides. Chemokines
produced by neutrophils are involved in the chemotaxis for the
rapid migration of immune cells to the infection site. Neutrophils
granules contain antimicrobial peptides, nucleolytic enzymes,
and also oxygen metabolites acting in the removal process
disrupting the cell membrane of fungus (Traynor and
Huffnagle, 2001; Rodrigues et al., 2007; González et al., 2008b;
Pathakumari et al., 2020). In addition, PMNs are able to produce
extracellular traps (NETs), these structures are able to capture
microbials, degrade their virulence factors, and eliminate the
pathogens (Mejıá et al., 2015; Restrepo et al., 2015).
February 2021 | Volume 10 | Article 605679
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The balance between pro-inflammatory and anti-inflammatory
cytokines is a prerequisite for a successful host/fungal interaction.
Participation of TLR2, TLR-4, and dectin-1 receptors in
recognition, internalization, and consequent activation of
neutrophils was demonstrated in human neutrophils stimulated
by Paracoccidioides brasiliensis. In this study, the more virulent
strain induced production of only TNF-a. The less virulent, in
contrast, triggers a controlled immune response with balanced
production of TNF-a and IL-10, preferentially recognized by
TLR2 and dectin-1 (Bonfim et al., 2009).

Non activated cells failing to exhibit an antifungal activity was
demonstrated. Due to the capability of human PMNs to release
higher oxygen metabolites, an activation process by IFN-g, TNF-a,
and GM-CSF cytokines is required for killing P. brasiliensis
(Rodrigues et al., 2007). This fact is important to understand one
of the mechanisms through which Paracoccidioides could adapt to
the host environment and survive. Transcriptome analysis of P.
brasiliensis reveals many resources of this fungus as antioxidant
defense system to combat reactive species. The parasite’s abilities to
overcame the oxidative and nitrosative stress by genes coding
proteins involved in this response were described and include
catalase and superoxide dismutase isoenzymes, peroxiredoxin,
cytochrome c peroxidase, among others (Campos et al., 2005).

At this point, the cytokine balance is also critical. The lack of an
adequate in vivo activation of PMNs as a consequence of a
depressed Th1 response releasing low levels of cytokines, leads to
the possible inability of PMNs to successfully kill Paracoccidioides
(Kurita et al., 1999; Rodrigues et al., 2007).

PMNs ingest yeast cells of P. brasiliensis through a typical
phagocytic process. These phagocytes are shortlived cells, after
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
few hours they undergo spontaneous apoptosis. Intracellular
microorganisms may block or delay this process to create an
environmental for their survival and replication. In vitro studies
showed that P. brasiliensis can prolong the lifetime of normal
PMNs and also induce an anti-apoptotic process associated with
an increase in PMNs IL-8 production as an strategy to facilitate
intracellular persistence (Acorci et al., 2009).

For decades, the role of PMNs in some granulomatous
diseases they have been studied showing an abnormal function
with a significantly lower ability to digest P. brasiliensis in vitro
than PMNs from normal individuals or from patients with
unrelated diseases (Goihman-Yahr et al., 1980).

This mechanism is another pathway that contribute to
understand the PCM pathogenesis. Inhibition of phagocytic
cells apoptosis allow P. brasiliensis to survive within the PMNs,
gain time for multiplication and also dissemination.
Macrophages
Lung macrophages participate as one of the main mechanisms of
cellular immunity trying to prevent the parasitic invasion of host
tissues and its dissemination through phagocytosis or granuloma
formation (González et al., 2008b). Studies using murine
macrophages and also proteomic analysis showed the
activations process as a requirement to obtain a more vigorous
defense with significantly more capability to kill the yeast-like
phase of P. brasiliensis. Otherwise, the ingested P. brasiliensis can
multiply inside non-activated cells (Brummer et al., 1989; Cano
et al., 1992; Moscardi-Bacchi et al., 1994; Parise-Fortes et al.,
2000; Chaves et al., 2019).
FIGURE 1 | Cellular response to Paracoccidioides infection in the lung and immune-evasion mechanisms. Upon inhalation the saprophytic form converts to the
yeast-like parasitic and trigger the host cellular immune response. Phagocytes are motivated to clear the invasive fungi. In addition to its own structural virulence
determinants such as gp43, melanin, among others, Paracoccidioides spp. applies several strategies to overcome the host harsh environment, including: modulate
host apoptosis, metabolic adaptations, and expression of genes to achieve an inanition mode and also resistance to the host oxidative burst. When intracellular
survival is possible, part of the phagocytosed fungi could be transported by DCs/macrophages to lymphoid tissues or other organs via circulation as facultative
intracellular pathogens but protected by phagocytes (Trojan horse mechanism).
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T cells are mandatory for antifungal host defense. Th1 cells
are involved in cell-mediated immunity supporting classical
activation of macrophages for fungal clearance and are
associated with strong proinflammatory responses. In contrast
to the protective role of Th1, a Th2 humoral with insufficient
production or deficient IFN-g, TNF-a, and IL-12 response, is
non-protective and was related with fungal persistence and
pathology. Th1 pattern is associated to asymptomatic and mild
PCM forms while an Th2 pattern has been related with
progressive juvenile and multifocal forms (Cano et al., 1998;
Mamoni et al., 2002; González et al., 2003; González et al., 2008b;
Olszewski et al., 2010; de Castro et al., 2013). A strong Th2
response suppresses the Th1 and Th17 response and triggers the
alternative macrophage activation mediated by IL-4 and IL-13.
The imbalance of Th2 responses, is inadequate to control the
infection and lead to an uncontrolled inflammatory host
response. This pathway do not express the fungicidal effect of
the nitric oxide and other intermediates and has been associated
with intracellular Paracoccidioides survival since it is not affected
by the nitrosative stress (González et al., 2008b; Olszewski et al.,
2010; Borghi et al., 2014). Th2 response is also characterized by
IgG4 and IgE, low macrophages activation, granulomas, and
eosinophilic inflammation (Mamoni et al., 2002).

TLRs shows their important participation in the effector and
regulatory mechanisms of innate and adaptative immunity against
fungal infections. Even if TLRs receptors promote an immune
response against infectious agents, experimental models
demonstrated that parasitic phase of Paracoccidioides could use
not conventional phagocytic receptors such as TLR2 and TLR4 to
penetrate intomacrophages and infectmammalianhosts.Although
thisprocess shouldgenerate aphagocyticprocess, thekillingactivity
was demonstrated not able to reduce the fungal burden. P.
brasiliensis seems to use TLRs as a virulence mechanism, which
facilitates its access into murine macrophages in vitro and in vivo.
Despite theirTLR-mediated activation,macrophages arenot able to
control fungal growth. However, the interaction between TLR and
other PRRs can result in different effector (Th1, Th2, andTh17) and
regulatory responses (Treg), which ultimately determine disease
outcome. The recognition ofP. brasiliensis via host TLR2 andTLR4
receptors of innate immunity is considered an escape mechanism
that allows the fungus to survive and replicate inside macrophages
(Calich et al., 2008).

Microbicidal activity of macrophages include the induction of
a low availability of nutrients but also, they activate an oxidative
burst. At this point, Paracoccidioides display a spectrum of tools
to adapt into in the intracellular environment, requiring
metabolic adaptations.

A decisive success is based on its resistance to oxidative and
nitrosative stresses and glucose deprivation. Reactive oxygen
species (ROS) and reactive nitrogen species (RNS) are generated
inside the phagolysosome, such us nitric oxide, peroxynitrite,
superoxide anion radical, and hydroxyl radical. In the face of the
oxidative and nitrosative stress, Paracoccidioides triggers a
powerful antioxidant defense system expressing several enzymes
including catalases, superoxide dismutases, thioredoxin, and
particularly cytochrome c peroxidase (González et al., 2000;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
de Arruda Grossklaus et al., 2013; Parente-Rocha et al., 2015;
Marcos et al., 2016; Bueno et al., 2016; Chaves et al., 2019). The
central role of the alternative oxidase (PbAOX) in the intracellular
redox balancing and in the resistance of P. brasiliensis to the
oxidative burst created by alveolar macrophages was also
demonstrated (Hernández Ruiz et al., 2011).

Adaptation, in order to survive under this stress, also includes
metabolic changes such us an alternative metabolic pathway
during carbon starvation. Several studies including proteomic
and transcriptomic analysis showed the shift of P. brasiliensis to
an “inanition mode,” including an increase in the synthesis of
glucose by gluconeogenesis and ethanol production, amino acid
degradation and utilization of fatty acids by beta-oxidation (Lima
et al., 2014; Parente-Rocha et al., 2015; Chaves et al., 2019).
Metabolic alterations also include the activation of the pentose
phosphate pathway to provide NADPH, a reducer substrate used
to reduce the oxidative effects when exposed to peroxide
hydrogen (de Arruda Grossklaus et al., 2013).

Many fungal geneshavebeen studied as probably involved in the
survival of P. brasiliensis in the host. Genes encoding proteins
essential to the life and those indispensable for the interaction with
the host were reported. Usingmurinemacrophages transcriptional
plasticity of P. brasiliensis in response to the hostile macrophage
intracellular environment was reported. To adapt and consequent
survive, P. brasiliensis expresses genes associated with glucose and
amino acid limitation, cell wall construction and oxidative stress
(Popi et al., 2002). It has also been demonstrated that
Paracoccidioides could develop a fermentation process to obtain
energy enabling its adaptation toglucose-poormicroenvironments.
Evenmore, can also produce ATP under low oxygen conditions, in
turn reducing the reactive oxygen species levels produced by the
host (Tavares et al., 2015).

In addition, lung murine infection models showed that
Paracoccidioides increased the expression of serine proteinase.
This protein is involved in cell rescue, defense, and as a virulence
factor that favors survival upon nitrogen deprivation, as well as
tissue invasion (Parente et al., 2010; Lacerda Pigosso et al., 2017).
Increased expression of heat shock proteins and proteins
involved in detoxification and stress response were observed
using proteomic analysis in P. brasiliensis recovered of primed
and non-primed macrophages (Chaves et al., 2019).

On the other hand, host cells try to prevent intracellular survival
and multiplication sequestering essential fungal nutrients such as
iron and zinc using high-affinity proteins, transferrin, and ferritin.
Iron is required for the saprophytic phase-to-yeast transition,
necessary for the pathogenic process development, as well as yeast
replication inside macrophages and monocytes (González et al.,
2007). In order to persist inside this environmental condition,
Paracoccidioides activate effectives iron and zinc uptake pathways,
adjusting their energymetabolism to an iron-independentmode by
increasing glycolytic activity and also expression of genes involved
in the production of siderophores (Parente et al., 2011; Silva-Bailão
et al., 2014). Even more, develops a non-traditional reductive iron
assimilation pathway, transporting zinc and iron inside the fungal
cell via iron reduction and zinc-regulated transporter homologs
(Zrt1 and Zrt2) (Camacho and Niño-Vega, 2017). Another iron
February 2021 | Volume 10 | Article 605679
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acquisition mechanism mediate by the putative hemoglobin
receptor Rbt5 was demonstrated. Paracoccidioides Rbt5 was able
to bind to hemin, protoporphyrin, and hemoglobin in vitro and
could function as a heme group receptor, which could help in the
acquisition of iron from host sources (Bailão et al., 2014).

Gp43 is the Paracoccidioides surface main antigen. This high
mannose glycoprotein of 43 kDa is an adhesin, important as one
of the mediators of fungus adhesion to host epithelial cells and
macrophages internalization. In peritoneal macrophages from
resistant and susceptible mice, gp43 acts an inhibitor of
phagocytosis and the intracellular fungal killing, even induce
protection. Therefore, is considered as one of the evasion
mechanisms of the primary infection in susceptible hosts and
to establish the fungal infection in distant niches favoring the
dissemination (Popi et al., 2002; Konno et al., 2012; De Oliveira
et al., 2015; Camacho and Niño-Vega, 2017). Gp43 also prevents
the release of nitric oxide from macrophages reducing the
nitrosative stress and stimulates IL-10 liberation, reducing the
inducible nitric oxide synthase expression and its enzymatic
activity. The suppressor effect of IL-10 blocks the IFN-g and
TNF-a-induced activation of phagocytic cells, by inhibiting their
fungicidal activity and ability to produce the oxidative
metabolites (oxide nitric and oxygen peroxide) involved in
fungus killing. Gp43 mediates another escape mechanism of
Paracoccidioides, impairing the ingestion process and the
interaction macrophage–fungus, inducing the deactivation of
the phagocytic cell (Popi et al., 2002; Moreira et al., 2010). In
addition, the early monocyte/macrophage secretion of IL-10,
particularly when these cells were challenged with gp43 was
observed. In patients with both the acute/subacute and chronic
forms of PCM, the imbalance in cytokine production was
involved in the gp43-hyporesponsiveness and a marked (non-
protective) antibody production. (Benard et al., 2001).

Paracoccidioides produce cell wall-associated melanin-like
components in vivo and during infection. Melanin is another
virulence factor that has been shown to interfere with host
defense mechanisms enhancing the resistance to immune effector
cells attacks (Taborda et al., 2008). In macrophage-like cell lines, the
phagocytic index for melanized P. brasiliensis yeast cells was half
that for the non-melanized cells. Yeast melanization interfere the
binding of macrophages lectin receptors to cell wall components,
consequently they are poorly phagocytized andmore resistant to the
antifungal activity of murine macrophages (da Silva et al., 2006).

One more survival strategy used when infected macrophages
are established consists in the inhibition of the phagosome-
endosome fusion. Paracoccidioides decrease the expression of
the endocytic protein EEA1 (early endosome antigen 1) that has
a critical function as organelle-tethering molecule responsible for
traffic endosomal. Therefore, cellular nutrition is impaired and
also the traffic of Paracoccidioides yeast for it final destruction in
the lysosome (Voltan et al., 2013).
Dendritic Cells
Lung cells such as DCs are part of the first line of defense against
Paracoccidioides. DCs, as antigen-presenting cells, also plays a
crucial role as sentinels in peripheral tissues inducing cell-mediated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
immune responses. PAMP-dependent or independent activation is
also required. They capture antigens, processed, and converted
these proteins to peptides that are immediately presented onmajor
histocompatibility complex molecules recognized by T
lymphocytes. DCs migrates to the lymph nodes, present antigens
and initiate T cell activation/responses. These phagocytic are
involved in detection, binding, phagocytosis, processing, antigen
presentation, T cell activation and killing of the organism (Cano
et al., 1998; Silvanados Santos et al., 2011; Thind et al., 2015;Marcos
et al., 2016; Camacho and Niño-Vega, 2017).

To adapt for survival in adverse conditions or stress, fungus has
the ability to modify its cell wall structure and also composition.
Polysaccharides of the cell wall are the main fungal PAMPs and
trigger the immune response when are recognized by PRRs.
Nevertheless, Paracoccidioides display strategies to evade
recognition by phagocytic cells, changing the amount of certain
surface cell wall components (Hernández-Chávez et al., 2017).
During the morphologic change, cell wall composition of
dimorphic fungi is altered as well as the carbohydrate polymer
structure. Filamentous phase contains both b- and a-(1,3)-glucans,
but conversion to the parasitic yeast form produce an increase of the
much less immunogenic a-(1,3)-glucan (Marcos et al., 2016).
Several studies demonstrated that DCs maturation is altered by
the parasitic form, influencing the susceptibility to this fungus.
When monocytes migrate to the infection site, they interact with
components of Paracoccidioides cell wall. In this sense, the critical
role of its cell wall in the host immune response during PCM was
postulated. Two cell wall fractions, one constituted mainly by a-
glucan and other by b-(1,3)-glucans, chitin, and proteins and the
alkali-soluble were investigated, demonstrating the induction of a
dysregulation in DCs differentiation. Paracoccidioides cell wall a-
glucan, presented as the mayor neutral polysaccharide in the yeast
phase, also influences favoring Th2 polarization and contributes to
pathogen persistence (Puccia et al., 2011; Souza et al., 2019). On the
other hand, the lower efficiency of DCs from mice susceptible to P.
brasiliensis in inducing a Th1 response was observed, an effect that
could be related to the progression of the disease in vivo (Almeida
and Lopes, 2001).

Other in vitro studies using human immature DCs also
demonstrated that P. brasiliensis inhibit prostaglandin E2
production by DCs, impairing its maturation in response to this
fungus and showing another evasion mechanism. These authors
suggest opposite mechanisms applied by P. brasiliensis to scape DCs
and monocytes responses, since increased production of PGE2 by
monocytes inhibits their killing mechanism, while inhibited
production by DCs avoid their maturation (Fernandes et al., 2015).

The main immunodominant glycoprotein gp43 was reported
affecting many functions of the host phagocytic cells and might
be used by Paracoccidioides to reduce the effectiveness of the
immune response. Studies with P. brasiliensis infection in mice
and purified gp43 lead to down-regulate properties of immature
DCs (Ferreira et al., 2004).

Spread via Transmigration of Infected
Phagocytes
The Trojan horse-like mechanism was described for other fungal
infections and well-studied in Cryptococcus, explaining the
February 2021 | Volume 10 | Article 605679
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mechanism of cryptococcal brain invasion (Shi andMody, 2016).
As well as Paracoccidioides, cryptococcal infection begins in the
lung and experimental evidence showed that host phagocytes
play a role in subsequent dissemination. This transmigration
model contributes significantly to fungal barrier crossing and
Cryptococcus-containing phagocytes can cross the blood-brain
barrier via transendothelial pores (Santiago-Tirado et al., 2017;
Casadevall et al., 2018). Three mechanisms have been proposed
for pathogens to cross the blood-brain barrier: transcellular
migration, paracellular migration and/or by means of infected
phagocytes (Trojan horse model), proliferating and causing
grave illness (Shi and Mody, 2016). Evidence for this model
were showed using mice infected with macrophages containing
ingested cryptococcal cells (Charlier et al., 2009). Although
Trojan horse-like mechanism has been more studied in
Cryptococcus, and its glucuronoxylomannan capsule plays an
important role in the inhibition of phagocytosis, Paracoccidioides
deploys numerous effectives abilities to persist and also multiply
inside phagocytes as a facultative intracellular pathogen
(Figure 1). Therefore, access to this mechanism is feasible by
Paracoccidioides, and dissemination to other organs/systems
could occur (Brummer et al., 1989; Moscardi-Bacchi et al., 1994).

Although alveolar macrophages have well-defined
immunoregulatory functions, these cells are generally considered
as restricted to the alveoli. It was demonstrated that murine
alveolar macrophages constitutively migrate from lung to the
lung draining lymph nodes and that following exposure to
bacteria, they rapidly transport bacteria to this site. Alveolar
macrophages, such as DC, appear responsible for the earliest
delivery of these bacteria to secondary lymphoid tissue. The
identification of this transport suggests an important role for
macrophages in the transport of invading pathogens to
lymphoid organs (Kirby et al., 2009).

Non-lytic exocytosis for yeast infecting phagocytes where
demonstrated. Viable yeast cells can come out of the
macrophages without phagocytes lysis (Alvarez and Casadevall,
2006). Like other yeasts, Paracoccidioides could escape from
intracellular confines of mammalian macrophages to continue
propagation and, possibly, dissemination. Also Candida albicans
spread via phagocyte-dependent mechanism. Using in vitro and
zebrafish disease models, how neutrophils and macrophages can
be vehicles for dissemination have been demonstrated.
Candida albicans survive within macrophages and can be
released far from the site of infection through non-lytic
exocytosis. The intracellular viable yeast is able to get into the
bloodstream and use blood flow to transmigrate to other tissues
(Scherer et al., 2020).

In Paracoccidioides little is known about which pathways this
fungus activates to escape from the monocyte-phagocyte system.
Murine animal models are considered the gold standard for in
vivo studies to simulate the fungal infection (De Oliveira et al.,
2015). The migration of lung DCs to the lymph nodes and also
lung DCs phagocyting P. brasiliensis yeast in vivo were
demonstrated (Ferreira et al., 2007).

After P. brasiliensis infection, an increase in DCs expression
of the chemokine receptors CCR7, CD103, and MHC-II occurs,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
enabling DCs migration from the infection site to the secondary
lymphoid after interacting with the fungus. This fact indicate that
Paracoccidioides induce migration of DCs. Animal model
showed bone marrow-derived DCs stimulated by P. brasiliensis
can migrate to the lymph nodes and activate a T-cell response.
Even more, it was demonstrated in vivo that DCs migrate and
transport the yeast parasitic form of the fungus to lymph nodes
(Silvana dos Santos et al., 2011). This strategy allows
Paracoccidioides to leave the lung and to penetrate other
tissues protected by the phagocytic cells. Lung DCs could act
as Trojan horses for this fungus.
DISCUSSION

Paracoccidioides-phagocytic cells interaction comprise a complex
transcriptional and translational plan including a powerful
antioxidant defense system. The host is under pressure to
develop resistance while the parasite tries to tolerate, adapt to
this new biotrophic lifestyle and overcome host environmental
stressors and reach to subsist.

The recognition of the fungal cells by the capable host
immune system trigger a large number of processes to control
these organisms, but not only the immune responses pattern
determines the progression of the disease and the clinical
outcome. Despite the efficient host fighting and even when it
has already been engulfed by phagocytes, we reviewed in this
article the amazing set of tools and strategies exposed by
Paracoccidioides to stay alive.

These pathogenic abilities allow not only their survival but the
possibility of gain access to other tissues via transmigration of
infected phagocytes. In this process, Paracoccidioides also causes
phagocytes to play a dual role, they can contain the PCM or be
instrumental to disseminate the infection. This mechanism,
which actually includes a spectrum of strategies increases the
virulence of this dimorphic fungus.

The Trojan horse mechanism represents a striking
demonstration of the admirable adaptability of the yeast-like
pathogenic form of Paracoccidioides to adverse conditions, as an
accidental fact in the life cycle of this environmental fungi trying
to survive after inhalation.

Nowadays, we understand better about how this fungus spreads
throughout a host. However, although PCM poses a significant
clinical risk, we still understand little about what roles plays the host
in limiting or enabling its dissemination. The possibility of
occurrence probably is not only related to the patient’s immune
status, but on a multiplicity of factors including sex, age, lifestyle, its
genetic background, and also the inhaled fungal load depending on
the environmental context, among others.
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González, A., Lenzi, H. L., Motta, E. M., Caputo, L., Restrepo, A., and Cano, L. E.
(2008a). Expression and arrangement of extracellular matrix proteins in the
lungs of mice infected with Paracoccidioides brasiliensis conidia. Int. J. Exper.
Pathol. 89 (2), 106–116. doi: 10.1111/j.1365-2613.2008.00573.x
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Restrepo, A., Cano, L. E., and González, A. (2015). The power of the small: the
example of Paracoccidioides brasiliensis conidia. Rev. Inst. Med. Trop. São
Paulo 57 (suppl 19), 5–10. doi: 10.1590/s0036-46652015000700003

Rodrigues, D. R., Dias-Melicio, L. A., Calvi, S. A., Peraçoli, M. T. S., and Soares,
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