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Campylobacter jejuni is the leading cause of bacterial gastroenteritis, which has motivated
the monitoring of genetic profiles circulating in Luxembourg since 13 years. From our
integrated surveillance using a genotyping strategy based on an extended MLST scheme
including gyrA and porA markers, an unexpected endemic pattern was discovered in the
temporal distribution of genotypes. We aimed to test the hypothesis of stable lineages
occurrence by implementing whole genome sequencing (WGS) associated with
comprehensive and internationally validated schemes. This pilot study assessed four
WGS-based typing schemes to classify a panel of 108 strains previously identified as
recurrent or sporadic profiles using this in-house typing system. The strain collection
included four common lineages in human infection (N = 67) initially identified from recurrent
combination of ST-gyrA-porA alleles also detected in non-human samples: veterinary (N =
19), food (N = 20), and environmental (N = 2) sources. An additional set of 19 strains
belonging to sporadic profiles completed the tested panel. All the strains were processed
by WGS by using Illumina technologies and by applying stringent criteria for filtering
sequencing data; we ensure robustness in our genomic comparison. Four typing
schemes were applied to classify the strains: (i) the cgMLST SeqSphere+ scheme of
637 loci, (ii) the cgMLST Oxford scheme of 1,343 loci, (iii) the cgMLST INNUENDO
scheme of 678 loci, and (iv) the wgMLST INNUENDO scheme of 2,795 loci. A high
concordance between the typing schemes was determined by comparing the calculated
adjusted Wallace coefficients. After quality control and analyses with these four typing
schemes, 60 strains were confirmed as members of the four recurrent lineages regardless
of the method used (N = 32, 12, 7, and 9, respectively). Our results indicate that,
regardless of the typing scheme used, epidemic or endemic signals were detected as
reflected by lineage B (ST2254-gyrA9-porA1) in 2014 or lineage A (ST19-gyrA8-porA7),
respectively. These findings support the clonal expansion of stable genomes in
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Campylobacter population exhibiting a multi-host profile and accounting for the majority of
clinical strains isolated over a decade. Such recurring genotypes suggest persistence in
reservoirs, sources or environment, emphasizing the need to investigate their survival
strategy in greater depth.
Keywords: whole genome sequencing, Campylobacter jejuni, typing schemes, WGS typing scheme comparison,
recurring genotypes, clones, core genome MLST, whole genome MLST
INTRODUCTION

Campylobacter spp. is the leading cause of bacterial foodborne
diarrheal disease worldwide (WHO, 2013) and the main
zoonotic agent in the European Union (EU) (EFSA and
ECDC, 2019). In 2018, the reported EU-wide incidence of
campylobacteriosis was 64.1 cases per 100,000 population and
Luxembourg had one of the highest rates in Europe (103.8)
(EFSA and ECDC, 2019). Campylobacter is responsible for a
large health and economic burden world-wide with a cost-of-
i l lness of $1.56 bil l ion in the USA (Scharff , 2012;
Devleesschauwer et al., 2017) and 8.28 disability adjusted life
years (DALYs) per 100,000 population in Europe (Cassini
et al., 2018).

More than 80% of cases of campylobacteriosis are caused by
Campylobacter jejuni and poultry is considered the main
reservoir of human infections (Mughini-Gras et al., 2012;
Ragimbeau et al., 2014; Mossong et al., 2016; EFSA and ECDC,
2019). Transmission is commonly associated with cross-
contamination during handling of raw meat, the consumption
of undercooked meat or raw drinking milk (EFSA and ECDC,
2018). C. jejuni lives as a commensal bacterium in the
gastrointestinal tract of wild and domestic birds and mammals,
including cattle and sheep. Environmental transmission routes
are less frequently reported, but risks include exposure during
outdoor sports, swimming in natural waters or contact with
garden soil (Stuart et al., 2010; Ellis-Iversen et al., 2012; Mughini-
Gras et al., 2012; Bronowski et al., 2014; Mossong et al., 2016;
Kuhn et al., 2018).

Unlike for other foodborne pathogens, molecular surveillance
of C. jejuni has not been implemented in many European
countries as the majority of human infections are thought to
be sporadic with a low fatality rate (0.03% in EU in 2017) (EFSA
and ECDC, 2019). Nevertheless, due to the high number of
reported human cases in the EU, campylobacteriosis ranks third
in cause of death behind listeriosis and salmonellosis. In
addition, outbreaks caused by Campylobacter spp. are
increasingly being identified and reported on a regular basis,
often linked to consumption of untreated drinking water, raw
milk or chicken liver paté (Jakopanec et al., 2008; Revez et al.,
2014; Davis et al., 2016; Lahti et al., 2017; Kang et al., 2019;
Hyllestad et al., 2020).

The generally high incidence recorded in Luxembourg over
the last decade has motivated a national implementation of
molecular monitoring of Campylobacter circulating in food,
farm animals, and environmental waters, as part of an
integrated surveillance (Ragimbeau et al., 2008; Berthe et al.,
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2013; Ragimbeau et al., 2014; Mossong et al., 2016). Monitoring
the C. jejuni population circulating in a community can function
as early warning signals for outbreaks and detect long-term
changes in the bacterial population, such as emerging new
virulence traits or antimicrobial resistance. Further, monitoring
the types of C. jejuni in different reservoirs and environments can
shed light on the epidemiology of campylobacteriosis in
that region.

Initially, genotypes from the molecular monitoring were
defined according to an in-house typing system originally
developed for the Sanger sequencing method. This typing
method consists of the seven housekeeping genes from the
Multi Locus Sequence Typing (MLST) method (Maiden et al.,
1998; Dingle et al., 2001) combined with allelic profiles from two
additional loci: porA (Clark et al., 2007) and gyrA (Wang et al.,
1993). Including porA and gyrA refines the resolution scale of
MLST and creates a reliable extended MLST typing method. The
porA locus encodes the major outer membrane protein and is
highly polymorphic, but stable during human passage and within
family outbreaks making it a suitable molecular marker for
epidemiologic investigations (Cody et al., 2009). Jay-Russell
et al. (2013) supported this finding by utilizing variations in
porA sequences as a screening tool for discriminating genetically
related strains in the situation of a large outbreak (Jay-Russell
et al., 2013). Interestingly, specific point mutations within porA
were identified as markers of hyper virulence for a C. jejuni clone
causing abortion in ruminants and foodborne disease in humans
(Sahin et al., 2012; Wu et al., 2016). A sequence-based gyrA
method was recently developed and it provides information of
isolates in two respects: (i) to distinguish the major nucleotide
mutation (C257T) conferring the quinolone resistance (i.e., the
peptide shift Thr86Ile), and (ii) to source-track clinical isolates
according to a host signature in gyrA alleles, potentially
predictive of domestic birds as source (Jesse et al., 2006;
Ragimbeau et al., 2014). The discriminative power resulting
from this extended MLST method indexed on a 9-loci basis is
sufficient to define different lineages and human clusters (Dingle
et al., 2008; Ragimbeau et al., 2014). This has recently been
superseded by whole genome sequencing (WGS).

The advent of Next Generation Sequencing (NGS)
technologies has significantly increased the amount of genetic
information available for the characterization of bacterial isolates.
Comparisons at the genome level are more relevant for defining
relationships between isolates at unprecedented resolution while
simultaneously allowing the full characterization of the virulome,
resistome, and metabolome of the isolate. Phylogenetic
approaches based on WGS data rely on calculating genetic
January 2021 | Volume 10 | Article 608020
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distances based on either SNPs (single nucleotide polymorphism)
or allele differences (ADs) [known as core or whole genomeMLST
(cg/wgMLST)] (ECDC, 2016). Unlike other common food and
waterborne bacterial pathogens [Listeria monocytogenes (Ragon
et al., 2008) or Salmonella enterica serovar Typhi (Lan et al.,
2009)], Campylobacter populations display high genetic diversity
likely driven by horizontal genetic exchange (de Boer et al., 2002;
Sheppard et al., 2011) and to a lesser extent by chromosomal
mutations. As a result, SNP analyses that compare strains at the
nucleotide level tend to overestimate genetic exchange events and,
consequently, decimate the signals of the Campylobacter
population structure (Sheppard et al., 2012). After conducting
comparative studies between the SNP and the cgMLST approaches
for different pathogens, it appears that the gene-by-gene approach
is more suitable for identifying lineages with this recombining
species (Dangel et al., 2019; Jajou et al., 2019). This gene-by-gene
method defines allelic profiles from a set of common loci, known
as core genome common to a representative panel of isolates.
Including accessory loci, present in only a subsection of genomes
and often associated with specific phenotypic traits of interest,
improves the discriminatory power of the gene-by-gene analysis
(Sheppard et al., 2012). For WGS analysis of C. jejuni and C. coli,
several typing schemes have been developed, including two
cgMLST schemes; a commercial cgMLST schema containing
637 loci from the SeqSphere+ software (Ridom GmbH,
Münster, Germany; www.cgMLST.org) and the Oxford cgMLST
schema with 1,343 loci (Cody et al., 2017). Two wgMLST schemes
were also defined for C. jejuni/coli within the SeqSphere+ software
(including the cgMLST and 958 accessory loci) and by the Oxford
University (1,643 loci) (Cody et al., 2013). Moreover, two typing
schemes were developed specifically for C. jejuni: a cgMLST (678
loci) and a wgMLST (2,795 loci) from the INNUENDO platform
(Llarena et al., 2018). The method-dependent definition of a
WGS-based genotype underlines the need for an international
nomenclature to improve communication in outbreak
investigation and in surveillance.

Through vigilant surveillance and molecular subtyping with
extended MLST, we discovered an unexpected endemic pattern
in the temporal distribution of genotypes associated with human
infection over several years. The aim of this study was to
investigate if these strains were indeed clonal by applying a
higher resolution typing method, namely the WGS gene-by-gene
approach. We simultaneously assessed the concordance between
the four different typing schemes developed for Campylobacter
spp. and their ability to separate closely related strains.
MATERIALS AND METHODS

Strain Selection
Five thousand C. jejuni isolates, from human and non-human
sources collected in Luxembourg between 2006 and 2018, were
inspected. Years 2009 and 2010 were not included as no molecular
surveillance datawere available. Genotypic data associatedwith this
collection included extendedMLST profiles indexed on nine loci: 7
targets of MLST (Dingle et al., 2001), the partial sequence of gyrA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(Ragimbeau et al., 2014), and the SequenceVariable Region of porA
(Campylobacter MOMP database; Dingle et al., 2008). The
nomenclature for displaying the results of this extended MLST
was defined as follows: sequence type (ST), gyrA (allele number),
and porA (allele number). For example, the combination of alleles
including ST19 associatedwith gyrA allele number 8 and porA allele
number 7 is displayed as follows: ST 19-8-7.

From these, a panel of strains with identical ST-gyrA-porA
profiles over four successive years was selected, including some
strains with one allele variation in either the gyrA or porA loci.
Care was taken to achieve a representative strain collection from
all available sources (clinical, food, animal, and environmental)
and years (between 2006 and 2018). Finally, we also selected a
control panel of “sporadic” isolates from patients lacking a recent
travel history, i.e., only domestic cases, and whose ST-gyrA-porA
profile occurred only once between 2011 and 2018. This control
panel was used as outgroup.
Culture, DNA Extraction, Library
Preparation, and WGS
All isolates were stored in −80°C in FBP medium (a combination
of ferrous sulfate, sodium metabisulfite, sodium pyruvate and
glycerol) (Gorman and Adley, 2004). For each strain, a loopful of
frozen culture was spread on chocolate PolyVitex plates
(BioMerieux, Marcy-l’Etoile, France) and incubated under
micro-aerobic conditions (5% O2, 10% CO2, 85% N2) at 42°C
for 48 h. Then, a subculture of one colony was made again on
chocolate PolyVitex agar, and incubated 16 h in the above-
mentioned conditions. DNA was extracted with the DNA
QIAamp Mini Kit (Qiagen, The Netherlands) according to the
manufacturer’s instructions. DNA was quantified with the Qubit
2.0 Fluorometer (Invitrogen, Belgium) and the Qubit® dsDNA
BR Assay Kit (Life Technologies, Belgium). The DNA
concentration was adjusted to be within the range of 30 to 170
µg/ml for subsequent sequencing. Libraries were prepared using
the Nextera™ DNA Flex Library Prep Kit or the Nextera™ XT
DNA Library Preparation Kit and sequenced on the MiSeq or the
MiniSeq platforms achieving either 150- or 250-bp paired-end
reads. All chemistry and instrumentations are supplied by
Illumina, San Diego, CA, USA. Sequenced raw reads have been
uploaded to ENA and are available under the accession project
number PRJEB40465.
Genome Assembly and Quality
Control (QC) Criteria
For the cgMLSTs SeqSphere+ andOxford, the paired-end raw read
data were de novo assembled using Velvet Optimizer v.1.1.04
implemented in Ridom SeqSphere+ v6.1 (Ridom GmbH,
Münster, Germany) (Jünemann et al., 2013). Velvet Optimizer
was run with automatic determination of the coverage cut-off and
minimum contig length and only assemblies with >30x coverage,
1.6Mb ± 10% bp in size andmaximum number of 150 contigs were
included in the downstream analysis (Zerbino and Birney, 2008;
Cody et al., 2017). For the cgMLST INNUENDO and wgMLST
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INNUENDO, the raw data were assembled into contigs using the
INNUcapipeline v. 4.2.1withdefault settings (Machadoet al. 2017).
Only profiles with no more than 2% of missing loci in either
cgMLST were included in the comparative study.
WGS-Based Typing Schemes for
Genome Comparison
cgMLST and Accessory Schemes in SeqSphere+
For SeqSphere+, an ad hoc cgMLST scheme (N = 637 loci) for C.
jejuni/C. coli developed by the commercial firm Ridom
SeqSphere+ and publicly available at www.cgMLST.org was
used. Details of the material and methods used for defining
this typing scheme were kindly provided by Prof. Dr. Harmsen
(Supplementary Data S1). The cgMLST scheme consisted of 637
genes (https://www.cgmlst.org/ncs/schema/145039/locus/).
Using genomic data from previously described local outbreaks,
a Complex Type (CT) threshold of thirteen was defined to give
guidance for delineation of possibly related from not-related
genomes (Mellmann et al., 2004). In addition, cgMLST (v1.3)
was merged with a screening of the alleles of the accessory genes
(N = 958). Altogether, the combined typing wgMLST scheme
targets 1,595 loci and the nomenclature remain the same as in the
cgMLST analyses with the definition of CTs, solely based on core
genome analyses, with a cluster alert of 13.

cgMLST Oxford Scheme
Cody et al. (2017) designed a cgMLST scheme composed of 1,343
loci, available as an open-access and web-accessible analyses
online (PubMLST - Campylobacter Sequence Typing; Jolley
et al., 2018). The system assigns a unique profile ID from each
isolate sequences submitted. Clustering to identify groups can be
performed by selecting a threshold empirically chosen
(depending on the discrimination power needed). However for
this study, the scheme was implemented in SeqSphere+ for
comparing strains by using an in-house nomenclature.
cgMLST and wgMLST INNUENDO Schemes
The cgMLST and wgMLST schemes from INNUENDO include
678 and 2,795 loci, respectively, and are publicly available at
Zenodo (https://zenodo.org/record/1322564#.X5l_4IhKg2y,
Rossi et al., 2018). The cgMLST and wgMLST profiles of the
INNUca assembled genomes produced in this study were called
using chewBBACA suite (v 2.0.17.1) (Silva et al., 2018). The
achieved cgMLST profiles were added to the cgMLST allelic
profiles of the 6,526 C. jejuni genomes of the INNUENDO
dataset, which is also available at Zenodo (Allele_Profiles/
Cjejuni_cgMLST_alleleProfiles.tsv, https://zenodo.org/record/
1322564#.X5l_4IhKg2y, Rossi et al., 2018). Minimum Spanning
Trees (MST) and goeBURST distances were calculated using the
goeBURST Full MST algorithm implemented in PHYLOViZ 2.0,
and used to define L1:L2:L3 profiles for the cgMLST at 4, 59, and
292 loci variance (Feil et al., 2004; Francisco et al., 2009;
Francisco et al., 2012; Nascimento et al., 2017; Llarena et al.,
2018). This classification system is hierarchical: L1 is the level
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
representing the highest resolution with a threshold of 4 and it is
applied for outbreak detection and investigation, L2 is the
intermediate level and is used for long-term longitudinal
monitoring. L3 is defined as the level with the highest
concordance with the seven-gene MLST classification (Llarena
et al., 2018). The wgMLST INNUENDO defines genotypes based
on the combination of alleles from the 2,795 loci; no rules were
initially developed for clustering isolates with similar profiles.

Comparison of the Targets Included in
Each cgMLST Schemes
To crosslink loci with different naming conventions across the
four typing schemes, we compared the allele sequences in a
pairwise manner. Allele sequences for cgMLST SeqSphere+ were
downloaded from https://www.cgmlst.org/ncs/schema/145039/.
Allele sequences for cgMLST Oxford were downloaded via the
pubMLST RESTful API (scheme 4) (Jolley et al., 2017). Allele
sequences for cgMLST INNUENDO were downloaded from
Zenodo (Rossi et al., 2018). We selected the first allele
sequence for each loci of the four typing schemes and
performed pairwise reciprocal best hit comparison for the
three schemes with the rbh function of the MMseqs2 toolkit
ver. 11.e1a1c (Mirdita et al., 2019) using nucleotide search
including forward and reverse strand, as well as default
parameters. Hits with bitscore above 100 were selected and
connected across schemes with a custom script in R 3.4.4. (R
Core Team, 2018) using the igraph package 1.2.5. (Csárdi and
Nepusz, 2006). Sets of matching loci within the three schemes
were visualized with the UpSetR 1.4.0. package (Conway
et al., 2017).

Typing System Concordance
The adjusted Wallace coefficient (AWC) (Wallace, 1983;
Severiano et al., 2011) was used to estimate the concordance
between the different typing schemes in classifying strains (Pinto
et al., 2008) by the online Comparing Partitions tool (http://
www.comparingpartitions.info), using the strain panel
(Supplementary Data S2). The degree of equivalence is
reflected by AWC. It indicates the probability that two strains
with the same type by one method are also categorized into the
same type by another method.
Detection of wgMLST Targets Shared by
Recurrent Lineages
To determine the overlap of detected wgMLST INNUENDO
targets, the allelic profiles of all strains were compared. We
extracted lists of targets that appeared at least once within each of
the respective lineages in the collection of strains to determine
and visualize overlapping and unique sets with a webtool (http://
www.molbiotools.com/listcompare.html).
Cluster Analyses
In SeqSphere+, Campylobacter isolates are classified in CTs in
which the first CT assigned chronologically is definitively fixed in
January 2021 | Volume 10 | Article 608020
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the database and referred to as the CT founder (Ridom
SeqSphere+, 2013). In contrast, the goeBURST algorithm
produces a hierarchical classification with the gene-by-gene
approach and aims to predict the founder of a clonal complex
based on the allele frequency in the dataset. It assumes that the
ancestral genotype is the predominant one, which subsequently
generates variants. To deduct and visualize, the possible
evolutionary relationships between strains, the goeBURST
algorithm and its expansion to generate a complete MST
implemented in PHYLOViZ 2.0 was used for the cgMLSTs
SeqSphere+, INNUENDO, Oxford, the cgMLST SeqSphere+
combined with the accessory targets and the wgMLST
INNUENDO (https://online2.phyloviz.net/index) (Feil et al.,
2004; Nascimento et al., 2017).

The dynamic shared-genome based approach was performed
on the MST generated for the cgMLST Oxford and the wgMLST
INNUENDO in order to determine a clustering threshold.
Genomic clusters were determined according to the definition
of goeBURST groups, based on allelic differences ranging from
0.5 to 1% (Llarena et al., 2018). The in-house nomenclature for
displaying the results of cgMLST Oxford and wgMLST
INNUENDO were defined as follows: Ox+number and wg
+number. For example, the Ox profile number 10 and the wg
profile number 8 are displayed as follows: Ox10 and wg8,
respectively. The wgMLST profiles were used in the dynamic
shared-genome based approach for the comparison and only to
increase resolution for clustering strains.
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RESULTS

Recurrent Extended MLST Profiles in
Campylobacteriosis
By focusing solely on human clinical isolates from our historical
collection (N = 3,000), we identified approximately one hundred
distinct ST-gyrA-porA combinations. Two-thirds (N=2,010) of the
human strains in the collection belong to 108 main combinations
(Supplementary Data S3). Four lineages (ST19-8-7, ST2254-9-1,
ST464-8-1678, and ST6175-9-1625, hereafter referred to as lineage
A, B,C, andD, respectively)were selecteddue to the highnumber of
strains (N ≥ 45) and their frequency in human infection over time
(Figure 1 and Supplementary Data S3). Some minor variations
were accepted in gyrA and porA alleles: three variants of porA and
one of gyrA in lineage A, and one variant of porA in lineage B
(Table 1). In lineageA, the variationof gyrA alleles (gyrA1 insteadof
gyrA8) leads to the loss of the quinolone resistance (Wang et al.,
1993; Payot et al., 2006). Concerning the porA variations, two are
linked to deletions in lineage A and two to a non-synonymous
mutation (one in lineage A and one in lineage B, respectively).
Lineage A has appeared regularly after 2005, with an average offive
strains per year and up to 23 in 2012, while 68% of all the strains
belonging to lineage B were gathered in a peak in 2014 (Figure 1).
For lineage C, strains displayed the same combination of alleles and
occurred once in August 2008 and then reemerged from July 2014
to January2018(Figure1). For lineageD, strainswere characterized
by the same allele combination (Table 1) and occurred once in June
FIGURE 1 | Distribution of strains occurrence for lineages A to D over time. Clinical strains of the laboratory collection are displayed in gray (extended MLST typing).
Colors represent to source of selected isolates that were analyzed by WGS: human (red), cattle and sheep (green), poultry (yellow), and surface water (blue) samples.
January 2021 | Volume 10 | Article 608020
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2012, once in March 2014 and then regularly, from May 2016 to
October 2018 (Figure 1).

Selection of a Strain Panel
Overall, the selected panel included strains from various sources
as the four lineages occurring in human infections were also
detected in non-human samples. Altogether, the collection
included isolates from human (N = 67), poultry (N = 21), and
ruminant (N = 18). To complete the panel, two strains from
environmental sources (surface waters) assigned to lineage A
were added (Table 1). A total of 108 strains was selected for the
strain panel and subjected to WGS. To achieve equal distribution
of strains over the study period, strains belonging to lineage A
(N = 37 of 70), lineage B (N = 16 of 97), lineage C (N = 19 of 45),
and lineage D (N = 17 of 58) were selected. In addition, 19 strains
with a unique ST-gyrA-porA combination were included in the
panel as an outgroup (Supplementary Data S2).

The acquired assemblies varied between 35× and 120× in depth
of coverage and 1 to 150 contigs, associated with a percentage of
good targets ranging from 98.6% to 99.8% (mean value = 99.3%)
for cgMLST SeqSphere+ and from 98.0% to 99.3% (mean value =
98.4%) for the cgMLST Oxford. According to the quality criteria
defined above (see Methods 2.3) as well as those of the INNUca
pipeline, 15 genomes were discarded (14 with SeqSphere+ and 1
with INNUENDO criteria; 4, 1, 4 and 7 genomes were removed
from lineages A, B, C and D, respectively). Consequently, genomes
of 93 strains were included in the downstream analysis
(Supplementary Data S2).

Comparison of the Loci Included in the
Different Schemes
As the number of loci selected for the core genome varies
between the schemes, we compared the respective sequences to
assess the number of shared loci. We compared allele sequences
by reciprocal best hits. All schemes shared 432 loci, constituting
the majority of targets in cgMLST SeqSphere+ and cgMLST
INNUENDO with 68% and 64% of targets respectively (Figure
2). The majority of targets that differed between cgMLST
SeqSphere+ and cgMLST INNUENDO was present in cgMLST
Oxford. The wgMLST INNUENDO had an additional 1,775 loci
not present in any of the other three cgMLST schemas
(Supplementary Data S4). The mean size of targets included
in each cgMLST typing scheme ranges from 93 to 4,553 bp and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
the complete lists of targets are provided in Supplementary
Data S4.

Gene-by-Gene WGS Analysis
With the dynamic shared-genome based approach using 1%
allelic differences, thresholds of 11 and 9 AD were defined to
classify the strains by the cgMLST Oxford and the wgMLST
INNUENDO scheme respectively (Table 2). The number of
partitions, or clusters, obtained with the different methods was
very close: 28 for extended MLST, 22 for cgMLST SeqSphere+, 26
for cgMLST Oxford, and 24 for cgMLST INNUENDO. The
largest number of partitions (N = 32) was obtained with the
wgMLST INNUENDO analysis (Supplementary Data S2).
From this pan-genome analysis including 2,795 targets, an
average of 974 loci was detected in each lineage, with 870 loci
shared between the four lineages (Figure 3).

For the analysis of unique combinations, all sporadic strains
were classified distinctly by the typing schemes, with one
exception regarding two strains that were classified in the same
CT (CT 1639) with cgMLST SeqSphere+, in the same profile L1:
L2:L3 (66:81:1) with cgMLST INNUENDO and in the same
profile with wgMLST INNUENDO (wg30). The allelic profiles
for the strains generated by all typing methods were clustered
and visualized in PHYLOViZ online tool, in which all five typing
schemes achieved very similar unrooted MSTs (Figure 4)
(PHYLOViZ Online).

Lineage A (ST19-8-7, N = 34) had very limited genetic diversity
according to our gene-by-gene WGS analyses. The cgMLST
SeqSphere+ assigned all strains to the same CT (CT 82), as did
the cgMLST Oxford scheme: Ox1 (Table 3). On the contrary, the
cgMLST INNUENDO divided lineage A in two groups, of which
the majority (33/34) were of the same L1:L2:L3 profile (1:9:1). The
34th strain had a different genotype at L1 level (2695:9:1). Thirty-
two of 34 lineage A strains had an identical wgMLST INNUENDO
profile: wg1, while two strains had a deviating wgMLST profile
(wg5 and wg6). The strains belonging to profile wg1 were collected
over a wide timespan (2006–2018) and a range of sources (human,
veterinary, or environmental sources).

Lineage B (ST2254-9-1) had low genetic variability according
to the cg/wgMLST analyses: altogether, 15 of 16 strains had a
similar cgMLST SeqSphere+ (CT 51), cgMLST Oxford (Ox2),
and cgMLST INNUENDO (19:49:4) profiles. The increased
resolution offered by the wgMLST INNUENDO divided the
TABLE 1 | Distribution of main lineages, extended MLST, and variant of the strain collection.

Lineage Main combination Variants Human Poultry Ruminants Environmental Total

A ST 19 – gyrA 8 – porA 7 ST 19 – gyrA 8 – porA 582
ST 19 – gyrA 8 – porA 2070
ST 19 – gyrA 8 – porA 2068
ST 19 – gyrA 1 – porA 7

13
1
1
1

3
1

14
1

2 37

B ST 2254 – gyrA 9 – porA 1 ST 2254 – gyrA 9 – porA 275 10
1

4 1 0 16

C ST 464 – gyrA 8 – porA 1678 10 8 1 0 19
D ST 6175 – gyrA 9 – porA 1628 12 4 1 0 17

Total 49 20 18 2 89
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strains in three types: 75% of the strains were of wg2 while the
remaining quarter was divided between wg7 and wg8. The
strains belonging to the genotype wg2 were isolated from 2014
to 2018 and from diverse sources (Table 4).

Lineage C (ST464-8-1678) was more variable than A and B:
all 15 strains were of the CT 75 and the 29:70:7 according to the
cgMLST SeqSphere+ and cgMLST INNUENDO, respectively.
Contrary to this, the cgMLST Oxford split the panel into three:
Ox3, Ox5, and Ox6 (Table 5). The wgMLST INNUENDO
discriminated six different genotypes collected from diverse
range of sources between 2014 and 2017 (Table 5).

For lineage D (ST6175-9-1625), all the 10 strains were
gathered by the cgMLST SeqSphere+ in the same CT (CT
543), while with the cgMLSTs Oxford and INNUENDO and
the wgMLST INNUENDO, one strain had a different profile
from the others. The strains were isolated between 2017 and 2018
and from diverse sources (Table 6).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Concordance Between the Typing
Methods
This analysis was performed on the 93 strains selected in the panel
(Methods 3.2 and Supplementary Data S2). The cgMLST
INNUENDO, the cgMLST Oxford, and the wgMLST
INNUENDO had an AWC of 1.000 to the cgMLST SeqSphere+
schema, meaning that all strains clustering together using one of
these three typing schemes are also classified together with the
cgMLST SeqSphere+. The cgMLST Oxford had an AWC of 0.948
with the cgMLST INNUENDO and, conversely, the cgMLST
INNUENDO had an AWC of 0.956 with cgMLST Oxford; 95%
of the strains are clustered similarly using either cgMLSTs Oxford
and INNUENDO. The majority (93.7% and 94.5%) of the strains
that clustered with the cgMLST SeqSphere+ schema were also
grouped by the cgMLST INNUENDO and the cgMLST Oxford,
respectively. The wgMLST INNUENDO bundled 94.0% of the
strains in a similar manner as the cgMLST INNUENDO and
99.8% as the cgMLST Oxford (Table 7).
DISCUSSION

From our long-term surveillance of campylobacteriosis at national
scale, our data suggested the presence of recurring genotypes
defined by an extended MLST method indexing 9-loci over a 13-
year period. This study investigated the relationship of a collection
of isolates classified in four commonly identified lineages in
Luxembourg at genome level. The aim was to assess the potential
occurrence of stable genomes through the concordance of different
TABLE 2 | Characteristics of the different typing schemes to analyze WGS data
from C. jejuni.

Typing scheme Number of targets Cluster Alert distance*

Extended MLST 9 1
cgMLST SeqSphere+ 637 13
cgMLST Oxford 1,343 11
cgMLST INNUENDO 678 L1: 4, L2: 59, and L3: 292
wgMLST INNUENDO 2,795 9
*The cluster alert distance is defined by a threshold value corresponding to the maximum
number of different alleles between strains belonging to the same cluster.
MLST, Multi Locus Sequence Typing; cg, core genome; wg, whole genome.
FIGURE 2 | Shared targets between the three compared schemes: cgMLST SeqSphere+ (637 targets), cgMLST INNUENDO (678 targets) and cgMLST Oxford (1,343
targets) highlighted as set sizes. The central bars represent the number of shared or unique targets in or between the different schemes. The points below define the
members of the respective sets. For example, 432 targets are present in all three cgMLSTs (SeqSphere+, Oxford, and INNUENDO) and 243 targets are present in both
the cgMLSTs Oxford and INNUENDO but not in the cgMLST SeqSphere+. For an overview of shared targets, also refer to Supplementary Data S4.
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WGS-based typing schemesexploringandcomparing isolates at the
core genome level (cgMLSTs from SeqSphere+, Oxford, and
INNUENDO)or at the pangenome scale (wgMLST INNUENDO).

Our findings suggested that the genetic population structure of
Campylobacter jejuni is partly composed of clonal expansion of some
genotypes that persist over a long period spanning up to 13 years.
Contrary to the epidemic curve commonly detected in case of
foodborne outbreaks, stable genetic lineages of this pathogen could
emerge to observable frequency through an endemic pattern, causing
human infections on a regular basis throughout the country. In order
to delineate these lineages withmore confidence, efforts were focused
on (i) comparing data with a robust design, and (ii) defining cut-offs
values alignedwith previously published data fromgenetic variability
of the species as well as pre-established threshold for the different
typing schemes tested.

Our first concern was to avoid biases generated due to low
quality in the raw data and/or assemblies by establishing defined
criteria before applying the gene-by-gene approach (Clark et al.,
2016; Cody et al., 2017; Llarena et al., 2018; Besser et al., 2019).
Quality filtering is a key prerequisite for faithful comparison of
genomic data and applied criteria should be clearly stated in all
WGS related reports. In their studies, Cody et al. (2013) and
Kovanen et al. (2014) implemented a quality threshold in
filtering the length of the reads with fixed criteria before the
assembly. In 2017, Cody et al. applied a maximum of 150 contigs
covering at least 95% of cgMLST targets (Cody et al., 2017),
whereas the INNUENDO pipeline included a QC step requiring
an assembled depth of coverage of 30x associated with at least
98% of scheme targets found in the cgMLST analyses (Llarena
et al., 2018). The Draft Standard of International Standardization
Organization (ISO/DIS 23418) suggests a depth of coverage of at
least 20x for Illumina short-read raw data and 95% of the read
lengths should be over 120 bp (International Organization for
Standardization) depending on the application. In our analyses,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
we implemented stringent criteria for quality filtering to ensure
robustness and minimizing potential biases related to missing
targets generated by poor quality sequencing data.

While a core genome of a bacterial species is expected to
consist of a conserved panel of functional genes (also properly
called housekeeping genes), mostly present in the genomes of
interest and essential to the microorganism, the cgMLST of the
three tested methods included a different number of loci. This
discrepancy resulted from a more or less stringent definition of
the core genome applied to a panel of reference genome varying
in size and quality. It is also noteworthy that the cgMLST
INNUENDO schema was specifically determined from the C.
jejuni species while the two others have included some C. coli
genomes to create their schemes. In summary, SeqSphere+ and
INNUENDO selected targets present in at least 90% of the
complete genomes (N = 12) or in 99.9% of draft genomes (N =
6,526), respectively (Llarena et al., 2018). The cgMLST Oxford
was built from loci occurring in 95% of the Campylobacter sp.
reference panel (N = 2,472) to take into consideration variation
in sequence quality and applied algorithms (Cody et al., 2017).
They proposed a more relaxed core genome definition as some
isolates may contain mutations, leading to the reduction of the
core genome size as more isolates are selected, and that analyses
conducted on incomplete draft genomes might constitute a
source of missing data (Cody et al., 2017). The finalized
cgMLST Oxford scheme represents thus 82% of the reference
genome NCTC11168, which places this typing scheme as an
intermediate between a core genome and a whole genome MLST
scheme with a total of 1,343 loci vs. 637/678 for the two others. A
sample-set independent approach was recently proposed to
select a conserved-sequence genome as a novel core genome
methodology to address this issue (Van Aggelen et al., 2019).

Further, the locus definition is different in the various
schemes as well as allele calling algorithms. In the so-called
gene-by-gene approach, a locus does not necessarily correspond
to the complete coding sequence of a gene but can constitute a
specific region. Thus, each schema includes target sequences of
varying length ranging from 100 bp to several kb. Surprisingly,
the sizes distributions of the targets in the three cgMLSTs tested
are very similar with approximately: 21% below 500 bp, 40%
ranging from 500 to 1,000 bp, 26% ranging between 1,000 and
1,500 bp, and 13% above 1,500 bp. Except for the SeqSphere+
commercial platform, the design of allele-calling pipelines from
the two others WGS-based schemes were published (Jolley et al.,
2018; Silva et al., 2018). Both define alleles from sequence
assemblies but perform a search by using nucleotide or
translated sequences with BLASTN or BLASTP queries and by
using “exemplar alleles” as reference or all alleles already
recorded in the database. The procedure differs mainly when
new sequences display no exact match with known alleles.
However, both pipelines validate the nucleotide sequence after
translation of DNA codons and include a threshold in percentage
sequence identity and length.

A predefined allele distance threshold allows assignment of an
unique identifier to genomes displaying a high level of
similarities in their cg/wgMLST profiles. The cut-off distance
FIGURE 3 | Venn diagram showing the relationship between the loci
identified in the four lineages by wgMLST INNUENDO analysis (2,795 targets).
A total of 995, 975, 1,000, and 925 targets were detected in lineages A, B,
C, and D, respectively.
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value for distinguishing clusters is expressed as a number of ADs
and is species or even lineage-specific. To calibrate this value, a
test population commonly includes clonal outbreak strains as
well as non-epidemiologically linked outgroups. Therefore, the
established thresholds are based on strains collected over a
relatively short period, and may thus not be appropriate for
long-term surveillance. Genomic variations linked to insufficient
sequencing quality and microevolutions generated during the gut
passage are taken into account for classifying strains (Cody et al.,
2013; Revez et al., 2013; Thomas et al., 2014; Barker et al., 2020).
For instance, Cody et al. (2013) observed between 3 to 14 loci
differences (of 1,643 loci in total) in Campylobacter sp., during
human gut passage, mainly restricted to insertions and deletions
in homopolymeric tracts in contingency loci regulating phase
variations of surface structures (Jerome et al., 2011; Barker et al.,
2020). To classify related-genomes, Cody et al. (2013) tested two
methods: a hierarchical approach based on an increasing number
of loci in order to detect closely related isolates and a pairwise
comparison based on 1,026 loci shared by the 379 C. jejuni
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
genomes analyzed. Their results lead to the conclusion that the
hierarchical approach is better suited to examine isolates
epidemiologically related, while pairwise comparisons are
preferable for the identification of outbreaks without initial
suspicion (Cody et al., 2013). We assessed genomic clusters in
our WGS data with goeBURST and we found that defined low
cut-off values ranging from 6 to 11 AD and from 5 to 9 AD were
appropriated to classify profiles generated with cgMLST Oxford
and wgMLST INNUENDO schemes, respectively. By utilizing
our newly established thresholds, the classification was
consistent with the ones created by cgMLST methods that use
a predefined threshold like SeqSphere+ (AD = 13 of 637 targets)
and cgMLST INNUENDO (AD = 4 of 678 targets).

Overall, a high concordance in clustering strains was observed
between the three cgMLST typing schemes, although congruence
is higher between the cgMLSTs Oxford and INNUENDO
schemes (predictive of each other in 95% of the cases)
compared to the SeqSphere+ scheme. This was not expected, at
first glance, as cgMLST schemes from SeqSphere+ and
A D

B

C

E

FIGURE 4 | Minimum Spanning Trees generated using PHYLOViZ for (A) cgMLST SeqSphere+ (cut-off: 13), (B) cgMLST and accessory targets SeqSphere+ (cut-
off: 13), (C) cgMLST INNUENDO (cut-off: 4), (D) cgMLST Oxford (cut-off defined by dynamic core analysis: 11) and (E) wgMLST INNUENDO (cut-off defined by
dynamic core analysis: 9) analyses on tool. Lineage A is displayed in blue, lineage B in red, lineage C in orange, and lineage D in green and unique combinations
in gray.
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INNUENDO have a close number of targets (637 vs. 678 targets,
respectively) and share 68% of loci. The concordance between
the cgMLST schemes Oxford and INNUENDO, both defined
from a large collection of strains, suggests a more representative
and stably defined core genome. It is noteworthy that in this
study, the added value of the number of loci in the cgMLST
Oxford cannot be truly attributed on its discriminative power as
the datasets contain several clonal population. A largest test
population, reflecting the genetic diversity within the C. jejuni
species, would have been more appropriate for evaluating the
resolution of the different typing schemes. As expected, cgMLST
profiles could not be mapped with confidence to the wgMLST
INNUENDO profiles including a significant larger number of
targets. Differences in the accessory genome composition or in
the allelic variations could explain these discrepancies. As all the
lineages selected for this study originated from various hosts, it
could be interesting to further investigate on a possible link
between accessory genomes and niche adaption (Woodcock
et al., 2017).

The clonality signal appearing through the concordance of
the different typing schemes in classifying strains supports the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
idea of stability of these clones over time and sources. Two
independent studies introduced the concept of monomorphic
genotypes for C. jejuni within the generalist lineages Clonal
Complex (CC) ST-21 (Wu et al., 2016) and ST-45 (Llarena
et al., 2016). The first study investigated the genetic basis
responsible for the hyper virulence of a known clone named
“sheep abortion” (clone SA, ST-8), causing foodborne illnesses in
human and ruminant abortion (Wu et al., 2016). The second
study explored the population structure of the generalist ST-45-
CC, overrepresented in human cases in Finland (Llarena et al.,
2016). Considering another field, clonal expansion linked to the
acquisition of antibiotic resistance has also already been
highlighted in Campylobacter (Wimalarathna et al., 2013).
Observing stable genotypes in Campylobacter jejuni over time
are in accordance with these results, hypothesizing that
predominant clonal evolution is a major adaptive evolutionary
strategy in microbial pathogens (Tibayrenc and Ayala, 2017).

In our study, the best example for stable genome over time is
lineage A (ST19-gyrA8-porA7) as its recurrence occurs over
more than a decade, although at a low level, representing an
average of 13.4% of human cases per year (data not shown).
TABLE 3 | Assignment of genetic profiles according to the different typing schemes for strains initially belonging to the lineage A.

Strain ID Isolation
Source

Year of
isolation

ST – gyrA – porA –

Extended MLST
CT – cgMLST
SeqSphere+

Genotype –

cgMLST Oxford
L1:L2:L3 – cgMLST

INNUENDO
Genotype – wgMLST

INNUENDO

Camp001 MA 2005 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp005 H 2006 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp003 H 2006 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp004 MA 2006 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp006 H 2007 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp002 MA 2006 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp009 H 2011 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp010 MA 2011 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp008 SW 2011 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp014 H 2012 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp012 MA 2012 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp011 SW 2012 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp015 MA 2012 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp016 V 2013 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp018 H 2013 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp017 H 2013 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp021 MA 2014 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp019 H 2014 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp020 MA 2014 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp023 MA 2015 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp029 MA 2016 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp028 H 2016 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp027 H 2016 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp032 V 2016 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp031 H 2016 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp035 H 2017 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp036 MA 2018 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp037 MA 2018 19 – 8 – 7 82 Ox1 1:9:1 wg1
Camp024 MA 2015 19 – 8 – 582 82 Ox1 1:9:1 wg1
Camp025 H 2015 19 – 8 – 2068 82 Ox1 1:9:1 wg1
Camp022 H 2015 19 – 8 – 2070 82 Ox1 1:9:1 wg1
Camp013 H 2012 19 – 8 – 7 82 Ox1 2695:9:1 wg1
Camp030 V 2016 19 – 8 – 7 82 Ox1 1:9:1 wg5
Camp034 H 2017 19 – 1 – 7 82 Ox11 1:9:1 wg6
January 2021 | Volu
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TABLE 4 | Assignment of genetic profiles according to the different typing schemes for strains initially belonging to the lineage B.

Strain ID Isolation
Source

Year of
isolation

ST – gyrA – porA –

Extended MLST
CT – cgMLST
SeqSphere+

Genotype –

cgMLST Oxford
L1:L2:L3 – cgMLST

INNUENDO
Genotype – wgMLST

INNUENDO

Camp038 H 2014 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp041 V 2014 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp040 H 2014 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp045 V 2015 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp043 H 2015 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp046 V 2015 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp042 H 2015 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp047 H 2015 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp044 V 2015 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp048 H 2016 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp051 H 2017 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp052 H 2018 2254 – 9 – 1 51 Ox2 19:49:4 wg2
Camp049 MA 2016 2254 – 9 – 1 51 Ox2 19:49:4 wg7
Camp053 H 2018 2254 – 9 – 1 51 Ox2 19:49:4 wg7
Camp050 H 2017 2254 – 9 – 275 51 Ox2 19:49:4 wg8
Frontiers in Cellular an
d Infection M
icrobiology |
 www.frontiersin.org
 11
 January 2021 | Volu
In the column Isolation Source, H refers to clinical samples, MA to mammals (cattle and sheep), V to poultry, and SW to surface waters.
ST, Sequence Type; CT, Complex Type; MLST, Multi Locus Sequence Typing; cg, core genome; wg, whole genome.
TABLE 5 | Assignment of genetic profiles according to the different typing schemes for strains initially belonging to the lineage C.

Strain ID Isolation
Source

Year of
isolation

ST – gyrA – porA –

Extended MLST
CT – cgMLST
SeqSphere+

Genotype –

cgMLST Oxford
L1:L2:L3 – cgMLST

INNUENDO
Genotype – wgMLST

INNUENDO

Camp059 V 2015 464 – 8 – 1678 75 Ox3 29:70:7 wg3
Camp058 H 2015 464 – 8 – 1678 75 Ox3 29:70:7 wg3
Camp067 V 2016 464 – 8 – 1678 75 Ox3 29:70:7 wg3
Camp065 H 2016 464 – 8 – 1678 75 Ox3 29:70:7 wg3
Camp064 V 2016 464 – 8 – 1678 75 Ox3 29:70:7 wg3
Camp069 MA 2017 464 – 8 – 1678 75 Ox3 29:70:7 wg3
Camp063 V 2016 464 – 8 – 1678 75 Ox3 29:70:7 wg3
Camp060 H 2015 464 – 8 – 1678 75 Ox3 29:70:7 wg9
Camp070 H 2017 464 – 8 – 1678 75 Ox3 29:70:7 wg10
Camp055 V 2014 464 – 8 – 1678 75 Ox3 29:70:7 wg11
Camp056 H 2014 464 – 8 – 1678 75 Ox3 29:70:7 wg11
Camp066 V 2016 464 – 8 – 1678 75 Ox3 29:70:7 wg11
Camp068 H 2017 464 – 8 – 1678 75 Ox3 29:70:7 wg11
Camp054 H 2012 464 – 8 – 1678 75 Ox5 29:70:7 wg12
Camp072 H 2018 464 – 8 – 1678 75 Ox6 29:70:7 wg13
In the column Isolation Source, H refers to clinical samples, MA to mammals (cattle and sheep), V to poultry, and SW to surface waters.
ST, Sequence Type; CT, Complex Type; MLST, Multi Locus Sequence Typing; cg, core genome; wg, whole genome.
TABLE 6 | Assignment of genetic profiles according to the different typing schemes for strains initially belonging to the lineage D.

Strain ID Isolation
Source

Year of
isolation

ST – gyrA – porA –

Extended MLST
CT – cgMLST
SeqSphere+

Genotype –

cgMLST Oxford
L1:L2:L3 – cgMLST

INNUENDO
Genotype – wgMLST

INNUENDO

Camp082 V 2017 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp083 H 2017 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp081 H 2017 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp084 MA 2017 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp080 H 2017 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp085 H 2018 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp086 V 2018 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp087 H 2018 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp089 H 2018 6175 – 9 – 1625 543 Ox4 41:68:27 wg4
Camp088 H 2018 6175 – 9 – 1625 543 Ox7 2724:68:27 wg14
In the column Isolation Source, H refers to clinical samples, MA to mammals (cattle and sheep), V to poultry and SW to surface waters.
ST, Sequence Type; CT, Complex Type; MLST, Multi Locus Sequence Typing; cg, core genome; wg, whole genome.
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Thirty-two strains of 34 from diverse sources (human, cattle and
sheep, poultry, and environmental samples) were gathered in the
same genetic profile at the whole genome level. This result
reflects that this lineage is likely derived from one common
ancestor, which thereafter disseminated broadly to a variety of
mammals and birds, clearly demonstrating an ability to disperse
in the environment and adapt to different ecological niches.
Thus, the question of the environmental transmission routes
arises, particularly concerning animal reservoirs such as poultry
and ruminants that could contribute to water contamination
(Mughini-Gras et al., 2016). Persistent strains have already been
identified, mainly in poultry farms and in milk, and it would be
interesting to link lineage A with other contamination sources
such as insects, rodents, drinking water, or the surrounding
environment (Kudirkienė et al., 2010; Perez-Boto et al., 2012;
Rauber-Würfel et al., 2019; Jaakkonen et al., 2020).

The lineage B (ST2254-gyrA9-porA1) arose unexpectedly
from our national surveillance with an epidemic curve between
March and April 2014 (>70 campylobacteriosis cases).
Interestingly, after this episode, clinical isolates of this lineage
were still collected but at a much lower frequency during the
following four years. To put things into context, this particular
ST was singular in 2014 and by querying the pubmlst.org
database (Jolley et al., 2018); only a dozen strains had been
recorded at that time including two from poultry origin.
Interestingly, the same “clone” was finally isolated in the
framework of the official controls conducted by the state
veterinary laboratory in Luxembourg and supported chicken as
a possible source of this outbreak. In molecular epidemiology,
the expression “clone” generally refers to a set of independently
isolated microbial organisms that have similar genotypic traits as
a results of a shared common ancestor (Van Belkum et al., 2007).
The analysis using different typing schemes gathered 80% of the
tested strains from lineage B in the same CT, whereas only 50%
of isolates from lineage C formed a cluster. These data support
the occurrence of the most large-scale outbreak caused by C.
jejuni ever identified in Luxembourg and linked to chicken
imported from neighboring countries, as the local production
is negligible. Two years after the epidemic episode, this clone was
isolated from a bovine source for the first time, while the
remainder of lineage B was mainly isolated from poultry. The
extent of ecological niches suggests that strains from lineage B
were able to cross ecological barriers and disseminate in the
environment with a generalist profile (Sheppard et al., 2014).
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Lineage C (ST464-gyrA8-porA1678) displayed two micro-
epidemic peaks: one in March 2016 and a second in January and
February 2017. Since then, its incidence has been lowwith less than
10 human cases per year since March 2017 and we observed a first
sample of bovine source isolated inAugust 2017. An average of two
human cases per month from December 2016 to May 2018
indicates the profile of an emerging clone tending to have an
endemic profile. Notably, this lineage displays the gyrA allele 8,
one of the nucleotide allele in C. jejuni containing the C257T
mutation (i.e., the peptide shift Thr86Ile) which confers
quinolone resistance (Ragimbeau et al., 2014). Indeed, dispersion
of antimicrobial resistant lineages due to positive selection was
previously described for bacterial pathogens, such as uropathogenic
Escherichia coli (ST 131 for example) (Totsika et al., 2011; Yamaji
et al., 2018) andC. jejuni (ST 464 for instance) (Cha et al., 2016). For
lineage D (ST6175-gyrA9-porA1625), the first isolate was identified
in 2012 from a human infection, then in 2014 and at the beginning
of 2016. A link with poultry source was observed.

Whatever the typing scheme used, clear signals appeared in
our molecular surveillance for identifying an outbreak (lineage B
in 2014) or the phenomenon of recurrent clones, which cause of
more than 50% of human infections in Luxembourg. This study
provides new insights for the genomic surveillance of
Campylobacter infections. Through the exploration of the large
collection of data that we have initiated 15 years ago, we seek to
demonstrate the strong interest in monitoring genotypes causing
gastroenteritis in the sense that campylobacteriosis is not only of
sporadic nature. A recent study based on collected WGS data in
Denmark also supported these findings (Joensen et al., 2018).

Molecular surveillance of foodborne pathogens is currently
implemented for Salmonella (Dangel et al., 2019), Listeria (Van
Walle et al., 2018), and VTEC (Joensen et al., 2014) at the EU
level (ECDC, 2019) and in the USA (Ribot et al., 2019). For C.
jejuni, such monitoring in routine is hindered by the absence of a
validated scheme at international level and the lack of evidence
for the spread possibility of cross-border genotypes. The
presence of recurring genotypes highlights the possible long-
term existing of stable clones representing a risk factor of
geographic spread that needs to be investigated further. Like
for the acquisition of antibiotic resistance, persistent strains may
have acquired specific phenotypic traits to adapt to other hosts or
disperse in the environment. Habituation to ambient air
(Rodrigues et al., 2015; Rodrigues et al., 2016), adhesion to
inert surface (Sulaeman et al., 2010; Oh et al., 2016) and
TABLE 7 | Adjusted Wallace coefficients values (CI 95%) for typing schemes comparison.

Extended MLST cgMLST SeqSphere+ cgMLST INNUENDO cgMLST Oxford wgMLST INNUENDO

Extended MLST 1.000
(1.000–1.000)

0.931
(0.832–1.000)

0.935
(0.876–0.994)

0.757
(0.647–0.867)

cgMLST SeqSphere+ 0.795
(0.637–0.953)

0.937
(0.843–1.000)

0.945
(0.895–0.994)

0.728
(0.596–0.859)

cgMLST INNUENDO 0.790
(0.630–0.951)

1.000
(1.000–1.000)

0.956
(0.909–1.000)

0.729
(0.597–0.862)

cgMLST Oxford 0.787
(0.622–0.952)

1.000
(1.000–1.000)

0.948
(0.852–1.000)

0.769
(0.634–0.903)

wgMLST INNUENDO 0.829
(0.658–0.997)

1.000
(1.000–1.000)

0.940
(0.828–1.000)

0.998
(0.996–1.000)
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biofilm formation (Reuter et al., 2010; Turonova et al., 2015) could
contribute to the survival strategies ofC. jejuni in the environment.
In the future, studying the phenotypic traits of recurrent clones and
their relationship to spatiotemporal persistence would broaden our
understanding on Campylobacter adaptation and its transmission
to humans.
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