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Persistence has evolved as a potent survival strategy to overcome adverse environmental
conditions. This capability is common to almost all bacteria, including all human bacterial
pathogens and likely connected to chronic infections caused by some of these
pathogens. Although the majority of a bacterial cell population will be killed by the
particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation
and others, a varying subpopulation (termed persisters) will withstand the stress situation
and will be able to revive once the stress is removed. Several factors and pathways have
been identified in the past that apparently favor the formation of persistence, such as
various toxin/antitoxin modules or stringent response together with the alarmone (p)
ppGpp. However, persistence can occur stochastically in few cells even of stress-free
bacterial populations. Growth of these cells could then be induced by the stress
conditions. In this review, we focus on the persister formation of human intracellular
bacterial pathogens, some of which belong to the most successful persister producers
but lack some or even all of the assumed persistence-triggering factors and pathways. We
propose a mechanism for the persister formation of these bacterial pathogens which is
based on their specific intracellular bipartite metabolism. We postulate that this mode of
metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA
replication initiation which may be causative for the persister state.

Keywords: persistence, mechanisms of persister formation, intracellular bacterial pathogens, stress conditions,
ATP-DnaA complex, DNA replication initiation
INTRODUCTION

Bacterial Survival Strategies
Bacteria have evolved several strategies by which subpopulations are able to survive life-threatening
conditions that are lethal for most members of bacterial populations. The best characterized
strategies are: (a) formation of endospores (Higgins and Dworkin, 2012; Hutchison et al., 2014;
Moir and Cooper, 2015), observed among Gram-positive bacteria, especially in the Bacillales and
Clostridiales orders (all belonging to the phylum Firmicutes), (b) formation of exospores (Ohnishi
et al., 2002; Sigle et al., 2015; Jones and Elliot, 2018) mainly found among members of the
gy | www.frontiersin.org January 2021 | Volume 10 | Article 6154501
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Actinomycetales, (c) formation of persister cells (Lewis, 2007;
Balaban et al., 2013; Harms et al., 2016; Fisher et al., 2017;
Radzikowski et al., 2017; Van Den Bergh et al., 2017; Kim J. S.
et al., 2018; Wilmaerts et al., 2019) occurring in most bacteria,
and (d) formation of the (apparently) related viable but not-
culturable cells (VBNCs) (Oliver, 2010; Li et al., 2014;
Ramamurthy et al., 2014). In all four survival states,
metabolism and cell division either stop completely (as in case
of endospores) or are at least highly reduced (as in case of
persistent bacterial cells and VBNC). Common to all of these
survival states is the ability of the “dormant” cells to rewake
under favorable conditions and the unaltered genotype
compared to the original cell population. It has been argued
that the entry of a subset of cells into these survival states and
their subsequent resuscitation might be a “bet-hedging” strategy
allowing bacterial populations in general to withstand fluctuating
environments (Grimbergen et al., 2015).

While the molecular mechanisms leading to spore formation
are rather well characterized (Higgins and Dworkin, 2012;
Paredes-Sabja et al., 2014; Setlow, 2014; Tan and Ramamurthi,
2014; Moir and Cooper, 2015), the underlying mechanisms
causing bacterial persistence and the VBNC state are far from
being fully understood (see below). The persistence of bacteria
was first described in 1944 (Bigger, 1944) as a penicillin-
insensitive, not inheritable state of a small subpopulation
observed in an isogenic staphylococcal population. After
antibiotic removal, the surviving bacterial cells started dividing
again at normal growth rates generating again a similar fraction
of persister cells upon renewed antibiotic treatment.

For bacterial pathogens, the persister state is most frequently
observed after treatment with bactericidal antibiotics (Gollan
et al., 2019; Bakkeren et al., 2020). It is of particular medical
importance, apparently linked to persistent and chronic
infections (Fauvart et al., 2011; Conlon, 2014; Kester and
Fortune, 2014; Paredes-Sabja et al., 2014; Van Den Bergh et al.,
2017; Jung et al., 2019). Recently, operational definitions and
guidelines for in vitro studies of bacterial persistence have been
reported (Balaban et al., 2019). According to these operational
definitions, antibiotic tolerant bacteria are characterized by an
exponentially slower killing rate in contrast to persisters which
show a typical biphasic killing rate in comparison to that of
antibiotic treated susceptible bacteria.

Generation of Bacterial Persister
and VBNC Cells
Antibiotic-persistent subpopulations can be detected in bacterial
populations even when growing under favorable culture
conditions. Upon treatment with high doses of (especially
bactericidal) antibiotics, the large majority of the population is
killed and a small persister subpopulation already preformed
stochastically is then selected by the antibiotic treatment.
However, there is evidence that antibiotic stress as well as
other stress conditions (discussed in more detail below)
enhance persister formation (Ayrapetyan et al., 2015; Nierman
et al., 2015; Harms et al., 2016; Mok and Brynildsen, 2018).
Regardless of the persistence-triggering condition, in all cases the
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formed persisters can be resuscitated when the stressors are
removed and normal growth conditions are restored.

The VBNC state, first reported by Xu and collegues (Xu et al.,
1982), is also observed as stress-surviving bacterial subpopulations
and seems to be closely related to the persister state. VBNC cells and
persister cells share many features and appear to co‐exist in the
same bacterial population (Orman and Brynildsen, 2013;
Ayrapetyan et al., 2015; Goncalves and De Carvalho, 2016; Zhao
et al., 2017). Indeed, both persister and VBNC cells occur together
in biofilms associated with infections (Spoering and Lewis, 2001; Li
et al., 2014; Conlon et al., 2015). But unlike persister cells, VBNC
cells have transiently lost the ability to grow in standard culture
media. They can, however regain culturability in special complex
media (Oliver, 2005). Some authors claim that VBNC cells may not
represent a separate cell phenotype (Kim J. S. et al., 2018) and
postulate that the term VBNC should be replaced with
persister cells.

Persister Formation of Intracellular
Bacterial Pathogens
Formation of persister cells has been observed for all bacterial
pathogens, including IBPs (Mulcahy et al., 2010; Li et al., 2014).
Persister formation appears to be largely responsible for the
recalcitrant chronic infections caused by Mycobacterium
tuberculosis and Chlamydia species (Fauvart et al., 2011; Cohen
et al., 2013; Srinivas et al., 2020). However, the mechanism(s)
causing persister formation of IBPs when replicating in
mammalian host cells is poorly understood.

After internalization by mammalian phagocytic or non-
phagocytic host cells, most IBPs normally replicate in
specifically modified endo(phago)somal compartments, called
pathogen-containing vacuoles (PCV) or inclusions (in case of
Chlamydia). These IBPs are termed “vacuolar IBPs”. Some IBPs
termed “cytosolic IBPs” escape into the host cells’ cytosol and
proliferate there (Ray et al., 2009; Pizarro-Cerda et al., 2016;
Martinez et al., 2018; Omotade and Roy, 2019).

The replication rate of “cytosolic IBPs” is normally considerable
higher than thatof the “vacuolar IBPs”, presumablydue to thebetter
supplywith essential nutrients in the cytosol.On the otherhand, the
vacuolar compartmentsmay provide better protection against host
innate immune attacks (Weiss and Schaible, 2015; Kim J. K. et al.,
2018). In the context of persistence, it is interesting to note that
persistent IBPs have been found exclusively in vacuolar
compartments (see below), suggesting that these intracellular
niches offer a better environment to reach the persistence state.

However, in both host cell compartments IBPs replicate in
metabolically better defined environment than extracellular
bacterial pathogens. The substantial progress over the last years
in understanding the intracellular metabolism of IBPs and their
adaptation to the metabolism of the host cells (Grubmüller et al.,
2014; Eisenreich et al., 2017; Thompson et al., 2018; Best and
Abu Kwaik, 2019; Eisenreich et al., 2019) may help to consider
persistence of these bacterial pathogens from a metabolic point
of view.

The focus of this review will be on persister formation of IBPs.
First, we summarize the known bacterial factors and stress
January 2021 | Volume 10 | Article 615450
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responses that have been associated with persister formation
mainly in model bacteria (especially Escherichia coli). The
possible impact of this knowledge on persistence of IBPs will
be considered. Then, we will discuss the specific metabolic states
of IBPs when growing within host cells which may favor persister
formation. This discussion is based on the concept of bipartite
metabolism which appears to be a rather common strategy for
IBPs (Grubmüller et al., 2014; Eisenreich and Heuner, 2016;
Häuslein et al., 2016; Häuslein et al., 2017a; Mehlitz et al., 2017;
Best and Abu Kwaik, 2019). Indeed, this metabolic approach
along with its impact on DNA replication initiation and cell
division may explain the long-term survival states (persistence,
VBNC) observed in subpopulations of IBPs mainly as a
continuum of intracellular metabolic alterations. We are aware
that this approach neglects possible immunological aspects, e.g.,
the ability of persistent bacterial pathogens to avoid their
elimination by innate and/or adaptive immune responses
(Ulrichs and Kaufmann, 2002; Sabbagh et al., 2018; Gupta
et al., 2019).
IDENTIFIED BACTERIAL CELLULAR
FACTORS AND PATHWAYS ENHANCING
PERSISTER FORMATION

General Aspects
As mentioned above, bacterial persistence has been discovered 75
years ago, but themolecularmechanism(s) of persister formation is
(are) still poorly understood (Kaldalu et al., 2016). Persisters can be
apparently generated stochastically, probably due to the
physiological heterogeneity of single cells in a bacterial population
(Germain et al., 2015; Shan et al., 2017).Thepercentage ofpersisters
in logarithmically growing cell cultures is small (<<1%), but
significantly increased in the stationary-phase (Oliver, 2010).
Persister formation is further triggered by various stress stimuli.
A large number of molecular studies mainly performed with E. coli
and a few othermodel bacteria, have identified different factors and
stress response pathways that are apparently linked to persister
formation. These include toxin-antitoxin (TA) systems
(Maisonneuve et al., 2011; Balaban et al., 2013; Maisonneuve and
Gerdes, 2014; Gerdes, 2016; Kedzierska andHayes, 2016), oxidative
stress response (Wu et al., 2012), RpoS-mediated general stress
response (Mok et al., 2015; Liu et al., 2017; Mok and Brynildsen,
2018), stringent response together with the alarmone guanosine
tetra-/pentaphosphate [(p)ppGpp] (Korch et al., 2003; Germain
et al., 2015; Liu et al., 2017), DNA damage and SOS response (Dörr
et al., 2009; Kreuzer, 2013; Völzing and Brynildsen, 2015), nutrient
stress, and impaired energy production (Amato et al., 2013; Amato
and Brynildsen, 2015; Shan et al., 2017;Mok and Brynildsen, 2018).
All of these processes triggered by the corresponding stress stimuli
lead to a significant increase of the persister fraction within
bacterial populations.

It has been suggested that the toxin components of specific TA
modules,more strongly expressed in some individual cells (possibly
due to stochastic variation in ppGpp levels), are decisive factors for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
persister formation (Maisonneuve et al., 2013). However, strains
with multiple deletions of genes encoding different TA modules
(Maisonneuve et al., 2011) as well as ppGpp-negative strains
(Maisonneuve et al., 2013) and rpoS deletion strains (Nguyen
et al., 2011) still form persisters (though at reduced rates).

The discussed stress responses apparently involved in
persister formation comprise complex regulatory networks that
control the expression of multiple genes whose products are
essential for coping with the stress conditions on the
transcriptional, translational, and posttranslational level. In
addition, many more genes (and in particular metabolic genes)
than those directly involved in overcoming the stress situation
are activated or repressed by the various stress regulators (Khil
and Camerini-Otero, 2002; Jozefczuk et al., 2010; Yukihira et al.,
2015; Christodoulou et al., 2018). Interestingly, transcriptome
and metabolome studies indicate common metabolic pathways
which are down- or up-regulated in a similar way by different
stress conditions, such as temperature stress, oxidative stress,
nutrient starvation, nutrient shifts or stationary phase (Jozefczuk
et al., 2010). In addition, interactions and crosstalks exist
between these regulons (Weber et al., 2005; Merrikh et al.,
2009; Amato et al., 2013; Baharoglu et al., 2013; Leaden et al.,
2018; Molina-Quiroz et al., 2018; Mitosch et al., 2019).

None of the described factors and pathways associated with
persister formation converts the entire bacterial population into the
persister state, although all (or at least most) cells in the population
are subject to the respective stress stimulus and the subsequent
response. This indicates that none of the above described stress
conditions alone is the final cause of persistence and rather suggests
that persistence is caused by the physiological heterogeneity
triggered in bacterial populations under these conditions (Dhar
andMckinney, 2007; Gefen andBalaban, 2009). It is thereforemore
likely that a specific, yet unknown physiological state is responsible
for persistence formation. This state appears to be reached
stochastically in a few cells even of growing and unstressed
bacterial populations (Amato et al., 2013; Radzikowski et al.,
2017). The described stress conditions then stabilize and enhance
this physiological state.

Specific Stress Conditions Enhancing
Persister Formation in Model Bacteria
and IBPs
Bacterial Toxin/Antitoxin Modules and Their
Association With Persistence
Bacterial TA modules are composed of a toxin and an antitoxin
component that neutralizes the toxin. At least four different types
of TA modules have been identified based on the function of the
antitoxin (Yang andWalsh, 2017; Harms et al., 2018). Type I and
especially type II TA modules, most widely distributed among
prokaryotes (Gerdes et al., 2005; Fozo et al., 2008; Leplae et al.,
2011), have been shown to be involved in inducing persistence
(Vazquez-Laslop et al., 2006; Rotem et al., 2010; Maisonneuve
et al., 2011; Maisonneuve and Gerdes, 2014; Verstraeten et al.,
2015; Gerdes, 2016; Page and Peti, 2016). In type I TA modules,
the antitoxin is an antisense RNA which binds to the toxin-
coding mRNA and blocks its translation (Fozo et al., 2008),
January 2021 | Volume 10 | Article 615450
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whereas type II TA modules consist of toxin and antitoxin
polypeptides that form an inactive complex (Gerdes et al.,
2005; Gerdes, 2016). In type II TA modules, proteolytic
degradation (usually by Lon or Clp proteases) of the antitoxin
frees the active toxin. Degradation or depletion of the antitoxin
may occur stochastically or in response to stresses and the
unleashed toxin protein affects central cellular processes,
including translation, DNA replication, cell division, and
metabolism (Gerdes, 2016; Kedzierska and Hayes, 2016; Harms
et al., 2018; Wilmaerts et al., 2019).

Notably, the contribution of type II TA modules to persister
formation has been recently challenged (Harms et al., 2017a;
Goormaghtigh et al., 2018). Goormaghtigh and colleagues
(Goormaghtigh et al., 2018) provided evidence that an E. coli
K-12 mutant strain lacking the 10 type II TA modules previously
postulated to participate in persister formation produced similar
levels of persisters as the wild-type bacteria in unstressed cultures
and after exposure to antibiotics [but see also (Holden and
Errington, 2018; Ronneau and Helaine, 2019)].

TA Modules in IBPs
Especially, type II TA modules have been found in most human
bacterial pathogens including several vacuolar and cytosolic
IBPs. An unusually large number of TA modules has been
identified in Salmonella enterica serovars (24 TA modules
including 4 type I and 19 type II) (Mcclelland et al., 2001; Di
Cesare et al., 2016) and in M. tuberculosis (79 TA modules)
(Slayden et al., 2018; Thakur et al., 2018). Type II TA modules
are also present in Bartonella (Harms et al., 2017b), Listeria
monocytogenes (Curtis et al., 2017; Kalani et al., 2018), Shigella
serovars (Mcvicker and Tang, 2016), Rickettsia spp. (Socolovschi
et al., 2013), and Brucella spp. (Heaton et al., 2012). Neither type
I nor type II TAmodules have been found in Chlamydia spp. and
there is also no convincing evidence for the presence of such TA
modules in Coxiella, Francisella and Legionella (Pandey and
Gerdes, 2005; Leplae et al., 2011; Yamaguchi et al., 2011).

The contribution of TA modules to persistence of IBPs has
been extensively studied in S. Typhimurium (Helaine et al., 2014;
Di Cesare et al., 2016; Vandrisse et al., 2017; Rycroft et al., 2018)
and M. tuberculosis (Korch et al., 2009; Albrethsen et al., 2013;
Schuessler et al., 2013; Korch et al., 2015; Winther et al., 2016;
Slayden et al., 2018). In L. monocytogenes, MazEF, a type II TA
module which contributes to persister formation in many
bacteria (Gerdes et al., 2005), obviously does not affect the
persister formation upon treatment with antibiotics in lethal
doses (Curtis et al., 2017).

The Stringent Response, the Alarmone (p)ppGpp,
and the Association With Persister Formation
Next to TA modules, (p)ppGpp appears to play a major role in
persister formation (Korch et al., 2003; Kim H. Y. et al., 2018). This
alarmone is the molecular effector of the bacterial stringent response
which leads to an extensive transcriptional reprogramming and to
metabolic changes in response to nutrient deprivation (Potrykus
and Cashel, 2008). In E. coli (and all members of the gamma-
proteobacteria), RelA and SpoT synthesize (p)ppGpp (in the
following termed only ppGpp) from GTP and GDP, whereas in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Bacillus subtilis and many other bacteria, a single enzyme (Rel or
Rsh) is responsible for this activity (Mittenhuber, 2001). Upon
amino acid starvation, the uncharged tRNAs activate the ribosome-
associated RelA to synthesize ppGpp, whereas carbohydrates and
fatty acid starvation stimulate ppGpp synthesis by the cytoplasmic
SpoT (Xiao et al., 1991; Seyfzadeh et al., 1993). In a complex with
DksA, ppGpp binds to RNA polymerase and inhibits transcription
initiated from stable RNA (i.e., rRNA and tRNA) promoters and
upregulates transcription of amino acid biosynthesis and stress
response genes (Potrykus and Cashel, 2008; Dalebroux and
Swanson, 2012; Hauryliuk et al., 2015).

As mentioned above, a link between ppGpp and persister
formation was first shown by Korch et al. (2003) and confirmed
by other studies (Amato et al., 2013; Bokinsky et al., 2013;
Germain et al., 2013; Maisonneuve et al., 2013; Kim H. Y.
et al., 2018) demonstrating that increased ppGpp levels result
in growth arrest and increased persistence.

Interestingly, ppGpp is also a regulator especially for type II, but
also for type I TAmodules (Maisonneuve et al., 2013;Maisonneuve
andGerdes, 2014;Verstraeten et al., 2015;Tianet al., 2017). For type
II TA modules, increased production of ppGpp activates the Lon
protease-dependent antitoxin degradation and the released toxin
component appears to increase the generation of persisters by
blocking central cell processes (see above). This ppGpp-mediated
activation of type II TA modules has become a widely accepted
model for persister formation that has, however, also come under
critical debate recently (Chowdhury et al., 2016a; Shan et al., 2017;
Maisonneuve et al., 2018). Transcriptional control by ppGpp has
also been shown for the type I TAmoduleHokB/SokB (Verstraeten
et al., 2015;Wilmaerts et al., 2018) as outlined below inmore detail.

Association of Stringent Response and ppGpp With
Persister Formation in IBPs
According to Kegg Data Base, all IBPs except the obligate
intracellular pathogens Chlamydia and Rickettsia spp. produce
RelA or a RelA/SpoT-like enzyme (Rsh), and are able to
synthesize ppGpp. SpoT is present as separate enzyme in IBPs
belonging to the gamma-proteobacteria, i.e., Shigella, Salmonella,
Francisella, Legionella, and Coxiella, but is absent in Chlamydia
spp. and Rickettsia spp. (Mittenhuber, 2001; Clark et al., 2011).
In L. monocytogenes, three genes code for ppGpp synthetases:
one bi-functional RSH enzyme and two small synthases (Natori
et al., 2009). M. tuberculosis carries a gene encoding RelMtb, a
bifunctional RelA/SpoT homolog that modulates synthesis and
hydrolysis of ppGpp during the stringent response (Avarbock
et al., 1999; Hogg et al., 2004). A single RelA/SpoT-like Rsh
enzyme has also been identified in Brucella (Dozot et al., 2006).

The involvement of ppGpp in persister formation of IBPs has
been suggested for S. enterica und M. tuberculosis (Helaine et al.,
2014). Helaine and coworkers reported that Salmonella living
within macrophage (MP) vacuoles are exposed to potentially
stressful conditions that induce the expression of 14 type II TA
modules in a ppGpp/Lon-dependent manner, and this event
apparently plays an important role in the formation of persister
cells. It has also been shown that, in S. Typhimurium, persistence
triggered by ShpAB (also a type II TA module with Lon-
dependence) also occurs in a relA mutant, i.e., in the absence of
January 2021 | Volume 10 | Article 615450
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ppGpp synthesis (Slattery et al., 2013). One should keep in mind,
however, that the involvement of ppGpp in persister formation is
clearly not restricted to its role in the activation of TAmodules (Liu
et al., 2017) (see also below).

InM. tuberculosis, the single Rsh enzyme (RelMtb), responsible
for ppGpp production, is required for the long term survival under
in vitro starvation conditions (Primm et al., 2000). Dahl and
colleagues (Dahl et al., 2003) reported that RelMtb is critical for
the successful establishment of persistent infection in mice by
altering the expression of antigenic and enzymatic factors that
may contribute to successful latent infection. Stringent response
(involvingppGpp)mediates persistence inM. tuberculosis (Chuang
et al., 2015). M. tuberculosis strains expressing a mutant ppGpp
synthetase (RelMtb) are unable to persist in mice, also
demonstrating that the RelMtb activity is required for
maintaining mycobacterial titers during chronic infection (Weiss
and Stallings, 2013). A RelMtb mutant does not slow down
replication during nutrient starvation and carries out a similar
metabolism as the wild-type strain in nutrient-rich media (Dutta
et al., 2019). Furthermore, it has been reported (Wayne and Lin,
1982; Dutta and Karakousis, 2014) that inM. tuberculosis cultures
growing under optimal conditions, translationally dormant cells
pre-exist as a small subpopulationand thatpartof these pre-existing
persisters are RelMtb-overexpressing cells (Srinivas et al., 2020).
Interestingly, the involvement of ppGpp in persister formation
seems to be restricted to pathogenic mycobacteria (Bhaskar
et al., 2018).

Concerning the involvement of ppGpp in L. monocytogenes, a
study by Taylor and colleagues (Taylor et al., 2002) showed that a
relAmutant, whichwas unable to accumulate ppGpp in response to
aminoacid starvation,was avirulent in amurine infectionmodel (in
contrast to the wild-type strain), indicating an essential role of
stringent response for survival and growth of L. monocytogenes in
this host. A link to persistence is not apparent in this study. In
Francisella, the involvement of ppGpp in the regulatory network
governing virulence gene expression has been established (Charity
et al., 2009; Dean et al., 2009; Cuthbert et al., 2017), but again the
possible role in persistence remains unclear.

The presence of persistent, clinically relevant Legionella
pneumophila strains in different natural environments, often in
close association with free-living amoebae and multispecies
biofilms, is well documented (Berjeaud et al., 2016; Abu
Khweek and Amer, 2018), but virtually nothing is known on
the mechanisms causing this persistence. L. pneumophila
requires synthesis of ppGpp in response to amino acid
starvation to reach a state which allows the bacteria to escape
from infected amoeba (Hammer and Swanson, 1999). During its
intracellular life cycle in host MPs, L. pneumophila switches
between a replicative and a transmissive state (Swanson and
Fernandez-Moreira, 2002). In these host cells, ppGpp seems to
be required for the transmission, since a relA/spoT mutant is
killed during entry to and exit from MPs. Further work showed,
however, that RelA (which senses amino acid starvation) is
dispensable in MPs, whereas the hydrolase activity of SpoT
(and hence hydolysis of ppGpp) is essential for the conversion
of the bacteria from the transmissive to the replicative phase in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
MPs (Dalebroux et al., 2009). The authors conclude that the
SpoT-mediated ppGpp degradation (monitoring fatty acid
biosynthesis; see above) is necessary for this alternation in
MPs. However, the question whether ppGpp also plays a role
in persistence formation of L. pneumophila, remains unanswered
(Abu Khweek and Amer, 2018).

In Brucella spp., stringent response is induced by nutrient
stress via ppGpp that is synthesized by a single, bi-functional Rsh
enzyme. Rsh deletion mutants of Brucella suis and B. melitensis
show an altered morphology and a reduced survival rate under
starvation conditions in cellular and murine infection models
(Dozot et al., 2006). ppGpp-Dependent cross-talk between
nutrient, oxidative, and low-oxygen stress responses was
demonstrated suggesting an important role of ppGpp in the
adaptation of Brucella to the host (Hanna et al., 2013) and
possibly in persistence and chronic infections (Ficht, 2003).

Coxiella and Bartonella spp. possess ppGpp synthases, but
nothing is known on the possible participation of ppGpp in
persister formation of these IBPs. Chlamydia spp. and Rickettsia
spp. lack ppGpp synthases and hence are unable to produce
ppGpp (Mittenhuber, 2001).

General Stress Response and Its Link to Persistence
In addition to the ppGpp-dependent stringent response, the general
stress response (GSR) appears to be also linked to persistence
(Boaretti et al., 2003; Hong et al., 2012; Schellhorn, 2014;
Tkachenko et al., 2014; Harms et al., 2016; Trastoy et al., 2018).
In E. coli (and related bacteria), GSR depends on the sigma factor S
(RpoS). RpoS governs the expression of many stationary-phase-
inducible genes in E. coli (Hengge-Aronis, 1996; Battesti et al., 2011)
and the entry into the stationary phase is known to lead to increased
persister formation (Wood et al., 2013). A variety of environmental
stress conditions can also induce GSR, including nutrient
deprivation, variations of temperature, biofilm production, high
pH, oxidative stress, and hyperosmolarity. GSR is also connected
with ppGpp and TA modules: ppGpp stimulates the accumulation
of RpoS (Brown et al., 2002; Hirsch and Elliott, 2002; Dalebroux
et al., 2010). Antitoxins of certain TA modules repress the
expression of RpoS. However, upon stress, the antitoxins are
degraded and RpoS expression is induced (Wang et al., 2011;
Wang and Wood, 2011; Hu et al., 2012).

GSR in IBPs and Its Link to Persistence
Among the IBPs, GSR is controlled by RpoS in the gamma-
proteobacteria Shigella, Salmonella, Legionella, and Coxiella, and
the involvement of RpoS in formation of persistence has been
suggested for salmonellae and shigellae (Trastoy et al., 2018). In L.
monocytogens, GSR is regulated by the alternative sigma factor SigB
(Mittenhuber, 2002), similar as in B. subtilis and a small group of
other Gram-positive bacteria (Hecker and Volker, 2001). SigB is
involved in the survival of both saprophytic and host-associated
stresses by L. monocytogenes (Dorey et al., 2019). A SigB-related
factor is also present inM. tuberculosis (Mittenhuber, 2002), where
it plays a major role in determining the level of tolerance to several
drugs and the amount of persisters surviving drug treatment (Pisu
et al., 2017).
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GSR in alpha-proteobacteria, such as Rickettsia, Bartonella
and Brucella, is controlled by a cascade including the alternative
sigma factor aEcfG (also termed sE1 or RpoE1), the anti-sigma
factor NepR, and the anti-anti-sigma factor PhyR (Fiebig et al.,
2015; Francez-Charlot et al., 2015). In Brucella, these factors
control transcription of approximately 100 genes involved in
persistence in a BALB/c mouse chronic infection model (Kim
et al., 2013; Willett et al., 2016). To our knowledge, there are no
reports on a possible involvement of GSR-mediated regulation
cascade in persister formation of Bartonella and Rickettsia. The
obligate intracellular Chlamydia lacks all of these GSR-mediating
sigma factors.

Oxidative Stress, Reactive Oxygen Species, Oxygen
Stress Response, and the Links to Persistence
The connection between persister formation and oxidative stress,
the subsequent increased reactive oxygen species (ROS)
production, and the oxidative stress response (OSR) thereby
induced, has been extensively described (Dörr et al., 2009; Möker
et al., 2010; Vega et al., 2012; Wu et al., 2012; Wang et al., 2017).
Augmented ROS production alters the membrane potential and
causes damage of proteins, lipids, and nucleic acids (in particular
DNA) with a strong impact on persister formation (Wang
et al., 2017).

In E. coli, an increased ROS level induces the transcription
factors SoxRS and OxyR that are primarily involved in the
expression of antioxidant activities. But SoxRS can also induce the
expression of the AcrAB-TolC multidrug-resistant pump causing
extrusion of antibiotics. As consequence, a larger fraction of cells
become persisters in the presence of antibiotics (Wu et al., 2012).

Increased persister subpopulations are also observed upon
treatment of bacterial populations with bactericidal antibiotics
(Kohanski et al., 2007; Kreuzer, 2013; Belenky et al., 2015; Kawai
et al., 2015). Bactericidal antibiotics—besides blocking their
primary targets—lead to downstream effects including metabolic
changes accompaniedwith increasedproductionofROS (especially
hydroxyl radicals) which, as already mentioned above, damage
essential cellular components, ultimately causing cell death. In line
with this assumption is the finding that bacteriostatic antibiotics,
which recognize the same primary targets as the bactericidal
antibiotics, do not trigger ROS production (Kohanski et al., 2007).

The enhanced persister formation arising upon treatment of a
bacterial population with bactericidal antibiotics is apparently
connected with this oxidative stress and the subsequent OSR
leading to several response reactions that favor persistence
(Walawalkar et al., 2016; Tosic-Pajic et al., 2017).

IBPs frequently encounter oxidative stress during infection.
MPs—host cells for most IBPs—generate ROS and reactive
nitrogen species (RNS) upon activation. Thus, ROS and
subsequent OSR could also contribute to persistence (and
possibly) chronic infections of IBPs. However, convincing
experimental data are missing to support this assumption.

DNA Damage-Induced SOS Response and Its Link
to Persistence
The association of persister formation to SOS response induced by
DNA damage has been primarily studied in E. coli. The SOS
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
pathway is crucially involved in the repair of DNA damage in
bacteria (Kreuzer, 2013). The key regulators controlling the SOS
network are LexA and RecA. Mutants lacking the lexA or the recA
gene are more susceptible to quinolones and exhibit significantly
reduced persistence in presence of these antibiotics (Dörr et al.,
2009; Fung et al., 2010; Wu et al., 2012), while the constitutive
expression of these genes strongly enhances persistence under these
conditions (Dörr et al., 2009). These results suggest that persistence
triggered by quinolones is influenced by the ability of the bacterial
cell to repair DNA damage.

A link between SOS response and specific TA modules has
also been demonstrated. Deletion of the SOS-inducible TisAB
pair causes high reduction of persister cells; however, deletion
of other LexA-box-containing TA pairs has no effect on
persister formation (Dörr et al., 2010; Lewis, 2010). TisB is a
membrane peptide that causes a decrease of the proton motive
force and ATP levels. The resulting ATP depletion could
therefore be also responsible for the SOS-induced persister
formation by the TisAB TA module (Unoson and Wagner,
2008; Lewis, 2010; Shan et al., 2017). These examples show
the complex interactions of the various stress conditions
and the resulting cellular responses ultimately causing
persister formation.

Involvement of the GTPase Obg in Persistence
Obg (also known as ObgE and CgtA) is a highly conserved
GTPase present in all bacteria. It appears to function as a
regulator for fundamental cellular processes such as ribosome
maturation, DNA replication and chromosome segregation
(Sikora-Borgula et al., 2002; Sikora et al., 2006; Persky et al.,
2009; Kint et al., 2014). Obg has also been found to be central in
controlling persistence in E. coli and Pseudomonas aeruginosa
(Verstraeten et al., 2015). In E. coli, Obg-mediated persistence
depends on ppGpp and the type I toxin HokB. An elevated
ppGpp level induced by Obg leads to enhanced expression of the
type I TA module HokB/SokB. The increased expression of the
pore-forming HokB toxin results in a collapse of the membrane
potential causing ATP leakage associated with persistence
(Wilmaerts et al., 2018). All IBPs possess Obg-like proteins
(Table 1), but there are no reports showing their involvement
in persistence of IBPs.
METABOLISM AND PERSISTENCE

Facts and Hypotheses
Undoubtedly, metabolism plays a central role in initiating,
maintaining and ending the persister state (Amato et al., 2013;
Orman and Brynildsen, 2013; Amato et al., 2014; Prax and
Bertram, 2014; Hartman et al., 2017; Radzikowski et al., 2017;
Cabral et al., 2018). It has been shown that antibiotics (and the
other stressors mentioned above) cause specific changes of the
bacterial metabolism which may favor persister formation (Yang
et al., 2017; Zampieri et al., 2017). In order to survive antibiotic
treatment (or any other of the above described stress conditions),
the persister cells must (a) shut down or silence essential
physiological cell functions which antibiotics or the other
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stressors would irreversibly damage, (b) maintain viability
during stasis, and (c) resume growth once the stress is lifted.

However, it is difficult to determine the specific metabolism of
persister cellsmainly due to their abundance, their transient nature,
and their similar morphology in comparison to normal cells
(Orman et al., 2015; Rowe et al., 2016). Therefore, the knowledge
on the metabolism of bacterial persister state(s) is still fragmentary
and sometimes even contradictory [see, e.g., (Leszczynska et al.,
2013; Orman and Brynildsen, 2013; Kim and Wood, 2017)],
although it is of great importance since it may offer novel
strategies for the elimination of persisters (Allison et al., 2011;
Fauvart et al., 2011; Kim et al., 2011; Radzikowski et al., 2017).

We will now focus on the presently known facts concerning the
metabolism of persister subpopulations. Most of these data have
been obtained by studies with few prototrophic model bacteria
(mainly E. coli) which may limit their general validity. The major
conclusions are: (a) Persistence often described as a “dormant state”
represents a specificmetabolically active state (Spoering et al., 2006;
Prax andBertram, 2014; Radzikowski et al., 2016).Despite the large
decline in metabolic activities, the persister cells continue to
produce energy, energize their membranes and produce a special
set of proteins (Babin et al., 2017; Ayrapetyan et al., 2018). (b) The
persistence-promotingmetabolicprocesses occur stochastically in a
small fraction even of actively growing and unstressed bacterial
populations and are significantly enhanced in the presence of
antibiotics, by nutrient starvation, in the stationary growth phase,
and under the abovementioned stress conditions (Dörr et al., 2010;
Radzikowski et al., 2016; Gutierrez et al., 2017; Meylan et al., 2017;
Yang et al., 2017). (c) The persister state requires a suitable carbon
and energy source (other than glucose) which allows a low flux
through specific core metabolic pathways (Spoering et al., 2006;
Amato et al., 2014; Cabral et al., 2018). (d) The tricarboxylic acid
(TCA) cycle activity has been shown to play an important role in
aminoglycoside antibiotic (tobramycin) susceptibility and
tolerance of P. aeruginosa (Meylan et al., 2017): stimulation of the
TCA cycle by fumarate activates cellular respiration and proton
motive force. It leads to tobramycin uptake, high susceptibility and
cell death, whereas shunting of the TCA cycle by stimulation of the
glyoxylate cycle enhances tolerance against this aminoglycoside. (e)
The ATP level is an important factor in persisters formation
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Conlon et al., 2016; Radzikowski et al., 2016; Shan et al., 2017;
Cameron et al., 2018). It has been even concluded that “stochastic
variation inATP is themainmechanismofpersister formation”and
“the decrease in ATP provides a satisfactory explanation for the
drug tolerance of persisters” (Shan et al., 2017); (f) Central cell
processes, including transcription, translation, DNA replication
and cell wall synthesis, the major targets for most antibiotics (and
eventually other stressors), are greatly slowed down or even turned
off (Lewis, 2007;Hurdle et al., 2011; Kwan et al., 2013;Wood, 2017).
(g) The metabolism of persisters may depend on the type of
selection pressure, i.e., metabolism of persisters selected by ß-
lactam antibiotics (cell wall inhibitors) is different from that of
persisters selected by ciprofloxacin or nalidixic acid (both are gyrase
inhibitors) (Cabral et al., 2018; Barrett et al., 2019). (h) An
interesting, metabolism-based model has been proposed in which
a specific lowmetabolic flux is the basis for establishing persistence,
while other factors (e.g., various TAmodules, ppGpp, RpoS) have a
modulating and/or stabilizing function (Radzikowski et al., 2016).
Metabolism of IBPs Within Host Cells
and Possible Links to Persistence of IBPs
Regarding human IBPs, most work concerning the metabolism
of persistent populations has been carried out with M.
tuberculosis, Chlamydia spp. and Salmonella serovars where
persistence appears to be a key factor for the often long lasting
chronic infections. M. tuberculosis is a metabolically highly
flexible pathogen able to adapt to the changing environments
which this pathogen encounters during infection. Most studies
dealing with metabolic aspects of persistent mycobacteria have
been performed with various in vitro culture models and the
murine in vivo model (Wayne and Lin, 1982; Dutta and
Karakousis, 2014; Sohaskey and Voskuil, 2015). Persistence of
M. tuberculosis in mice is promoted by the glyoxylate bypass
(including isocitrate lyase, ICL) and deletion of the icl gene leads
to reduced persistence. The icl mutant also shows decreased
survival in activated but not in resting MPs (Mckinney et al.,
2000). ICL, an enzyme involved in the mycobacterial glyoxylate
and methylisocitrate cycle (Gould et al., 2006), is essential for the
catabolism of lipids/fatty acids/cholesterol. Catabolism of host
TABLE 1 | Presence and absence of factors in intracellular bacterial pathogens (IBPs) that were previously found to be associated with persistence.

IBP TA Stringent response General stress response Oxidative response SOS response Obg/CgtA

RelA SpoT Rel (Rsh) RpoS SigB OxyR SoxR/SoxS LexA RecA

Vacuolar
Salmonella Typhimurium ++ + + + + +/+ + + +
Mycobacterium tuberculosis +++ + + + WhiB3 + + +
Legionella pneumophila (+) + + + + −/− + +
Brucella mellitensis + + (+) + −/− + + +
Coxiella burnettii (-) + + + + −/− - + +
Chlamydia trachomatis - - - - - - −/− - + +
Cytosolic
Listeria monocytogenes + + - + (-) −/− + + +
Shigella flexneri ++ + + + + +/+ + + +
Francisella tularensis - + + - - + −/− + + +
Rickettsia prowazekii + - - - - - - −/− - + +
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derived lipids including cholesterol is a major factor for the
persistent state ofM. tuberculosis (Bhusal et al., 2017; Bonds and
Sampson, 2018).

The proper homeostasis of the oxido-reductive systems is
likewise important for persistence and reactivation of M.
tuberculosis (Kumar et al., 2011). M. tuberculosis possesses two
succinate dehydrogenases (Sdh1 and Sdh2). Sdh1 but not Sdh2 is
necessary for respiration through the electron transport chain
under normoxic conditions. Sdh1 or Sdh2 appears to be essential
for the respiratory adaptation to hypoxic environments leading
to persistence (Hartman et al., 2014). Nitrate reduction also
seems to serve a respiratory function upon a sudden shift of M.
tuberculosis to hypoxia and the mycobacterial nitrate reductase
activity is highly induced in the hypoxic state (Wayne and Hayes,
1998; Sohaskey, 2008). The genes for most of the functions
important for the adaptation to hypoxic stress (and for
persistence), including metabolic genes, such as those for
nitrate reductase and enzymes involved in energy acquisition
by alternative carbon substrates (e.g., fatty acids) and for
synthesis of triacylglycerols, are under the control of the two-
component system DosR-DosS (Park et al., 2003; Voskuil et al.,
2003; Galagan et al., 2013). These and other studies, using in vitro
and in vivo models of M. tuberculosis infection, show that the
DosR regulon is an important control factor of persistence ofM.
tuberculosis under hypoxic conditions (Converse et al., 2009;
Rustad et al., 2009; Leistikow et al., 2010; Liu et al., 2016).

Human-pathogenic Chlamydia species are obligate IBPs that
cause a wide range of acute and chronic diseases. After having
enteredhost cells (mainlynon-phagocyticmucosal cells), these IBPs
live in a vacuolar compartment, the “inclusion”. During the
intracellular infection cycle, Chlamydia exist in two different
forms. The reticulate body (RB) is the intracellular non-
infectious, but proliferating form, which converts into the the
elementary body (EB), the non-replicative, but infectious form.
Under special conditions, suchas treatmentwith interferon-gamma
(IFN-g) or penicillin, nutrient deprivation, or co-infection with
Herpes viruses (Deka et al., 2006), RBs convert into persistent,
nonreplicative particles, termed aberrant reticulate bodies (ARBs),
which may re-convert into RBs and infectious EBs when the
unfavorable conditions subside (Elwell et al., 2016; Witkin et al.,
2017; Xue et al., 2017; Panzetta et al., 2018). Both the Chlamydia
cells and the host cells undergo massive metabolic changes during
the different conversions (Käding et al., 2014; Shima et al., 2018;
Yang et al., 2019). In the persistent ARB state, Chlamydia
trachomatis ceases to produce its major structural and membrane
components (Witkin et al., 2017), but the still ongoing basic
metabolic reactions in the ARBs remain largely unknown. In the
infected host cells, IFN-g activates the expression of indoleamine-
2,3-dioxygenase 1 (IDO1), an enzyme that degrades tryptophan to
kynurenine suggesting that the depletion of tryptophan blocks the
normal chlamydial developmental cycle. Human-pathogenic
Chlamydia species are unable to synthesize tryptophan.
Restoration of tryptophan supply reverts the ARBs to infectious
EBs (Beatty et al., 1993; Beatty et al., 1995), suggesting that
biosynthesis of proteins containing multiple tryptophan residues
may be blocked in ARBs (see below).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
The metabolic requirement of persistent Salmonella has been
mainly determined in an in vivo model of persistence whereby
BALB/c mice were infected intravenously with a S. Typhimurium
derivative that survived but hardly proliferated in the systemically
infected mice. Persistent subpopulations could be isolated from
liver and spleen which survived treatment with enrofloxacin, a
fluoroquinolone highly efficient against this strain in vitro (Barat
et al., 2012). Almost all tested Salmonella metabolic activities,
including ATP synthesis driven by aerobic respiration, were
dispensable in this persistence model demonstrating extensive
resilience of persistent Salmonella against metabolic
perturbations. However, inactivation of the biosynthesis of
unsaturated fatty acids and cyclopropane fatty acids resulted in
clearance of persisters to non-detectable levels in these organs.
These fatty acids probably modify the fluidity of the cell wall.
Upregulation of cfa genes (encoding cyclopropane fatty acid
synthesis) was also observed in surviving S. enterica of different
serotypes (including Typhimurium and Enteritides) upon long-
term inoculation of poultry feed (Andino et al., 2014). This finding
also suggests that the continued synthesis of these fatty acids is
essential for long-term survival of Salmonella under harsh
conditions. Isocitrate lyase appears to be required for S.
Typhimurium persistence during chronic infection in mice but
not during the acute phase of salmonellosis (Fang et al., 2005). This
indicates that the glyoxylate shunt may play a critical role in the
ability of Salmonella to persist in mammalian hosts and suggests
that persistent Salmonella may depend on the utilization of fatty
acids similar toM. tuberculosis (see above) and other intracellular
pathogens (Monack et al., 2004). This conclusion is in line with the
observation that Salmonella fail to persist in Pard null mice (Eisele
et al., 2013). The peroxisome proliferator-activated receptor delta
(PPARd) is a eukaryotic transcription factor essential for sustaining
fatty acid metabolism (Odegaard et al., 2008) which is upregulated
in Salmonella-infected MPs (Eisele et al., 2013).

PersistentL.monocytogenes strains are amajor problem in food-
industry (Ferreira et al., 2014; Abee et al., 2016), since severe
infections in humans can be caused by food-borne strains that
resist food processing steps (Lianou and Sofos, 2007) and even
treatment with antimicrobials (Fox et al., 2011). Transcriptome
analysis of such persistent strains show—compared to non-
persistent strains—enhanced expression of the pdu, eut and cob-
cbi operons (encoding enzymes involved in propandiol utilization,
ethanolamine utilization, and cobalamine synthesis, respectively)
(Fox et al., 2011).Whether thesemetabolic capacitiesmay also play
a significant role in persistent human listeriosis (Kleemann et al.,
2009) remains an open question (Garsin, 2010).

Interestingly, the normally cytosolically replicating L.
monocytogenes persist after infection of immunodeficient (SCID)
mice in large vacuoles of liver granuloma MPs (Birmingham et al.,
2008). Prolonged infectionof (non-phagocytic) humanhepatocytes
and trophoblast cells also leads to bacteria enclosed in vacuoles. The
switch from active cyctosolic replication to the resting vacuolar
phase is correlated with a decreased accumulation of ActA at the
bacterial surface (Kortebi et al., 2017). The authors argue that the
formation of these Listeria-containing vacuoles could potentially
enable the persistence in epithelial tissues. Although none of these
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two reports address the metabolic conditions in these vacuolar
compartments and the metabolic activities of the persistent
vacuolar bacteria, it is reasonable to assume that the conditions
within the vacuoles (especially the metabolic conditions) are better
suited for a persistent state than those in the host cell cytosol.

Francisella tularensis, another cytosolic IBP, can also re-enter
into membrane-surrounded vacuoles (FCVs) after its extensive
replication in the cytosol (Checroun et al., 2006) possibly to
survive the more stressful conditions in the cytosol. To the best of
our knowledge, there are no reports on IBPs persisting in the
cytosol of host cells.

Occurrence and Absence of Factors
and Pathways Associated With
Persistence in IBPs
As described above, several factors and pathways are associated
with bacterial persistence. This correlation is mainly based on the
observation that their expression enhances significantly the
formation of persister cells whereas their deletion reduces
persister formation. Most of these studies were performed with
E. coli (see above). However, in contrast to E. coli and many
extracellular bacterial pathogens, several human IBPs lack one or
more of these factors and pathways, and Chlamydia spp. which
belong to the most successful persisting bacterial pathogens, even
lack all of them (Table 1). This fact suggests that other cellular
processes must be responsible for persister formation in these
IBPs. Common to all IBPs so far analyzed, including Chlamydia,
is the (highly flexible) metabolic strategy that IBPs follow after
internalization by mammalian cells which we termed “bipartite
metabolism” (Grubmüller et al., 2014; Eisenreich et al., 2015).

The Essential Features
of Bipartite Metabolism
“Bipartite metabolism” (BM) describes a mode of bacterial
metabolism that is carried out by many (possibly all) IBPs
replicating within mammalian cells (Grubmüller et al., 2014;
Eisenreich and Heuner, 2016; Häuslein et al., 2016; Chen et al.,
2017; Häuslein et al., 2017a; Mehlitz et al., 2017; Best and Abu
Kwaik, 2019). BMuses asmajor energy source various host-derived
energy-rich carbon compounds that are less essential for the host
cell than glucose. The withdrawal of these substrates from the host
cell does not lead to the same negative consequences as withdrawal
of glucose (e.g., autophagy and apoptosis). The suitable carbon
compounds include mainly C3-metabolites such as pyruvate or
glycerol, serine and cysteine that can be converted to pyruvate
(Eylert et al., 2008; Alkhuder et al., 2009; Grubmüller et al., 2014;
Puckett et al., 2014; Abu Kwaik and Bumann, 2015; Vanderven
et al., 2015; Häuslein et al., 2016; Chen et al., 2017; Häuslein et al.,
2017b; Mehlitz et al., 2017). Besides these C3-substrates, malate
(used, e.g., byChlamydia), fatty acidsor cholesterol (used, e.g., byM.
tuberculosis) are also suitable energy-rich components. These
carbon sources are finally oxidized to acetyl-CoA, which enters
the TCA cycle yielding important intermediates, as well as the
electron carriers NADH and FADH2 which, as essential electron
carriers, lead to ATP production by oxidative phosphorylation
(OXPHOS). In the absence of a functional electron transfer chain
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
(ETC), ATP can be also produced through substrate
phosphorylation by conversion of acetyl-CoA via acetyl-
phosphate to acetate. The latter ATP delivering step is present in
all IBPs with the exception of Chlamydia spp. which can, however,
import ATP from the host cell by ATP/ADP transporters (Tjaden
et al., 1999).

De novo biosynthesis of IBP-specific cell components is
normally restricted to those compounds that cannot be
provided by the host cells. This concerns in particular cell wall
components (e.g., meso-diaminopimelic acid, mDAP). For
conducting these indispensable biosynthetic pathways, the IBPs
import small amounts of host cell-derived glucose, glucose-6-
phosphate or other carbohydrates that can be converted to
glucose-6-phosphate with low energy consumption.

Thus, the concept of BM includes two distinct metabolic
networks: a mainly catabolic part (P1) fed by the above
mentioned C3 substrates which leads to the production of energy
and some essential metabolites produced in the TCA cycle (e.g.,
oxaloacetate, a-ketoglutarate, and succinate) and another, more
anabolic part (P2), fed mainly by intermediates of the upper part of
the glycolytic pathway and the pentose phosphate pathway (PPP),
which is essential for the indispensable anabolic components
(mainly essential components for cell wall biosynthesis) that
cannot be delivered by the host cell. The P1 and P2 networks
interact depending on the physiological state of the host cell
(Eisenreich et al., 2017; Eisenreich et al., 2019). For example, most
of the energy-delivering carbon substrates mentioned above are
glucogenic, i.e., in principle they are able to produce glucose by
entering the gluconeogenic pathway. Indeed, most IBPs possess all
genes required for the gluconeogenesis enzymes (exceptions are
Rickettsia spp.).However, thismode of glucose production requires
adisproportionally large amountof energy (e.g., glucoseproduction
from pyruvate needs six molecules of ATP) and gluconeogenesis is
usually too expensive for carbohydrate production under
intracellular conditions.

Under nutrient-rich conditions of the host cell, some IBPs, like
C. trachomatis, L. pneumophila and M. tuberculosis, may convert
suitable carbon substrates to storage products such as glycogen
(Gehre et al., 2016), polyhydroxybutyrate (PHB) (Gillmaier et al.,
2016;Häuslein et al., 2017b)or triacylglycerols (Maurya etal., 2018).
These polymers can then be degraded to useful carbon/energy
substrates under starvation conditions.

All studies carriedout so far (Eylert et al., 2008;Grubmüller et al.,
2014; Häuslein et al., 2016; Chen et al., 2017; Häuslein et al., 2017a;
Mehlitz et al., 2017) indicate that, in IBPs, most low-molecular
precursors for macromolecules, e.g., amino acids, nucleotides, fatty
acids and vitamins, are imported from the host cells, which in turn
obtain most of these nutrients from the intercellular space of host
tissue. Major exceptions are, however, the three non-essential
amino acids Ala, Asp, and Glu, which are efficiently synthesized
de novo by all IBPs tested so far. Interestingly, these amino acids (in
their D-forms) are either directly needed in considerable quantities
for the synthesis of cell wall components (peptidoglycan and (lipo)
teichoic acids) or act, like Asp, as a precursor of meso-
diaminopimelate (mDAP), which also represents an important
building block for peptidoglycan and is synthesized de novo by all
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IBPs exceptFrancisella. The latter IBPprobably uses Lys (which can
again be obtained from the host cell) instead of mDAP for
peptidoglycan synthesis. Thus, for carrying out intracellular
replication, the IBPs import, in addition to the energy-delivering
(e.g., glycerol) and anabolism-supporting (e.g., glucose-6P) carbon
substrates, substantial amounts of low molecular metabolites from
the host cell and restrict their anabolic activities to the biosynthesis
of those components that cannot be provided by the host cells and,
of course, to protein and nucleic acid biosynthesis.

Besides being an economic strategy for maintaining the
metabolism of IBPs replicating in mammalian host cells, BM
may also be advantageous for the expression of virulence factors
that are essential for intracellular proliferation. Expression of
these factors is often blocked (e.g by catabolite repression) when
glucose is the major carbon source (Eisenreich et al., 2017).
Furthermore, the metabolic flexibility provided by the BM
strategy may lead to considerable metabolic heterogeneity in
an IBP population during infection of mammalian host cells
which may favor the formation of persister state(s). Indeed,
metabolic heterogeneity in isogenic bacterial population has been
extensively described (Ackermann, 2015; Sheik et al., 2016;
Simsek and Kim, 2018) and its significance for persister
formation discussed (Balaban et al., 2004; Jones and Lennon,
2010; Bald and Koul, 2013; Simsek and Kim, 2018).

Metabolic States of the Host Cells
and the Intracellular Bacteria That May
Lead to Persister Formation
Ignoring immunological aspects, one can easily visualize two
well-defined metabolic borderline states of the host cells that will
either lead to proliferation or killing of the IBPs. In the first state,
the host cells provide to the IBP a well-balanced supply of the
above mentioned necessary nutrients. Under these conditions, all
metabolites and sufficient energy will be available for the IBP to
successfully carry out BM. This metabolic state will enable the
IBP to build up its macromolecular structures and to perform
efficient proliferation.

In the second state, the host cell can neither provide the main
energy-delivering carbon source (in the following termed ECS) nor
the carbon substrate supporting the indispensable anabolic
processes (termed ACS) of the IBP. Under these conditions, the
internalized IBPwill comeunder nutritional stress and the resulting
ATP shortage will ultimately lead to the stop of all macromolecular
biosynthesis and thebreakdownof theATP-dependentDNArepair
functions—and finally to the bacterial cell death.

Most differentiated cells, such as non-activated MP or
epithelial cells have a reduced basic metabolism (resembling
more the second metabolic host cell condition). This metabolic
state provides probably not enough ECS and ACS to support
efficient replication of internalized IBPs. However, most IBPs
apparently express specific fitness factors that can activate the
metabolism of the resting host cells converting them either into
hospitable or sometimes also hostile states [recently reviewed by
(Eisenreich et al., 2019)].

A typical example are the differentmetabolic activation events of
resting MPs by Gram-negative bacterial pathogens: LPS of Gram-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
negative pathogens leads to classicM1polarization ofMPswhich is
characterized by a metabolic switch from the OXPHOS-driven
metabolism (occurring at low level in resting MPs) to a Warburg-
like metabolism with induced glucose uptake, aerobic glycolysis,
lactate production, enhanced PPP and decreased TCA cycle
activities (Krawczyk et al., 2010; O’neill, 2014; Kelly and O’neill,
2015). This metabolic state of the host cell could provide an
appropriate nutrient supply to internalized IBPs and allow in
principle bacterial replication. However, the production of oxygen
and nitrogen radicals associated with theM1 state is deleterious for
most IBPs (Eisele et al., 2013; Xavier et al., 2013a; Price and Vance,
2014).On theotherhand, the alternative activationofMPs, induced
by IL-4 which may be triggered in MPs by other bacterial factors
leads to the anti-inflammatory M2 phenotype. The metabolism of
M2 polarized MPs is characterized by enhanced fatty acid
oxidation, OXPHOS, and thus increased intracellular levels of
unconsumed glucose. This host cell metabolism appears to be
favorable for IBP replication and has led to the assumption that
M2MPs could in general represent comfortable host cells for IBPs
(Xavier et al., 2013b; Buchacher et al., 2015). However, the
metabolic programs that can be induced in resting MPs (e.g., by
IBPs) appear to be more diverse than just the M1 or M2 states
(Murray and Wynn, 2011; Guilliams et al., 2014; Murray et al.,
2014). There is experimental evidence that the metabolism of IBP-
infectedMPs clearly differs from that ofM1 orM2MPs (Götz et al.,
2010; Gillmaier et al., 2012; Mehlitz et al., 2017). This metabolic
variability of MPs may thus lead to a considerable metabolic
heterogeneity in the MP population when exposed to IBPs. The
obvious variability in bacterial numbers ranging from single to
many bacteria per host cell observed when primary MPs are
infected with IBPs (Sheppard et al., 2003; Thöne et al., 2007;
Gillmaier et al., 2012) could be caused—at least in part—by the
metabolic flexibility of these host cells.

The BM strategy of the IBPs likely contributes to metabolic
heterogeneity of the intracellular bacteria. In the following, we
consider several metabolic scenarios of the host cell which an
incoming IBP may face and how the bacterial cell may adapt its
own metabolism to the different metabolic states of the host cell
—also with regard to possible persister formation:

Scenario 1: The host cell is able to provide sufficient amounts of
the energy-delivering carbon substrate (ECS) and the anabolism-
supporting carbon substrate (ACS) to the intracellular IBP (Figure
1A). Under these conditions, the IBP can replicate at optimal rates
as long as the host cell tolerates the increasing number of IBPs.
Then, the IBPs will be released from the host cells by different
mechanisms or spread into neighboring host cells. It is unlikely that
bacterial persister cells are formed under these conditions.

Scenario 2: The host cell can provide ACS, but not ECS. This
is an unlikely scenario, since the catabolism of ACS by the host
cell will always lead to ECS production. Besides, this scenario
would resemble the growth conditions which the IBP face in a
rich in vitro culture media where excess of ACS (especially
glucose) blocks the synthesis of virulence factors that are
necessary for the intracellular IBP life cycle.

Scenario 3: The IBP may receive from the host cell sufficient
supply of ECS, but no ACS (Figure 1B). This situation can occur
January 2021 | Volume 10 | Article 615450
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when thewhole host cell population runs out of glucose. Itmay also
happen stochastically when either a single host cell is depleted of
ACS (e.g., glucose) or unable to take upACS. If ECS is still available
in sufficient quantity, the TCA cycle of the IBP can function and
enough ATP is produced by oxidative and/or substrate
phosphorylation to maintain at least all repair functions in the
IBP. In caseECS is a glucogenic substrate (which is true formostC3-
compounds serving as ECS), glucose (ACS substrate) may be
produced by gluconeogenesis as long as there is enough ATP to
keep this high energy-consuming pathway running. Under these
conditions, the IBPs can still perform their own essential anabolic
processes and can still multiply. Formation of persister cells is also
less likely under these conditions.

Scenario 4: An additional shortage of ECS supply (this could
again occur stochastically in single cells or in the entire host cell
population) will lead to a continuous decrease of ATP production
(Figure 1C). As a result, all high-energy-consuming anabolic
processes, including protein, DNA, RNA and cell envelope
synthesis, will gradually come to an halt. But even at low ECS
concentration, low residual ATP synthesis is still possible by
substrate phosphorylation through oxidation of the residual ECS
to acetate. Indeed all IBPs (with the exception of Chlamydia spp.)
have the capacity to convert ECS substrates via acetyl-CoA and
acetyl-phosphate to acetate, thereby generating ATP. Chlamydia,
missing this pathway, can however import ATP directly from the
host cell (Schmitz-Esser et al., 2004). This residual ATP supply will
still maintain necessary repair functions of macromolecules,
especially of DNA (Dahan-Grobgeld et al., 1998), which is
absolutely crucial for the viability of persister cells (Völzing and
Brynildsen, 2015).

Under these ECS-limited conditions, various metabolic states
can be anticipated which may lead to slow-growing and non-
growing but surviving (persistent)? IBPs. Indeed, single cell
analysis of IBP-infected host cells show a high heterogeneity of
intracellular bacterial counts in in vitro and in vivo infection
models, with most host cells containing few or often only one
bacterial cell (Brown et al., 2006; Helaine et al., 2010; Watson and
Holden, 2010; Gillmaier et al., 2012; Zuck et al., 2015; Dhar et al.,
2016; Eisenreich et al., 2019).
DOES THE PREVENTION OF ATP-DNAA-
DEPENDENT INITIATION OF DNA
REPLICATION LEAD TO PERSISTER
FORMATION?

DnaA Is the Essential Initiator Protein
for DNA Replication in Bacteria Including
All IBPs
The above described metabolic scenarios 1–4 can occur in all
IBPs with varying probability and scenario 4 could lead to
persister formation even in those IBPs that lack most functions
claimed to enhance bacterial persister formation (Table 1). This
is the case in particular for human-pathogenic Chlamydia species
that can nevertheless successfully form persistence.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
A common cellular process to which all of the discussed
persister-enhancing conditions appear to converge is the
initiation step of DNA replication. This critical step in the
bacterial cell cycle depends in bacteria, including all human
IBPs, on the initiator protein DnaA, more precisely on ATP-
DnaA, the initiation-active form (Sekimizu et al., 1988). For
recent reviews, see (Katayama et al., 2017; Dewachter et al., 2018;
Hansen and Atlung, 2018). Inhibition of ATP-DnaA formation
results in a reversible stop of DNA replication initiation and cell
division will subsequently stop. The resulting replication-
terminated DNA is in a closed circular conformation which is
less sensitive to damage (e.g., by oxidative stress induced by
bactericidal antibiotics) than DNA with stalled elongation which
always yields two open replication forks that are highly
susceptible to damage (Hanna and Carl, 1975; Zyskind et al.,
1977; Ikeda et al., 2012; Molina-Quiroz et al., 2018). In the
following, the most important aspects of the ATP-DnaA
dependent initiation step of DNA replication is shortly
summarized. For further details on this complex field, see
expert reviews (Leonard and Grimwade, 2010; Katayama et al.,
2017; Hansen and Atlung, 2018; Leonard et al., 2019).

Initiation of DNA replication needs a critical amount of ATP-
DnaA per oriC (the unique origin of chromosomal DNA) (Fuller
et al., 1984; Morigen et al., 2003; Skarstad and Katayama, 2013;
Hansen and Atlung, 2018). The initiation-active ATP-DnaA
complex is inactivated shortly after initiation of DNA
replication at oriC by hydrolysis of ATP to ADP resulting in
an initiation-inactive ADP-DnaA complex (Keyamura and
Katayama, 2011; Kasho and Katayama, 2013; Kasho et al.,
2017). This process prevents that more than one round of
DNA replication is initiated per cell cycle—at least at the low
replication rates which is the case for IBPs growing in host cells.
Re-initiation of DNA replication requires a precisely regulated
amount of DnaA protein and sufficient ATP to form again an
active ATP-DnaA complex at the newly formed oriC. The critical
level of DnaA protein in the bacterial cell is essentially obtained
by the rejuvenation of ADP-DnaA to DnaA and by de novo
synthesis of DnaA (Castuma et al., 1993; Fujimitsu et al., 2009;
Dewachter et al., 2018). Renewal of DnaA is achieved by several
(seemingly bacteria-specific) mechanisms. For details, see recent
reviews (Dewachter et al., 2018; Hansen and Atlung, 2018). The
amount of de novo synthesized DnaA appears to be regulated on
the transcriptional, translational and post-translational level.
Transcription of the dnaA gene proceeds from two promoters,
p1 and p2, which is auto-regulated, i.e., both promoters are
inhibited by ATP-DnaA (Braun et al., 1985). Earlier studies
claimed that high levels of the alarmone ppGpp also repress
dnaA transcription, especially from the major promoter p2
(Chiaramello and Zyskind, 1990). More recent data show that
ppGpp rather prevents replication initiation by blocking the
introduction of initiation-promoting negative supercoils
through inactivation of RNA polymerase by binding of ppGpp
and thus preventing gene transcription and negative supercoiling
of DNA (Kraemer et al., 2019). The dnaA transcript is rather
unstable and has a low translation frequency (Bernstein et al., 2002)
further limiting the synthesis of DnaA protein. AlthoughDnaA is a
January 2021 | Volume 10 | Article 615450
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rather stable protein, excess DnaA can be acetylated at a highly
conserved lysine (K178) by the acetyltransferase YfiQ (and non-
enzymatically by acetylphosphate) which prevents DnaA from
binding to ATP and hence to oriC (Li et al., 2017). In E. coli, the
level of DnaA acetylation correlates with the frequency of
replication initiation and reaches a peak at the stationary phase,
leading to inhibition of initiation. This regulatory step of DnaA is
reversible and deacetylation is catalyzed by the deacetylase CobB
(Zhang et al., 2016). In Caulobacter crescentus, it has been shown
that carbon starvation and nutritional depletion which take place,
e.g., in the stationary phase lead to Lon-dependent proteolysis of
DnaA and decreased translation of the dnaA transcript, thus
reducing the accumulation of DnaA protein below the critical
level necessary for initiation of replication (Leslie et al., 2015).
Athough ATP binds to DnaA with high affinity, a critical cellular
ATP/ADP ratio is required to charge the de novo synthesized and
rejuvenated DnaA protein to form initiation-active ATP-DnaA.
Finally, the membrane fluidity and especially its content of acidic
phospholipids also play an essential role in the formation of a
functional initiation complex between oriC and ATP-DnaA
together with some other proteins (Norris, 1990; Castuma et al.,
1993; Saxena et al., 2013; Katayama et al., 2017).

The central components involved in initiation of DNA
replication, i.e., DnaA, ATP and oriC, are common to bacteria
(Wolanski et al., 2014). The processes listed below (Stochastic
Occurrence to ATP Limitation) leading to reversible stop of DNA
replication initiation (due to the failure to form an active ATP-
DnaA/oriC complex) are similar to the above discussed cellular
events that favor bacterial persistence. It is therefore intriguing to
hypothesize that persistence is linked to or even causedby stallingof
DNAreplication initiationdue to insufficient cellular concentration
of DnaA and/or ATP, or the failure to form an active ATP-DnaA/
oriC complex. In the following, we point out that conditions known
to lead to persister formation also negatively affect the formation of
the ATP-DnaA complex and hence prohibit the initiation of DNA
replication (see also Figure 2).

Stochastic Occurrence
In normal (i.e., unsynchronized) logarithmically growing E. coli
cultures, DNA replication is in all possible stages. Most cells are in
an ongoing replication process and their DNA will contain two
replication forks due to the bidirectioal chromosomal replication
(we will call this population of actively DNA replicating cells: a-
cells). In a few cells, the replication is terminated but not yet re-
initiated (this cell population will be called t-cells). The ratio of a-
cells/t-cells depends on the growth rate and the growth phase, i.e., it
will be higher in nutrient-rich culture media than in nutrient-poor
ones and lower in the stationary than in the logarithmic growth
phase. We postulate that the persister subpopulation observed in
growing, unsynchronized bacterial populations always originates
from the t-cell subpopulation.

Presence of Antibiotics
DNA replication inhibitors, like the gyrase-inhibiting quinolone
antibiotics (e.g., nalidixic acid or ciprofloxacin), will quickly stop
replication of a-cells. The stalled replication forks of a-cells are highly
sensitive to damage and if not rapidly stabilized, these damages will
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
lead to cell death by different processes, including double-strand
breaks (Kuzminov, 1995; Kohanski et al., 2007;Masai et al., 2010; Liu
andImlay, 2013).The t-cellpopulation,on theotherhand,hasamore
stable, in most cases covalently closed circular DNA conformation
(NordströmandDasgupta, 2001) that can re-initiate replicationonce
the antibiotic stress is released (Dewar andWalter, 2017). Antibiotics
acting as inhibitors of translation or transcription (such as
aminoglycosides, chloramphenicol or rifampicin) do not directly
interfere with the DNA replication machinery, i.e., they do not
disrupt the elongation step. These antibiotics can inhibit, however,
initiation of DNA replication by blocking de novo synthesis of DnaA
(Lark, 1972; Skarstad andKatayama, 2013), which is (at least in part)
required for re-initiationofDNAreplication.Besides, thebactericidal
representativesamong thisgroupofantibiotics strongly interferewith
DNA replication by formation of ROS and other processes that are
lethal for the a-cell but less for the t-cell population (Yamaki et al.,
1986; Hiraga et al., 1990;Miller et al., 2004; Kohanski et al., 2007; Liu
and Imlay, 2013). Thismeans that these antibiotics, which, similar to
the gyrase-inhibiting antibiotics, cause enhancedpersister formation,
also lead to an increased t-cell subpopulation by inhibiting initiation
ofDNAreplication.On the other hand, antimicrobials causing cross-
linkingofDNA, e.g.,mitomycin,which lead todeath evenof persister
cells (Keren et al., 2012; Chowdhury et al., 2016b)will also be lethal to
t-cells, since re-initiation of cross-linked DNA can no longer occur.

TA Modules
Althoughmost toxin components ofTAmodules target translation,
someof them, e.g., ParE,CcdB,FicT, interferewithDNAreplication
by inhibiting the gyrase activity (Harms et al., 2018) and hencemay
exert similar inhibitory effects on DNA replication as the above
describedquinolone antibiotics.However, themajorityof the toxins
target translation in different ways (Harms et al., 2018). Thus,
similar to translation-inhibiting antibiotics, TA modules may also
exert inhibitory effects on de novo synthesis ofDnaA and, hence, on
initiation of DNA replication.

Increased Production of ppGpp
Amino acid starvation and other stress conditions lead to enhanced
synthesis of ppGpp which increases persister formation and is also
accompanied by inhibition of replication initiation due to different
mechanisms including inhibition of RNA polymerase by ppGpp
(Zyskind and Smith, 1992; Schreiber et al., 1995; Kraemer
et al., 2019).

ATP Limitation
The formation of initiation-active ATP-DnaA requires not only a
critical amount of DnaA protein but also a critical level of cellular
ATP (Dewachter et al., 2018). Besides, DNAdamage suffered by the
t-cell population (e.g., by ROS) has to be repaired before proper
reinitiation can occur. This repair process requires ATP and in the
absence of sufficient ATP even t-cells cannot be revived.

Persistence Formation of IBPs and Its
Possible Link to the DnaA-Dependent
Initiation of DNA Replication
The formation of IBP persisters can also be explained by the above
hypothesis. As outlined above, persister formation of all IBPs will be
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in general favored under intracellular (vacuolar) conditions which
may reduce the metabolic activities and energy production of the
IBPs (see Figure 1C) due to insufficient supply of essential nutrients
from the host cell (Monack et al., 2004; Helaine et al., 2010; Helaine
and Holden, 2013). It is likely that under these conditions the
probability is increased that in some cells of an intracellular IBP
population re-initiation of terminated DNA replication is prevented
due to insufficient amount of ATP and/or DnaA protein, similar to
cells in the stationary phase of in vitro growing bacterial cultures.
We postulate that these IBP cells will become antibiotic-
insensitive persisters.

Formation of persistence in IBPs on the basis of stalled
replication initiation is outlined in the following more extensively
on the example of C. trachomatis. This bacterium is an obligate IBP
that lacks most factors and pathways that were previously associated
with persister formation (Table 1). Yet, this pathogen is highly
successful in persister formation.

As described above, C. trachomatis RBs enter the persister state
when exposed to different conditions, such as treatment with IFN-g
or antibiotics including penicillin (Panzetta et al., 2018),
azithromycin (Xue et al., 2017), and erythromycin (Clark et al.,
1982), by amino acid starvation (Wyrick, 2010), or co-infection
with Herpes viruses (Deka et al., 2006; Prusty et al., 2012). The
persistent forms (ARBs) are viable, non-dividing andoften enlarged
cells that can revert to (RBs and) infectious EBs after removal of the
persistence-inducing conditions (Panzetta et al., 2018).

ARBs generated in presence of IFN-g carry out a generally
reduced metabolism, slow down DNA replication, stop cell
division, but continue to transcribe genes with different
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
efficiencies (Ouellette et al., 2016), and show even enhanced
synthesis of some proteins. The most striking ones among them
are the chaperonins GroEL (Hsp60) and GroES (Witkin et al.,
2017), and tryptophan synthase (TrpAB) (Belland et al., 2003). In
the infected HeLa cells, IFN-g reduces glycolysis, accompanied by
the reduction of glucose transporter-1 (GLUT1) and of the hypoxia
inducible factor-1a (HIF-1a) (Shima et al., 2018) leading to reduced
ATP level in the host cells.

But in particular—as described above—IFN-g induces
indoleamine 2,3-dioxygenase (IDO). IDO strongly decreases the
level of tryptophan in the host cell by degrading this amino acid to
kynurenine thereby stopping the supply of tryptophan for
intracellular Chlamydia which these bacteria are unable to
synthesize. The ARBs formed under these conditions can readily
be reactivated to normal infectious EBs when either IFN-g is
removed or tryptophan is added to the culture medium (Beatty
et al., 1995;Muramatsu et al., 2016), suggesting thatARB formation
is directly linked to the tryptophan deficiency.

Interestingly, proteins that continue to be synthesized or are
even induced in the ARBs contain little or no tryptophan (e.g.,
GroES, GroEL, and TrpAB). Most other proteins contain on the
average 1% tryptophan residues or more in their polypeptide
chains (Ouellette et al., 2016) and, hence, their de novo synthesis
will be reduced or even blocked. In this respect, the initiator
protein DnaA is of particular interest, since it has to be (at least in
part) de novo synthesized for initiating a new round of DNA
replication. DnaA1 contains four Trp residues, three of which are
within the first 50 amino acids of the 456 amino acid containing
protein. It is therefore possible that—due to the IFN-g induced
FIGURE 2 | Model showing the major processes necessary for the generation of the DNA initiation-active ATP-DnaA complex (green boxes and green arrows) and
the factors, conditions and pathways (red boxes and red arrows) leading to inhibition of ATP-DnaA complex formation. Note that the latter situations are also
identical to those leading to persister formation. OSR, oxidative stress response; GSR, general stress response; SSR, stringent stress response, leading to the
generation of ppGpp via RelA and SpoT or Rsh. See text, for further details.
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tryptophan deficiency—de novo synthesis of DnaA may
gradually cease, although the dnaA gene seems to be still
transcribed (Belland et al., 2003). Ongoing DNA replication
can be terminated, but not re-initiated due to the lack of
DnaA. However, as transcription continues and is even
increased for some Trp codon-rich genes (Ouellette et al.,
2006; Ouellette et al., 2016), synthesis of some proteins
containing no or little Trp is induced (see above) and
production of other cell components, especially cell envelope
components, can still occur and the ABRs will enlarge.

ATP is required for repair of possible DNA damage in the
stalled DNA of the ARBs and it has been shown that both
mitochondrial and chlamydial respiratory activities are necessary
for ARB formation and maintenance (Liang et al., 2018). Thus,
viability of the ARBs is probably maintained by self-produced
and host cell-imported ATP (Schmitz-Esser et al., 2004).

Amino acid starvation of Chlamydia-infected host cells also
leads to ARB formation. It has long been known that bacteria
starved for amino acids can complete the ongoing DNA
replication cycle, but cannot initiate a new one due to lack of
de novo DnaA synthesis (Maaloe and Hanawalt, 1961; Lark et al.,
1963; Abe and Tomizawa, 1967; Wolf et al., 1968).

An azithromycin-induced in vitro persistence model of C.
trachomatis has been described (Xue et al., 2017) with the
generation of ARBs that can revert after removal of
azithromycin to infectious EBs. This macrolide antibiotic, as
well as erythromycin which also leads to ARB formation (Clark
et al., 1982), inhibit protein biosynthesis and hence will again
block de novo synthesis of DnaA. Penicillin G, as well as other ß-
lactam antibiotics, also induces formation of enlarged ARBs
(Beatty et al., 1994; Skilton et al., 2009; Kintner et al., 2014).
The penicillin-treated chlamydial cells do not divide and
continue to enlarge without lysing. DNA replication continues
resulting in ARBs with multiple genome copies (Lambden et al.,
2006). Removal of penicillin leads to the regeneration of
infectious EBs, although the large ARBs do not revert to the
normal size RBs. Instead reversion to infectious EB particles
occurs by budding RBs from the ARBs which develop to EBs
(Skilton et al., 2009). Interestingly, the penicillin-induced ARBs
are also resistant to azithromycin (Kintner et al., 2014),
suggesting that the additional block of protein biosynthesis
exerted by this antibiotic does not further affect the penicillin-
induced ARB state. These observations are in accord with the
assumption that the penicillin-induced ARBs carry several DNA
replication-terminated genomes that are able to re-initiate once
the stress condition is removed. This does not occur in the large
ARB but rather in single RBs budding from the ARB. In these
RBs, re-initiation of DNA replication may take place followed by
the normal chlamydial development cycle.

C. trachomatis contains a homologue of the universal Obg/
CtgA protein (Table 1) whose function in the chlamydial
intracellular cycle is unknown. This essential GTPase has been
shown to trigger persistence in E. coli by inducing type I TA
modules (see above). A similar Obg-mediated persistence can be
excluded for C. trachomatis since it lacks TA modules. However,
Obg also plays a critical role in several basic cellular processes
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
(Michel, 2005; Kint et al., 2014) including DNA replication by
regulating the expression of dnaA in E. coli (Sikora et al., 2006).

CONCLUSIONS AND PERSPECTIVES

Persistence is aphenomenoncommon tomost bacteria that probably
evolved as a survival strategy against adverse environmental
conditions. The formation of persistent human-pathogenic bacteria
including IBPs, in particular M. tubercuslosis, Salmonella serovars,
and Chlamydia spp., is a very important medical problem linked to
chronic infections and to the development of antibiotic resistance.
For recent reviews, see (Defraine et al., 2018; Thakur et al., 2019;
Wilmaerts et al., 2019). A small subpopulation of persistent cells
seems to be already present even in actively growing bacterial
populations. These persisters appear to be generated spontaneously
by yet unknown process(es). The proportion of persistent members
in a bacterial population is increased in the stationary phase
suggesting that the persistence trigger is increasingly present in this
growth phase. Several stress conditions which the pathogens may
encounter during infections, including nutrient starvation
accompanied by reduced primary metabolism and energy
production, release of the toxin components of various TA
modules, stringent stress response with induction of the alarmone
(p)ppGpp, general and oxidative stress responses, and especially
treatment with various antibiotics, lead to a different but significant
increase of the proportion of persistent subpopulations. The
antibiotics not only select already existing (and apparently
antibiotic-insensitive) persisters in a bacterial cell population, but
directly enhance their formation. In fact, treatment with different
antibiotics is themost common trigger for the increased incidence of
persisters occurring during bacterial infections and also for the
generation of persisters in vitro. However, none of the above
mentioned conditions converts a bacterial population completely
into the persistent state, but rather kills the majority of the bacterial
population. This indicates that these various processes can stabilize
and/or support specifically adapted cells to become peristers, but are
not the direct cause of persister formation.

In this review, we cast a new hypothesis into the ongoing
debate on the actual mechanism of bacterial persister formation
which postulates that the persister state represents the cellular
situation in which the DNA replication is terminated, but
initiation of a new round of replication is prevented due to an
insufficient amount of active ATP-DnaA initiator and possibly by
an unaccessible OriC due to positive-supercoiled DNA. Re-
initiation of DNA replication requires a precisely regulated
amount of ATP-DnaA which depends in part on de novo
synthesis of DnaA protein and a sufficiently high cellular ATP/
ADP ratio. We provide circumstantial evidence that all
physiological conditions leading to increased persister formation
will also inhibit eitherDNAreplicationorprotein biosynthesis (and
hence de novo synthesis of DnaA), or decrease the ATP level thus
preventing the formation of the critical cellular concentration of
ATP-DnaAnecessary for initiation ofDNAreplication at the newly
formed origins of replication. The replication-terminated, but not
yet re-initiated chromosomal DNA is in a positive-supercoiled
closed circular conformation and hence less sensitive to DNA
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damage (especially by oxygen and nitrogen radicals) that occurs
under virtually all stress conditions that lead to enhanced
persister generation.

This mechanism of persister formation could be common to all
human bacterial pathogens, even to those intracellular pathogens
(e.g., Chlamydia and Rickettsia spp.) that lack most factors and
stress pathways claimed to cause enhanced persistence (mainly
identified in E. coli). But all bacteria studied so far, including these
latter bacterial pathogens, require the ATP-DnaA dependent DNA
replication initiation (Kaguni, 2006). As none of the bactericidal
antibiotics used to screen for persisters target the ATP-DnaA
complex and damage its function (Grimwade and Leonard,
2019), persister cells with terminated DNA replication but stalled
initiation are able to re-initiate replication and cell division once the
antibiotic is removed.

The correctness of this hypothesis can be experimentally
tested and appropriate work is underway to confirm or to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
falsify it. If it holds true, it opens interesting new opportunities
to combat bacterial persister formation.
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