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Apoptosis, pyroptosis and necroptosis are regulated processes of cell death which can
be crucial for viral disease outcomes in hosts because of their effects on viral pathogenicity
and host resistance. Zika virus (ZIKV) is a mosquito-borne flavivirus, which infects humans
and can cause neurological disorders. Neural developmental disorders and microcephaly
could occur in infected fetuses. Several types of nervous cells have been reported to be
susceptible to ZIKV infection. Human astrocytes play important roles in the nutritional
support and defense of neurons. In this study, we show that human astrocytes are
susceptible to ZIKV infection and undergo progressive cell death after infection. In infected
astrocytes we detected no cleavage or activation of pro-caspase-3 and pro-caspase-1.
Apoptotic substrates and increased secretion of interleukin (IL)-1b or IL-18 were not
detected, either. These ruled out the occurrence of apoptosis or pyroptosis in ZIKV-
infected astrocytes. We detected, however, an increase of phosphorylated receptor-
interacting serine/threonine-protein kinase (RIPK)1, RIPK3, and mixed lineage kinase
domain-like (MLKL) protein, indicating that programmed necrosis, or necroptosis, was
induced in infected astrocytes. The phosphorylation and cell death were inhibited in cells
pre-treated with GSK’872, an inhibitor of RIPK3, while inhibition of RIPK1 with an inhibitor,
Necrostatin-1, had no effect, suggesting that ZIKV-induced necroptosis was RIPK1-
independent in astrocytes. Consistent with this finding, the inhibition of RIPK1 had no
effect on the phosphorylation of MLKL. We showed evidence that MLKL phosphorylation
was RIPK3-dependent and ZBP-1, which could stimulate RIPK3, was upregulated in
ZIKV-infected astrocytes. Finally, we demonstrated that in GSK’872-pre-treated
astrocytes, viral replication increased significantly, which indicates that necroptosis may
be protective against viral replication in astrocytes. Our finding that astrocytes uniquely
underwent necroptosis in response to ZIKV infection provides insight and helps us better
understand the viral pathogenesis in the ZIKV-infected central nervous system.
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INTRODUCTION

Zika virus (ZIKV) is a mosquito-borne flavivirus in the
Flaviviridae family (Marchette et al., 1969; Sukupolvi-Petty et al.,
2013; Diallo et al., 2014), first isolated from a sentinel rhesus
macaque in Zika forest of Uganda in 1947 (Dick et al., 1952; Duffy
et al., 2009). ZIKV has spread intercontinentally in the past
decades and evolved in recent decades into African and Asian
lineages (Wang et al., 2017). ZIKV has a single-stranded and
positive-sense RNA genome encoding a long polyprotein, which is
post-translationally cleaved and processed into envelope protein
(E), capsid protein (C), and the precursor of membrane (prM) and
seven nonstructural proteins (NS1-NS5) in infected cells
(Fernandez-Garcia et al., 2009; Hamel et al., 2015; Shi and Gao,
2017). Infection with ZIKV was thought to be benign in humans,
and the virus existed in obscurity for sixty years after it was first
recognized in human patients in 1953 in Nigeria (Hayes, 2009;
Brasil et al., 2016). That changed in 2013-2014 when an outbreak
of ZIKV in French Polynesia was reported to have an association
with neurological disease. In early 2016 the WHO announced a
World Health Emergency due to massive ZIKV outbreak
characterized by severe fetal microcephaly cases in South
America (Bell et al., 2016; De Carvalho et al., 2016; Blish, 2017).

Cell death is one of host responses to viral infections. There are
several types of cell death, which include necrosis, apoptosis,
pyroptosis, and necroptosis (Chu and Ng, 2003; Kaczmarek et al.,
2013; Nogusa et al., 2016). Apoptosis is programmed cell death
dependent on a cascade of protease activation, is non-inflammatory
and can have characteristic morphological features including cell
shrinkage, nuclear condensation, and the plasma membrane
blebbing (Perng et al., 2000; Rossman and Lamb, 2009). Many
viruses can inhibit host apoptotic processes using various strategies
likely to circumvent restrictions of viral replication in certain types
of infections resulting from apoptosis. Pyroptosis is a process by
which a molecular complex called inflammasome is assembled
resulting in activation of pro-caspase-1 or pro-caspase-11 that
consequently causes the cleavage of pro-IL-1b and pro-IL- 18 as
well as gasdermin D (GSDMD). While mature IL-1b and IL-18 are
released extracellularly to initiate proinflammatory responses,
cleaved GSDMD aggregates to form oligomers, which are
translocated to the plasma membrane to form pores causing cell
death and the further release of proinflammatory factors that
exacerbate inflammation in the site of infection. Inflammasomes
are composed of pro-caspase-1, apoptosis-associated speck-like
protein containing a caspase recruitment domain (ASC) and
NOD2-like receptors (NLRs) (Man et al., 2017; Lee et al., 2018).
On the other hand, necroptosis is a highly inflammatory cell death
process, which is caspase-independent and initiated by necrosomes
composed of RIPK1, RIPK3, and MLKL. Necroptosis is the form of
programmed cell death orchestrated by RIPK1 and/or RIPK3
(Galluzzi et al., 2012; Weinlich et al., 2017) which activates
executioner MLKL in the necrosomes (Vandenabeele et al., 2010;
Kaczmarek et al., 2013). Upon stimulationMLKL is phosphorylated
by RIPK3, forming oligomers which are translocated to and disrupt
the plasma membrane causing cell swelling, rupture, and release of
intracellular damage-associated molecular patterns (DAMPs),
including IL-1a, HMGB-1, etc. Although the process was highly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
inflammatory, necroptosis can be a host defense against intracellular
infection (Cho et al., 2011; Kaiser et al., 2013). In vivo studies
showed that RIPK3-/- mice were more susceptible to HSV-1
infection and had elevated virus loads (Huang et al., 2015).

Numerous studies have indicated that ZIKV can inhibit
neurogenesis and induce apoptosis and autophagy in human
fetal neural stem cells. ZIKV infection leads to complicated
pathogenesis in which not only neurons but also glial cells are
implicated. In this study we show that human astrocytes are
susceptible to ZIKV and ZIKV infection led to necroptotic cell
death after apoptosis and pyroptosis were ruled out. In response to
ZIKV infection astrocytes released proinflammatory cytokines,
such as IL-6, IL-8, and interferon-b (IFN-b). Our data showed that
the induced necroptosis could be protective since ZIKV replication
was inhibited in the infected cells pre-treated with an inhibitor to
suppress the activation of RIPK3. Our finding in this study
demonstrated that ZIKV infected glial cells in the central
nervous system led to necroptotic cell death and restriction of
viral replication. Necroptosis therefore could play an important
role in viral pathogenesis of neural disorders caused by ZIKV.
MATERIALS AND METHODS

Cells and Virus
The human astrocyte cell line (U251), African green monkey
kidney epithelial cells (Vero) and human intestinal epithelial
cells (HT-29) were purchased from the Cell Bank of the Chinese
Academy of Sciences (Shanghai, China). BHK21 cells and ZIKV
(SZ01) were obtained from Dr Shibo Jiang, Fudan University,
Shanghai. The cells were cultured in Dulbecco Modified Eagles
Medium (DMEM) with high glucose (Gibco), supplemented
with 10% heat-inactivated Fetal bovine serum (FBS, Gibco) at
37°C in a humidified atmosphere with 5% CO2.

Antibodies and Reagents
Rabbit anti–pro-caspase-3 (9555S), rabbit-anti-cleaved caspase3
(9664S), rabbit anti-pro-PARP (9532S), rabbit-anti-cleaved
PARP (9541S), and rabbit-anti-phospho-RIP1(44590S)
antibodies were purchased from Cell Signaling Technology
(Beverly, MA). Rabbit anti-pro-caspase-1 (ab179515), rabbit
anti-phospho-MLKL (ab187091) and rabbit anti-phospho
RIPK3 (209384) antibodies were purchased from Abcam
(Cambridge, MA). Rabbit anti-RIPK1antibody (A7414) was
purchased from ABclonal (Wuhan, Hubei, China). Rabbit anti-
RIPK3 (17563-I-AP), Mouse anti-MLKL (66675-I-Ig) t
antibodies were purchased from Proteintech (Wuhan). Rabbit
anti-Zika protein E antibody (B1845) was purchased from
Biodragon-Immunotech (Beijing, China). Mouse anti-b-actin
(BA2305) and GAPDH (A00227) antibody was purchased
from BOSTER (Wuhan). Annexin V-FITC Apoptosis
Detection Kit was purchased from KeyGEN Bio Tech
(Nanjing, Jiangsu, China). ELISA kits for human IL-6, IL-8, IL-
1b, IL-18, IFN-b and tumor necrosis factors were purchased
from Multi Sciences (Hangzhou, Zhejiang, China). Human
HMGB-1 ELISA Kit was purchased from Abclonal.
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Virus Infection and Titration
ZIKV strain SZ01 stock was propagated in Vero cells after
inoculating the culture at a multiplicity of infection (MOI) of
0.01 and harvested at 120 h p.i. The virus stock was titrated by
plaque forming assay on BHK21 cells. For the plaque forming
assay, serially diluted virus from 10-2 to 10-6 in DMEM was
inoculated to BHK21 cells cultured in 12-well plates for 2 hrs.
After the removal of the viral inoculum, a mixed overlay of 500 µl
DMEM with 4% FBS and 500µl low-melt agarose (2%) dissolved
by PBS was added into each well. The cultures were incubated for
5 days in an incubator with 5% CO2 at 37°C before plaques were
counted and infectious viral titers calculated for the virus stock.

Cell Viability and Flow Cytometry
Cell viability was analyzed by 3-(4,5)-dimethylthiahiazo (-z-y1)-2,5-
di- phenytetrazoliumromide (MTT) assay. Briefly, U251 cells were
infected with ZIKV at a specific M.O.I. and the culture was incubated
for variable times (from 12 to 72 h) before addition of MTT in the
culture at 0.5 mg/ml. The culture was incubated for another 4 h
before the cultural medium was taken for ODmeasurement. Survival
rates of cells were expressed as the ratio of OD570 of the infected cell
culture to OD570 of the uninfected or control cell culture. The assay
was performed in triplicates for each sample.

Cell death was quantified in infected and control cells, which
underwent necrosis or apoptosis using flow cytometric analysis.
Infected or uninfected cells were collected at various time points.
After washes twice with PBS, the cells were co-stained with
annexin V and propidium iodide (PI) for 15 min on ice. After
thorough washes, the cells were subjected to flow cytometry
using a BD FACS flow cytometer. According to the
manufacturer’s protocol, the annexin V+ population represents
early phase apoptosis, and the PI+ population represents
necrosis, while the double positive population represents late
phase apoptosis or necrosis (Yuan et al., 2019).

Western Blot Analysis
Proteins were analyzed with western blot analysis. For analyzing
mitochondrial proteins, cells were lysed with pre-cooled RIPA
lysis buffer for 15 min. After high-speed centrifugation (12,000 g,
5 min), the supernatant was harvested. Protein concentration in
the clarified cell lysates was quantified by measurement with a
bicinchoninic acid (BCA) protein assay kit (Pierce). The cell
lysates were electrophoresed by SDS-PAGE before proteins were
transferred to an Immunoblot PVDF membrane (Millipore)
for incubation with respective primary antibodies. After
overnight incubation, the membrane was washed with TBST
before incubation with an HRP-conjugated secondary antibody
for signal development. Images were captured using a
FluoroChem FC2 Imaging System (TANON). The grayscale
values of the protein bands in the immunoblots were measured
with TANON and relative levels were normalized to the densities
of GAPDH or b-actin in the same blot.

ELISA
Cell culture media were harvested at different time points from
infected or uninfected U251 cells for centrifugation at 1000 g for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
15 min. The clarified medium was subjected to quantitative
measurements of IL-6, IL-8, IL-18, IL-1b, IFN-b and TNF-a in
96-well plates using antibody sandwich ELISA kits following the
manufacturer’s instructions. After the medium was incubated for
3 h followed by six 15–30 sec soakings in wash solution, a
biotinylated antibody specific for a cytokine at a dilution as
instructed was added to each well. The plates were further
incubated for 45 min followed by six washes. HRP-conjugated
streptavidin was added to each well for 45 min prior to
colorimetric development. The reaction was stopped by
addition of an acidic stop solution (0.2 M sulfuric acid) and
absorbance values at 405 nm were read using a SpectraMax
340PC microplate reader (Molecular Devices). Serial dilutions of
the standard controls were prepared and used to plot a standard
curve of absorbance utilizing linear regression analysis.

Quantitative Real Time PCR
Total RNA was extracted from each sample with Trizol reagent
(Invitrogen) and quantified before the RNA was used for reverse
transcription (RT) with a PrimeScript RT reagent kit (TaKaRa)
following the manufacturer’s protocol. Real-time PCR was
performed with 1 µl cDNA in 10 µl with SYBR Green master
mix (Vazyme) according to the manufacturer’s instructions.
Sequences of the primers used for PCR were listed in a
supplemental document (Table S1). Relative gene expression
levels were normalized to a GAPDH control.

Immunofluorescence
Infected and control cells were fixed with paraformaldehyde
(4%) diluted in PBS for 20 min at room temperature. After
washes by PBS, the cells were permeabilized with 0.1% Triton X-
100 diluted in PBS for 10 min, followed by washes with PBS, and
then blocked with 5% BSA at room temperature for 2 h.
Antibodies specific for ZIKV proteins were added at 1:100
dilution for incubation at 4°C overnight. After washes with
PBST four times, the cells were further incubated with Alexa
Fluor 488-conjugated goat anti-mouse or goat anti-rabbit
antibody at a 1:200 dilution for 1 h at 37°C. The cells were
washed prior to staining the nuclei with DAPI (1:1000) for
10 min. After three washes the cells were covered with one
droplet of anti-fade reagent (Sigma-Aldrich) and observed under
an Olympus confocal laser scanning microscope.

Statistical Analysis
Unpaired Student’s t-test was used to evaluate the data. The data
shown are the mean ± SEM of three independent experiments.
P ≤ 0.05 was considered statistically significant.
RESULTS

Human Astrocytes Were Susceptible to
ZIKV Infection
To investigate the susceptibility of human astrocytes to ZIKV, we
infected human astrocytic glioma cell line U251 with ZIKV strain
SZ01. The cells were inoculated at various doses (MOI of 0.01,
March 2021 | Volume 11 | Article 637710
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0.1 and 1). Morphology of the infected cells was observed and
immunofluorescence staining (IFA) and quantitative real-time
PCR were performed to detect viral antigen and quantify viral
RNA in infected cells. As shown in Figure 1A, the morphology of
the U251 cells, infected with SZ01 at an MOI of 1, became
abnormal showing shrinkage with blurred boundaries. The cells
eventually underwent lysis at later times post infection (p.i.)
(Figure 1A). Viral envelope (E) protein could be detected at 24
and 48 h p.i. in the cytoplasm of infected cells by IFA (Figure
1B). Viral RNA for the E protein of ZIKV was measured by a
real-time RT-PCR, which showed that viral RNA copy numbers
of the E gene increased at 12 h and reached their peaks at 48 h p.i.
(Figure 1C). Viral protein E could also be detected from the cell
lysates prepared from the infected cells at various time points
and the level reached its peak at 48 h p.i. as well (Figure 1D). To
analyze replication of ZIKV in the astrocytes, culture medium of
the SZ01-infetected cells was collected and titrated by a plaque-
forming unit (PFU) assay for infectious viral titers. As shown in
Figure 1E, ZIKA replicated robustly in the astrocytes with the
infectious virus detected and the viral titers reached their peaks
from 24 to 48 h p.i. with the initial MOI of 1 for inoculation.
Collectively, the data demonstrated that human astrocyte U251
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
cells were susceptible to ZIKV, which replicated leading to
cytopathic effects (CPE) in this type of glial cells.

Cell Death Was Induced in Astrocytes in
Response to ZIKV Infection
We quantified the cell death induced in U251 cells infected with
ZIKV. The cells were infected with SZ01 ZIKV and harvested at
48 and 72 h p.i. for co-staining with annexin-V and propidium
iodide (PI), and subsequently subjected to flow cytometry. As
shown in Figure 2A, in comparison to those in non-infected
cells, annexin V-FITC-positive and PI-positive cells increased
significantly in infected cells at both 48 and 72 h p.i., which was
quantified in Figure 2B. In general, cell viability deteriorated
over time after inoculation at various doses. We infected the cells
at three doses of MOI ranging from 0.1 to 1.0, the cells were
harvested at 12, 24, 48, and 72 h p.i. for staining with a dye, 3-
(4,5-dimethylthiazol-2-yl)-2,5- diphenylterazolium bromide
(MTT), to assess cell viability. As shown in Figure 2C, there
were significantly more cell death in ZIKV-infected cells
compared to the non-infected cells throughout the time of
infection and higher doses of the virus for infection caused
more cell death.
A

B

D

E

C

FIGURE 1 | Susceptibility of human astrocytes to ZIKV and its pathologic effects on infected cells. (A) U251 cells were infected with ZIKV SZ01 at MOI of 1 and
cytopathic effects (CPE) were observed at 24, 48, and 72 h p.i. (Magnification x40). (B) ZIKV E protein was expressed and detected by immunofluorescence assay
with a specific antibody for E protein using confocal microscopy. (C) Replication of ZIKV genome in the infected cells. ZIKV E gene copies were quantified at various
time points p.i. by real-time RT-PCR with specific primers for the viral E gene. Data were representative of three experiments and each experiment was performed in
triplicate. Unpaired Student’s T-test was used to analyze the differences of data and error bars represent standard errors of the means. (D) Expressed viral E protein
was detected in the infected cells by western blot with specific antibody (1:1000) for the E protein. (E) Viral titers in U251 cells infected with ZIKV at various MOI.
Culture supernatants from the infected cells was collected at indicated time point p.i. and the virus titrated in BHK21 cells by a standard plaque assay (*p < 0.05;
***p < 0.001).
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Apoptosis Was Not Induced in
ZIKV-Infected Astrocytes
We carried out additional studies to characterize the cell death
induced in infected astrocytes. Cells were infected with ZIKV and
cell lysates were prepared at various time points p.i. for western
blot analysis. As shown in Figure 3A, cleaved caspase-3, the
executioner caspase, was not detected in ZIKV-infected cells.
Nor had we detected any cleaved form of PARP, a substrate of
the executioner caspases in infected cells. As a control, HeLa cells
were treated with apoptosis activator 2 (Apoa2; 10 µM) (Nguyen
et al., 2010) for 4 hrs. Cell lysates were prepared and examined
which showed presence of cleaved caspase-3 and cleaved PARP
in response to Apoa2 (Figure 3A).

We also infected the cells, which were pre-treated with Z-
VAD-FMK, a pan-caspase inhibitor, and the cells were harvested
for flow cytometry after staining with MTT. In the cells pre-
treated with Z-VAD-FMK, cell death increased at various time
points p.i. but no significant differences were observed between
the cell death in inhibitor treated and non-treated cultures
(Figure 3B), suggesting that the cell death was caspase-
independent and apoptosis was not activated or induced in
ZIKV-infected astrocytes.

ZIKV Infection Did Not Activate
Inflammasome
We next tried to examine whether inflammasome was activated or
pyroptosis was responsible for the cell death that occurred in the
ZIKV-infected human astrocytes. Cells were infected with the virus
and cell lysates were prepared at different time p.i. for western
blot analysis. We found that pro-caspase-1 was not cleaved since
active caspase-1 could not be detected (Figure 4A). As a control,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
THP-1 cells were treated with lipopolysaccharide (LPS, 1 µg/ml)
for 6 h and the cell lysates were prepared and examined
which showed the significantly increased cleaved caspase-1
(Figure 4A).

The astrocytes were also pre-treated with VX765, a caspase-1
inhibitor, prior to infection and the cell viability after infection
was assessed with MTT staining. Likewise, the pre-treatment
with VX765 had no impact on the increased death in ZIKV-
infected cells (Figure 4B). Gene transcription or mRNA fold
change of pro-IL-1b and pro-IL-18 did not increase as detected
in total RNA from the infected cells in comparison with that
from the non-infected cells by real-time PCR (Figures 4C, D).

In addition, the levels of secreted IL-1b and IL-18 in the
culture media remained at the basal level which did not change
through the course of infection (Figures 4E, F). Collectively,
these results indicated that the cell death in ZIKV-infected U251
was not caused by activation of inflammasome and ZIKV
infection did not induce pyroptosis in human astrocytes.

ZIKV Infection Induced Necroptosis in
Human Astrocytes
We finally examined the role of RIPKs in the cell death induced
by ZIKV infection in human astrocytes. The cells were infected
with ZIKV and lysed at different time points p.i. for western blot
analyses with specific antibodies for RIPKs. As shown in Figure
5A, increased levels of phosphorylated RIPK1, RIPK3, and
MLKL were detected between 12 and 48 h p.i. in ZIKV-
infected astrocytes. Efficacies of the antibodies used in this
study were confirmed in a human intestinal carcinoma cell line
induced for necroptosis shown in the right panels, while the same
stimuli did not induce cell death in U251 cells (data not shown).
A B

C

FIGURE 2 | Cell death and reduced viability observed in human astrocytes infected with ZIKV. (A) U251 cells with or without ZIKV infection (MOI of 1) co-stained
with Annexin V and PI at 48 and 72 h p.i. for flowcytometric analyses. (B) Quantitative analyses of cell death at various time points p.i. in U251 cells infected with
ZIKV. ***p < 0.001. (C) Cell viability of U251 cells infected with ZIKV at various MOI was assessed with an MTT assay. Triplicate cultures were analyzed at the
indicated time points (*p < 0.05; **p < 0.01; ***p < 0.001).
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The differences in levels of the RIPK1, RIPK3, and MLKL
phosphorylation, between the cells infected or uninfected with
ZIKV, were statistically significant as quantitatively presented in
Figures 5B–D, respectively. However, the gene transcription of
RIPK1, RIPK3, and MLKL appeared not to be affected as shown
in Figures 5E–G.

To confirm that necroptosis was induced, we next pre-treated
the U251 cells with necrostatin-1, an inhibitor of RIPK1,
followed by ZIKV infection. We monitored cell morphology
and measured cell viability change at various time points p.i. As
shown in Figure 6A, apparent cytopathic effects was shown in
the pre-treated cells starting at 24 through 72 h p.i. compared to
the infected cells without necrostatin-1 treatment, indicating that
inhibition of RIPK1 was not sufficient to suppress the necroptosis
induced in the infected astrocytes.

The fact that the cell death was not affected in the cells with
only inhibited RIPK1 was confirmed quantitatively by cell
viability assay with MTT staining performed on the U251 cells,
pre-treated with or without necrostatin-1 (Figure 6C). There
were no significant differences in loss of cell viability between the
cells treated with or without necrostatin-1, the inhibitor
of RIPK1.

We further pre-treated the cells with GSK’872, an inhibitor of
RIPK3, followed by ZIKV infection, and observed the
morphological integrity change of the cells p.i. As shown in
Figure 6B, the ZIKA-infected cells pre-treated with GSK’872
remained unchanged in morphology in comparison to the
uninfected cells p.i. In contrast, the infected cells without
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
GSK’872 treatment underwent necrotic deterioration and the
monolayer started to deteriorate after infection, indicating that
the ZIKV-induced necroptosis was suppressed effectively when
RIPK3 was inhibited in the cells (Figure 6B, bottom). The rescue
of the cell death by the inhibition of RIPK3 by GSK’872
treatment was also confirmed quantitatively with a cell viability
assay using MTT staining. Significant loss of cell viability was
exhibited in the infected cells without RIPK3 inhibition while the
GSK’872-pre-treated cells survived the ZIKV infection (Figure
6D). Inhibition of the RIPK3 phosphorylation by the GSK’872
was shown in the infected cells pre-treated with the compound in
the western blot analysis (Figure 6E). Combined with the data
shown earlier, ZIKV induced cell death was likely necroptotic,
which could be RIPK1-independent. In another word, ZIKV
induced necroptosis in human astrocytes could be mainly
RIPK3-dependent.

ZIKV Induced DAMPs and
Proinflammatory Cytokines in U251 Cells
To understand the mechanism how necroptosis was induced, we
examined the induction of some proinflammatory cytokines and
DAMP, which might be upregulated and/or released from ZIKA-
infected astrocytes and subsequently have triggered astrocytotic
necroptosis. The astrocytes were infected with ZIKV and total
RNA were prepared from the infected cells at different points p.i.
for real time RT-PCR. We aimed to measure copy numbers of
selected DAMP and cytokine gene transcripts, including IL-6, IL-
8, TNF-a, HMGB1, and IFN-b. As shown in Figures 7A–C, E,
A

B

FIGURE 3 | ZIKV did not induce apoptosis in human astrocytes. (A) U251 cells were infected with ZIKV (MOI of 1) and cell lysates prepared and subjected to
western blot analyses with specific antibodies (1:1000) as indicated. HeLa cells were treated with or without Apoptosis activator2 (Apoa2, 10mM) and the lysates
analyzed as a positive control for apoptosis. (B) Cell viability analyses in pre-treated U251 cells infected with ZIKV(MOI of 1). The cells were pre-treated with or
without Z-VAD-FMK, a pan inhibitor of caspases, prior to ZIKV infection and analyzed for viability at various times p.i. with the MTT assay. The experiments were
repeated at least three times (*p < 0.05; ***p < 0.001; ns, no significance).
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the levels of IL-6, IL-8, HMGB-1, and IFN-b RNA transcripts
increased in a time-dependent manner after infection. Secreted
IL-6, IL-8, HMGB-1, and IFN-b were also detected in the culture
media of the infected cells collected at the various time points p.i.
(Figures 7F–H, J). The gene transcript copies and secretion of
TNF-a, however, remained unchanged at the basal level in the
infected cells (Figures 7D, I). These data suggested that the
increased proinflammatory cytokines, IL-6 and IL-8, as well as
HMGB-1 could be critical to ZIKV-induced pathogenicity,
contributed by astrocytes in the central nervous system.

As an inflammatory cytokine, TNF-a could induce signaling
which leads to phosphorylation and activation of RIPK3.
However, it was not significantly upregulated in ZIKV-infected
astrocytes (Figures 7E, F). TNF-a probably was not the cause for
initiating necroptosis in ZIKV-infected human astrocytes or may
not induce necroptosis in human astrocytes since we did have
observed that U251 remained healthy while treated with TNF-a
along with inhibitors of pro-caspases (BV-6 and Z-VAD-FMK)
(data not shown).

Upregulation of Innate Sensor Expressions
in Human Astrocytes Infected With ZIKV
RIPK3 can be activated in multiple mechanisms. Considering
that RIPK3 can be phosphorylated and activated independent of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
RIPK1 and TNF-a in ZIKV-infected astrocytes, we examined
whether innate sensors are associated with RIPK3 activation and
necroptotic induction in human astrocytes. We analyzed the cell
lysates prepared from ZIKV-infected U251 cells at various times
points for detection of innate sensors responsible for signaling to
viral infection. As shown in Figures 8A, the expression of MAVS
and RIG-I were upregulated, together with induced expression of
MDA5, which could lead to induction of type I IFN and
cytokines as shown in Figure 7. IFN-inducible Z-DNA binding
protein 1 (ZBP-1) was found to be upregulated as well (Figure
8B). The induction of MAVS, RIG-I, TLR-3 and ZBP-1 was
quantitatively analyzed and significant increases of MAVS, RIG-I
and ZBP-1 expressions were confirmed in ZIKV-infected
astrocytes while TLR-3 remained unchanged as shown in
Figures 8C–F.

ZIKV-Induced Necroptosis Protected
Against Viral Replication in Human
Astrocytes
We examined the effect of ZIKV-induced necroptosis on viral
replication in human astrocytes. The U251 cells were pre-treated
with either necrostatin-1 or GSK’872, followed by ZIKV
infection. We analyzed the lysates collected from cells pre-
treated with either necrostain-1 or GSK’872 and found that the
A B
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C

FIGURE 4 | ZIKV did not activate pyroptosis in human astrocytes. (A) U251 cells were infected with 1 MOI of ZIKV and cell lysates were prepared at various time
points p.i. and subjected to western blot analyses with specific antibodies (1:1000) as indicated. Monocytic THP-1 cells, were treated with or without
lipopolysaccharide (LPS, 1mg/ml), and the lysates analyzed as a positive control for pyroptosis. (B) Cell viability was analyzed in pre-treated U251 cells infected with 1
MOI of ZIKV. The cells were pre-treated with or without VX765, an inhibitor of pro-caspase-1, prior to ZIKV infection and analyzed for viability at various times p.i.
with the MTT assay. The experiments were repeated at least three times (ns p>0.05; *p < 0.05; ***p < 0.001). (C, D) No transcriptional changes occurred to pro-IL-
1b and pro-IL-18 in infected cells. Total RNA was prepared from the U251 cells infected with ZIKV to measure mRNA transcript copies using quantitative real time
PCR with specific primers for genes of IL-1b (C) and IL-18 (D), respectively. (E, F) No change in secreted IL-1b and IL-18 levels in the cell cultures after ZIKV
infection. Culture media was collected at various time points p.i. for measurement of IL-1b and IL-18 by ELISA. Each data point represents the mean values from
triplicate cultures performed at least three times (ns p > 0.05).
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ZIKV E protein expression was much higher in GSK’872-treated
cells than in those treated with necrostatin-1 or those that were
untreated (Figures 9A). The differences were quantitatively
analyzed and exhibited in Figure 9B. Inhibition of viral
replication was also confirmed in GSK’872-treated cells by
measuring viral E gene copy numbers by real-time RT-PCR
with total RNA prepared after the infection. As shown in Figure
9C, E gene copies increased significantly in GSK’872-treated cells
compare to the untreated and necrostatin-1 treated cultures.

Finally, culture media was harvested at various time points
p.i. and infectious viral titers were determined. As shown in
Figure 9D, infectious viral titers were detected after 24 h p.i. and
no differences in titers were detected between untreated cells and
those pre-treated with necrostatin-1, the inhibitor of RIPK1,
suggesting that a functional RIPK1 has no impact on viral
replication. In contrast, viral titers were significantly higher in
GSK’872-treated cells compared to untreated cells, further
demonstrating that RIPK3-denpendent necroptosis induced by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
ZIKV infection can be protective against viral replication in
human astrocytes.
DISCUSSION

ZIKV is a neurotropic flavivirus that can cause severe
neurological disorders including microcephaly and cortical
thinning during early development when the brain is infected
by the virus passed to the fetus through the blood-placenta
barrier (BPB). The brain can also be infected by the virus at
later stages, including during early neonatal development. How
various types of neural cells differ in their susceptibility to the
virus and roles in contributing to neurological pathology remains
a question. Recent studies have shown in a mouse model that
astrocytes, distributed isolated throughout the brain, were the
first cells targeted by the virus when the mouse was inoculated
peripherally at birth (van den Pol et al., 2017). Release of ZIKV
A
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FIGURE 5 | Necroptosis was induced by ZIKV-infected human astrocytes. (A) Increased phosphorylation of necroptosis-associated proteins was detected in ZIKV-
infected cells. Cell lysates were prepared at various time points p.i. and subjected to SDS-PAGE and western blot analyses with specific antibodies (1:1000) for the
proteins, either non-phosphorylated or phosphorylated, as indicated. The efficacies of the antibodies were confirmed with the lysates prepared from HT-29 cells treated
with or without TNF-a (20 ng/ml), BV-6 (100 nM) and Z-VAD-FMK (20 µM) for induction of necroptosis. (B–D) Quantitative analyses of the gray scale values of the
phosphorylated RIPK1 (B), RIPK3 (C), and MLKL (D) between ZIKV infected and non-infected cells at various time points p.i. (E–G). Relative level of each protein was
normalized to GAPDH at indicated time points. No changes of RIPK1, RIPK3 and MLKL at the transcriptional level in U251 cells after infection with ZIKV. Total RNA
was prepared from infected cells at several time points p.i. for measuring mRNA transcript copy numbers by real time PCR with specific primers for RIPK1 (E), RIPK3
(F), and MLKL (G), respectively. The experiments were repeated three times and the data are shown as means ± SEM (*p < 0.05; **p < 0.01; ns p > 0.05).
March 2021 | Volume 11 | Article 637710

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Wen et al. ZIKV Induces Necroptosis in Astrocytes
viruses from infected astrocytes would affect neurons and
astrocytes could play a potentially significant role in initiating
the brain infection and be critical in the development of ZIKV
neural disorders.

Glial cells, of which astrocytes are one type, make up a large
proportion of the nervous system. Once infected by viruses, glial
cells can react by participating in immune responses in the brain.
When infected by micro-organisms, astrocytes can produce many
cytokines and proinflammatory DAMPs could be released which
subsequently regulate innate and specific immunity in the brain.
However, what exact roles astrocytes can play in ZIKV-infected
brain remain largely uncharacterized. In this study we report that
human astrocytes were susceptible to ZIKV and that infection led to
cell death. While we were interested in the cytokines and DAMPs
induced in ZIKV-infected astrocytes, which would contribute to the
induction of innate or acquired immunity, we also examined the
mechanism of death for ZIKV-infected astrocytes. We present
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
evidence that the glial cells did not die of either apoptosis or
pyroptosis. Instead ZIKV induced a necroptotic process in
infected astrocytes, which could be suppressed by an inhibitor of
RIPK3 to inhibit the formation of necrosome.

To respond to viral infection, host innate responses are
activated which include induction of innate immunity with
interferons and antiviral ISGs to defend against viral infection.
As a part of innate responses, programed cell death can be
triggered and may benefit the host or aggravate disease in the
host. Apoptosis was induced in neurons when the brain was
infected with ZIKV (Ho et al., 2017). In a fetal mouse model
infected with ZIKV, the cell cycle was blocked in infected
progenitor cells leading to differential deficiency and apoptosis
of neurons (Li et al., 2016). Apoptosis has been reported in
neural progenitor cells infected with ZIKV (Souza et al., 2016). In
neonatal C57BL/6 mice infected with ZIKV, cleaved caspase-3
was detected in the brain (Huang et al., 2016). Glial cells may
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FIGURE 6 | Effect of inhibiting the phosphorylation of RIPK1 or RIPK3 on necroptosis in ZIKV-infected human astrocytes. (A, B) U251 cells were pre-treated without
(top) or with (bottom) necrostatin-1, an inhibitor of RIPK1 (A) or GSK’872, an inhibitor of RIPK3 (B), prior to infection with ZIKV. Cell death was observed at 24, 48,
and 72 h p.i. by light microscopy (magnification x 200). (C, D) Quantitative analyses of cell viabilities at 24, 48, and 72 h p.i. in U251 cells, untreated or pre-treated
with necrostatin-1 (C) or GSK’872 (D), prior to infection with ZIKV. The experiments were repeated three times and the values presented are means ± SEM (*p <
0.05; **p < 0.01; ns p > 0.05). (E) Inhibition of the RIPK3 phosphorylation. U251 cells were untreated or pre-treated with the inhibitor, followed by ZIKV infection. Cell
lysates were prepared for SDS-PAGE and western blot analysis with indicated antibodies.
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have fates different from neurons when infected with ZIKV. In
the presence of extensive cell death after infection with ZIKV, we
were unable to detect the activation of pro-caspase-8 and cleaved
caspase-3, and neither did we detect substrates processed by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
active caspases indicating that apoptosis was not initiated in
ZIKV-infected astrocytes.

Previous studies have shown that the secretion of
proinflammatory cytokines such as IL-1b was induced through
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FIGURE 7 | Upregulation and increased release of proinflammatory cytokines and DAMP from human astrocytes infected with ZIKV. (A–E) U251 cells were infected
with ZIKV at an MOI of 1 and total RNA was prepared at various time points p.i. for measurement of mRNA transcript levels of selected cytokines and DAMP by real
time RT-PCR with specific primers for IL-6 (A), IL-8 (B), HMGB-1 (C), TNF-a (D), and IFN-b (E). (F–I, J) U251 cells were infected with ZIKV at an MOI of -1 and the
culture media was collected at various time points p.i. for measurement of secreted protein levels of selected cytokines and DAMP by ELISA. IL-6 (F), IL-8 (G),
HMGB-1 (H), TNF-a (I), and IFN-b (J) were tested with respective reagents. Values represent means ± SEM obtained from triplicate cultures and each test was
repeated for at least three times (*p < 0.05; **p < 0.01; ***p < 0.001; ns p > 0.05).
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activation of the NLRP3 inflammasome, which was responsible for
inflammatory responses (Wang et al., 2018). Presence of NLRP1,
NLRP3, and AIM2 together with elevated IL-1b, IL-18, and IL-33
could be detected in the brain of ZIKV-infected patients with
microcephaly (de Sousa et al., 2018a; de Sousa et al., 2018b).
However, pyroptosis may not occur in astrocytes as shown in our
study that no activation of pro-caspase-1 occurred and neither did
secretion of IL-1b and IL-18 in ZIKV-infected astrocytes.

Necroptosis was identified in various tissues infected with
viruses. MLKL was upregulated and phosphorylated in neurons of
the mice infected with Japanese Encephalitis Virus (JEV) (Bian
et al., 2017). Interaction of viral ICP6 and RIPK1 and RIPK3 led to
induction of necroptosis in Herpes Simplex Virus-I (HSV-1)-
infectedmurine fibroblasts, which suppressed viral replication
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
(Huang et al., 2015). In our study increased phosphorylation of
RIPK1, RIPK3, and MKLK in ZIKV-infected astrocytes was
detected early in the infection but only RIPK3 and MLKL
phosphorylation remained throughout the infection and cell
death. Using an inhibitor of RIPK1 to pre-treat cells, necroptosis
was not affected after viral infection indicating that the ZIKV-
induced necroptosis was not RIPK1 dependent and neither RIPK3
nor necrosome was probably not activated by RIPK1 in astrocytes.
The canonical necroptosis pathway could be bypassed by
intracellular bacteria. In macrophages infected with
Mycobacterium tuberculosis (Mtb) activation of RIPK1 was not
required for necroptosis (Pajuelo et al., 2018). Activation of RIPK3
and MLKL, stimulated by the Mtb necrotizing toxin, would suffice
for causing necroptosis in Mtb-infected macrophages.
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FIGURE 8 | Upregulation of cellular sensors of viral nucleic acids in ZIKV-infected human astrocytes. U251 cells were infected with 1 MOI of ZIKV and cell lysates were
prepared for SDS-PAGE analyses with specific antibodies (1:1000) as indicated for MAVS, RIG-1 (A), or TLR3, TRIF, and ZBP-1 (B). Grayscale values were analyzed for
quantitative comparison of the protein expressions of MAVS (C), RIG-1 (D), TLR3 (E), and ZBP-1 (F) in ZIKV-infected cells. Relative grayscale of each protein was
normalized to b-actin at indicated time point. The experiments were repeated at least three times and the values presented were means ± SEM (*p < 0.05; ns p > 0.05).
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Necroptosis can be triggered in the course of various viral
infections. Viruses from many families are capable of inducing
necroptosis, including cytomegalovirus (Upton et al., 2019), HSV-1
(Huang et al., 2015), vaccinia virus (Cho et al., 2009), and influenza
A virus (Nogusa et al., 2016). RIPK3 plays a key role in activation of
necrosome and necroptosis. Necroptosis may play a key role in
pathogenesis in addition to its impact on viral replication in viral
diseases. Knockout mice deficient of RIPK3 were highly susceptible
to infection with HSV-1 (Cho et al., 2009) and poxvirus (Wang
et al., 2014). In mice infected with MCMV, virus-encoded proteins
inhibited RIPK3 and necroptosis, which promoted viral persistent
infection (Upton et al., 2019).

Multiple mechanisms have been proposed for activating
RIPK3-dependent necroptosis. In addition to the RIPK1, adaptor
protein TRIF, which was essential for the induction of IFN in
response to stimulation by TLR3 or TLR4, was capable of RIPK3
activation (Green, 2019). The interferon-inducible protein Z-DNA
binding protein 1 (ZBP1) is an innate nucleotide sensor in the
cytosol which could be sensed by influenza A virus to trigger the
NLRP3 inflammasome and pyroptosis in murine macrophages
(Kuriakose et al., 2016). ZBP1 can also activate RIPK3 in neurons
infected with ZIKV (Daniels et al., 2019). However, instead of
inducing a necroptosis in infected neurons, RIPK3 was activated by
ZBP1 to further trans-activate upregulation of immunoresponsive
gene 1 (IRG1), an metabolic enzyme, which exhibited antiviral
ZIKV activity and inhibited ZIKV replication through production
of itaconate by catalyzing cis-aconitate in mitochondria in neurons.
In our study we observed upregulation of ZBP1 in ZIKV-infected
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
astrocytes, which may help activate RIPK3. Interestingly
necroptosis was induced upon RIPK3 and this cell death
appeared to be RIPK3-dependent because it could be suppressed
by an inhibitor of RIPK3, indicating that astrocytes may differ from
neurons in RIPK3 signaling after cellular sensing of ZIKV
infection. We have not examined the regulation of IRG1
transcription and itaconate production in the cytoplasm upon
RIPK3 activation. However, it could not be ruled out that in
astrocytes ZIKV-induced activation of RIPK3 might activate
upregulation of IRG1 as well, which could independently
contribute to the suppression of ZIKV replication. Our data
suggest that RIPK3-dependent necroptosis was inhibitory to
ZIKV replication, indicating that this cell death could be
beneficiary to the host even though infected astrocytes died of
the necroptotic signaling during the infection. Thus activation of
RIPK3 can suppress ZIKV infection through various mechanisms
depending on cell types in the brain that are infected.

Is necroptosis a stochastic choice for astrocytes infected with
ZIKV? In influenza A virus-infected mouse embryonic
fibroblasts or airway epithelial cells, RIPK3 was activated by
ZBP1, which subsequently initiated parallel signaling of both
necroptosis and apoptosis (Kuriakose et al., 2016). Both
apoptosis and necroptosis proved to be stand-alone cell death
mechanisms that restricted viral replication and contributed to
host defense (Shubina et al., 2020; Zhang et al., 2020). The
activation of RIPK3, which could be triggered by ZBP1, did not
drive these parallel pathways in ZIKV-infected astrocytes as
shown in our study in that no apoptotic signaling was
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FIGURE 9 | Necroptosis restricted viral replication in human astrocytes infected with ZIKV. U251 cells were untreated (left) or pre-treated with (right) necrostatin-1 or
GSK’872 prior to infection with ZIKV. (A) Cell lysates were prepared from the infected cells at 12, 24, 48, and 72 h p.i. for SDS-PAGE and western blot analyses with
anti-ZIKV E protein for levels of the viral protein E. (B) Quantitative analyses of the viral E protein levels in ZIKV-infected U251 cells pre-treated without or with necrostatin-
1 or GSK’872. The E protein grayscale was normalized by b-actin at indicated time point. (C) Total RNA were prepared from the infected cells at 12, 24, 48, and 72 h p.i.
for real time RT-PCR with primers specific for the viral E gene to measure the E RNA copy numbers in ZIKV-infected cells pre-treated with or without inhibitors.
(D) Culture media was collected at various time points p.i. from ZIKV-infected cells, untreated or pre-treated with the inhibitors, for titration in Vero cells to determine
infectious viral titers. The experiments were repeated for at least three times and the values presented were means ± SEM (*p < 0.05; **p < 0.01; ns p > 0.05).
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detected. We may wonder why apoptosis was not a chosen path
for cell death in astrocytes because viral spread could be
restricted without an inflammatory response in the brain.
Instead necroptosis is inflammatory resulting in the necrotic
release of cytokines and DAMPs. A logic explanation would be
that the apoptotic apparatus was shut down either due to a
mechanistic deficiency or blockage by viral protein(s), so that
only necroptosis was possible. Even though ZIKV can infect
various cell types including neural progenitors and neurons in
the brain, astrocytes may be the initial target of ZIKV throughout
the brain. Elimination of the virus at the earliest stage would be
of utmost importance in controlling the infection and preventing
viral spread to other neural cell types with more benefits over
risks. Elucidation of viral infection and mechanism of cell death
in astrocytes shed lights on our further understanding of viral
pathogenesis of ZIKV infection.
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