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Soil-transmitted helminths (STH) affect hundreds of millions worldwide and are some of
the most important neglected tropical diseases in terms of morbidity. Due to the difficulty
in studying STH human infections, rodent models have become increasingly used, mainly
because of their similarities in life cycle. Ascaris suum and Trichuris muris have been
proven appropriate and low maintenance models for the study of ascariasis and
trichuriasis. In the case of hookworms, despite most of the murine models do not fully
reproduce the life cycle of Necator americanus, their proteomic similarity makes them
highly suitable for the development of novel vaccine candidates and for the study of
hookworm biological features. Furthermore, these models have been helpful in elucidating
some basic aspects of our immune system, and are currently being used by numerous
researchers to develop novel molecules with immunomodulatory proteins. Herein we
review the similarities in the proteomic composition between Nippostrongylus brasiliensis,
Heligmosomoides polygyrus bakeri and Trichuris muris and their respective human
counterpart with a focus on the vaccine candidates and immunomodulatory proteins
being currently studied.

Keywords: proteomics, soil-transmitted helminths (STHs), host-parasite interactions, Nippostrongylus brasiliensis,
Heligmosomoides polygyrus, Trichuris muris, vaccines, immunomodulation
INTRODUCTION

Infection by soil-transmitted helminths (STHs), some of the most common neglected tropical
parasites in the world, affects mainly low and middle-income countries (Brooker, 2010). Indeed, it is
considered that, globally, nearly 2 billion people are infected with STHs (Brooker, 2010; World
Health Organization, 2012), and hookworm infection alone results in >4 million disability-adjusted
life years lost annually (DALYs), as well as in significant economic losses (Bartsch et al., 2016).
Ascaris lumbricoides, Trichuris trichiura, and hookworm (mainly Necator americanus and
Ancylostoma duodenale) are the most common species that infect humans (Jourdan et al., 2018).
Although competent health care and wide use of available anthelmintic drugs are currently the main
approaches for the elimination of most helminth infections, their efficacy varies and chemotherapy
does not prevent reinfection (Loukas et al., 2016); thus, it becomes necessary to continue our efforts
to improve our understanding of these parasitic diseases. Due to the limited availability and
difficulty in obtaining parasite material, researchers have widely used different animal models that
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share similarities in the life cycle, immune response elicited or
both with their human counterpart (Scott and Tanguay, 1994;
Camberis et al., 2003). In this regard, rodent models are, by far,
the most popular and frequently used animal models and have
been helpful in characterizing many aspects of human
helminth infection.

N. americanus, one of the most important STHs in terms of
morbidity, can survive for decades in the small intestine of their
human hosts (Loukas et al., 2016). While N. americanus is
notably common in most of Africa, southern China, Southeast
Asia and the Americas, A. duodenale is endemic in northern
regions of India and China, in the Mediterranean region and in
North Africa. Furthermore, in some parts of Africa, China and
India, it is not unusual to observe mixed human infections with
N. americanus and A. duodenale (Pullan et al., 2014). The life
cycle of this group of nematodes is very complex, and involves
free-living and parasitic stages as well as an intraorganic
migration in the definitive host. Hookworm eggs hatch in soil
and released rhabditiform larvae moult twice before becoming
filariform and infective (iL3). iL3s penetrate the skin of the host
and are carried through the bloodstream first to the heart and
then to lungs. Following exit from the alveolar capillaries, iL3s
ascend the bronchial tree to reach the pharynx and are
swallowed. Finally, hookworms complete their migration to the
small bowel, typically the distal jejunum, where immature L5
hookworms attach themselves in position to feed and avoid
ejection by gut peristalsis (Loukas et al., 2016).

Interestingly, a hamster model susceptible to N. americanus
is available; however, although adult worms can fully
develop without the requirement of corticosteroids, this
model was developed after decades of passaging through
immunosuppressed hamsters (Jian et al., 2003; Xiao et al., 2008),
and the extent of adaptation and genomic and proteomic
differences with worms obtained from the human host is yet to
be determined. Indeed, worms obtained from hamsters are smaller
in size, less fertile and infections do not last longer than a few
months (Jian et al., 2003; Xiao et al., 2008), although they do elicit
a protective immunity similar to that observed in the related
canine hookworm species Ancylostoma caninum. This model has
also proved useful for the screening of vaccine candidates and the
assessment of antihelminthic drugs (Xue et al., 2005; Xiao et al.,
2008; Xue et al., 2010; Zhan et al., 2010), however, the
impossibility to use hamsters in some countries (e.g. Australia)
and the low availability of molecular biology reagents for hamsters
can make it challenging to work with.

Because of this, different animal models have been used to
study hookworm-host interactions, including the related
ancylostomatids A. caninum in dogs (Shepherd et al., 2018)
and A. ceylanicum in hamsters (Alkazmi and Behnke, 2010;
Traub, 2013), as well as the murine nematodes Nippostrongylus
brasiliensis and Heligmosomoides polygyrus bakeri (both
belonging to the Trichostrongyloidea superfamily), all part of
the clade V of nematodes. This clade contains members of the
suborder Rhabditina with nematodes from the Strongylida and
other orders (Blaxter et al., 1998). A. ceylanicum infection is a
zoonotic disease, and can produce symptomatic infections in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
humans (Loukas et al., 2016). It can also infect hamsters, where it
develops patent infections (Alkazmi and Behnke, 2010), and can
elicit acquired immunity, making it a suitable model for the
study of hookworm infections (Loukas et al., 2016) with the same
limitations listed above.

N. brasiliensis, a rodent strongyle nematode widely used by
parasitologists, has a similar life cycle to N. americanus,
including skin penetration, migration through the lungs and
establishment in the small intestine of its host, although it is
rapidly eliminated and does not recapitulate the long-lasting
infections found with N. americanus (Camberis et al., 2003).
Furthermore, N. brasiliensis induces a Th2 type immune
response that manifests all the characteristics of a human
hookworm infection, including IgE production and
eosinophilia, which drive pathology in some allergic diseases
(Nair and Herbert, 2016), as well as mastocytosis and mucus
production (Camberis et al., 2003). Researchers have taken
advantage of the similar life cycle and immunological
responses between N. brasiliensis and N. americanus to
conduct immunological studies (both systemic and mucosal)
aimed at studying the mechanisms involved in human
hookworm infections (Nair and Herbert, 2016).

Despite H. polygyrus bakeri does not infect through the skin
or migrate through the lungs (as it depends on oral ingestion of
infective larvae), it has been extensively employed as a model for
human hookworm infections. Indeed, similarly to hookworms,
H. polygyrus bakeri induces chronic intestinal infections in
several mice strains, and the modified Th2 cell responses
induced by infection (a Th2-like response linked with the
production of anti-inflammatory cytokines and Treg activity)
does not completely eliminate the parasites (Wells and Behnke,
1988; Maizels, 2005; Bungiro et al., 2008; Reynolds et al., 2012;
Nair and Herbert, 2016). Furthermore, the study of H. polygyrus
bakeri and N. brasiliensis infection in rodents has provided the
immunology community with important information about the
humoral and cellular mechanisms involved in the induction and
development of Th2 immune responses and their capacity in
protecting against helminth infections (Ogilvie and Jones, 1971;
Ishizaka et al., 1976; Urban et al., 1991; Camberis et al., 2003).

In addition to hookworms, infection with whipworms
(mainly T. trichiura) largely contributes to the pathological
burden caused by STHs. More than 70 species of Trichuris
(including worms of veterinary, scientific and human interest)
have been described so far (Hurst and Else, 2013). All these
species were classified within clade I, which groups vertebrate-
parasites from the order Trichocephalida together with insect
and plant-parasitic nematodes (Blaxter et al., 1998). Due to the
difficulty in obtaining live worms from infected people and the
impossibility of maintaining T. trichiura in the laboratory,
Trichuris muris has become a widely used laboratory model
being physiologically, morphologically, and antigenically similar
to the human whipworm species (Grencis, 1993; Dixon et al.,
2008). Indeed, the T. muris model has allowed researchers to
understand relevant features concerning immunity to gut-
dwelling nematode parasites as well as to gain a better
knowledge of the immune system (Hurst and Else, 2013).
April 2021 | Volume 11 | Article 639573
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Furthermore, the knowledge attained from this animal model
has been applied to better understand human Trichuriasis
(Faulkner et al., 2002) and other intestinal helminth infections
(Turner et al., 2003).

Ascariasis, mainly caused by A. lumbricoides, affects over 800
million people worldwide (Pullan et al., 2014). Similarly to what
occurs with other STHs, it is highly challenging to obtain adult
worms, and model organisms have been developed (Holland,
2013). The related species A. suum is a natural parasite of pigs;
however this animal model has not been widely used because of
its cost, large size and difficult husbandry (Holland, 2013). This
species was found to be able to infect mice and to follow a similar
infection behaviour as the one observed in its natural hosts
(Slotved et al., 1998), and further research identified mouse
strains with different compatibility (e.g. the susceptible C57BL/
6 and the resistant CBA/Ca strains), providing a convenient
model to investigate the basis of Ascaris biology and for the
development of vaccine candidates (Lewis et al., 2007; Deslyper
et al., 2019).

Despite the significant advantages of murine models in terms
of reproductive capacity, handling, and costs, there are other
models used for the study of helminth infections such as the pig
whipworm Trichuris suis, which pathophysiology is very similar
to that occurring in human infections (Dawson et al., 2020) or, as
mentioned above, the dog hookworm A. caninum (Shepherd
et al., 2018). Nevertheless, due to ethical considerations, complex
logistics and cost, pig and dog models are less used in
parasitological research and will not be the scope of this review.

The need to develop novel and effective treatments against
STH is indisputable, and rodent models can provide important
information. Understanding, not only the immunological,
physiological, anatomical and metabolic similarities that each
model has, but also the proteomic and genomic similarities
between all species is key for the design of appropriate control
approaches. In this review, we compare the available proteomic
data between STH of human importance and their murine model
counterparts with a focus on the characterization of vaccine
candidates and immunomodulatory molecules. This analysis
provides the first step towards a rational selection of the most
appropriate model for the analysis of a particular protein
candidate; however, ideally, a combined approach integrating
different transcriptomic, proteomic, lipidomic and metabolomic
information will provide a more comprehensive picture of the
suitability of a particular model.
GENOMIC AND PROTEOMIC
INFORMATION FROM ANIMAL MODELS

During the last decades, one of the major caveats in the study of
host-hookworms interactions has been the lack of comprehensive
and thoroughly annotated genomic and proteomic databases.
However, in the recent years, the development of novel
sequencing platforms and more sensitive mass spectrometers, as
well as different initiatives (i.e., 50 helminth genomes project;
https://www.sanger.ac.uk/science/collaboration/50hgp) have
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
provided useful information (Sotillo et al., 2017). In the case of
N. americanus, the first draft genome was published in 2014 (Tang
et al., 2014), and a more comprehensive genome version annotated
using proteomic and transcriptomic data has recently been
published (Logan et al., 2020). Similarly, the genomes and
transcriptomes for the whipworms T. trichiura and T. muris
were published in 2014 (Foth et al., 2014). In the case of A.
lumbricoides, the Parasite Genomics group at the Wellcome Trust
Sanger Institute performed genome predictions as part of the 50
helminth genomes project (International Helminth Genomes
Consortium, 2019).

A similarity analysis between the predicted proteome from N.
americanus and other nematodes from the Ancylostomatidae
family as well as hookworm models and other nematodes (all
data downloaded from ParasiteWormBase v.14.0) shows that A.
caninum, A. duodenale and A. ceylanicum proteins are, in
general, more similar to N. americanus proteome (Figure 1).
This analysis also showed that despite N. brasiliensis and H.
polygyrus bakeri do not belong to the Ancylostomatidae family
and are, thus, less related to hookworm, they share a high degree
of similarity (>65%) in their proteome with N. americanus
(Figure 1), compared to other nematodes. Despite the
limitations of analysing the proteins only at the amino acid
level, it is well accepted that proteins sharing over 40% (60% in
the case of enzymes) sequence identity might share similar
functions (Rost, 1999; Tian and Skolnick, 2003).

This is in agreement to what has been found recently, where
N. americanus and hookworm animal models contained a
similar number of predicted proteins encoded by their
genomes, and proteins actively secreted by their adult stages
presented a similar protein family profile (Logan et al., 2020).
Indeed, from the 198 proteins secreted by N. americanus adult
worms, 173 (>87%) contained homologs in the secretomes from
H. polygyrus bakeri, N. brasiliensis and A. caninum (Logan et al.,
2020). One of the most represented families in the secretomes of
these adult worm species is the sperm-coating protein (SCP)-like
extracellular proteins, also called SCP/Tpx-1/Ag5/PR-1/Sc7
(SCP/TAPS; Pfam accession number no. PF00188). A total of 51
out of the 54 SCP/TAPS proteins found in the secretome of
N. americanus had homologs inH. polygyrus bakeri,N. brasiliensis
and A. caninum, which highlights the usefulness of using these
murine models to study this particular family of proteins. Despite
a phylogenetic analysis showedN. americanus SCP/TAPS proteins
cluster more with A. caninum proteins than with N. brasiliensis or
H. polygyrus bakeri, there are strong clade-specific similarities
(Logan et al., 2020), and the high degree of diversity in the
evolution of SCP/TAPS was speculated to be related to host-
specific roles for this family of proteins (Logan et al., 2020).

Proteases (aspartyl-, cystein-, metallo- and serine-proteases)
are also highly abundant in the secretome of N. americanus adult
worms (Logan et al., 2020), as well as the murine models
(Hewitson et al., 2011; Sotillo et al., 2014). A homology
analysis showed that proteases secreted by N. americanus had,
in general, a higher degree of homology to those from the
H. polygyrus bakeri and N. brasiliensis rather than A. caninum
(Logan et al., 2020), which would make these models highly
April 2021 | Volume 11 | Article 639573
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suitable for the development of vaccine studies as discussed in
the next section.

Foth et al. sequenced and assembled the genome from both T.
trichiura and T. muris, and found that most Trichuris genes are
orthologs shared by both species (Foth et al., 2014). Furthermore,
predicted proteomes are highly similar, with over 5,000 proteins
having an average homology of 79% and only 2,350 and 3,817
proteins specific from T. trichiura and T. muris respectively,
which highlights the usefulness of the mouse model to study
human whipworm infections (Foth et al., 2014). An analysis of
the similarity between the T. trichiura predicted proteome and
other trichurids (i.e. T. suis and T. muris) as well as unrelated
nematodes (all data downloaded from ParasiteWormBase v.14.0)
confirms that proteins from both the pig and mouse models are
highly similar to the human whipworm, and could be useful for
the study of whipworm infections (Figure 2).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Only two studies have attempted to characterize the proteins
secreted by T. muris, identifying 148 (Eichenberger et al., 2018b)
and 73 (Tritten et al., 2017) proteins, while in the case of T. suis
328 proteins were identified (Leroux et al., 2018). The lower
number of identified proteins in the mouse model in comparison
with T. suis could be a reflection of the more stringent database
search settings used. For instance, while Tritten et al. and
Eichenberger et al. included databases from the parasite and
FIGURE 1 | Percentage identity of Necator americanus predicted proteome
with the predicted proteins from different nematode species. The predicted
proteome from different species of hookworm, hookworm mouse models and
unrelated nematodes were compared against the predicted proteome from
N. americanus and plotted in a heatmap. All predicted proteomes were
downloaded from Parasite WormBase (v.14.0) and protein identity was
calculated using Blast. Colour represents the number of proteins within a
range of identity percentage.
FIGURE 2 | Percentage identity of Trichuris trichiura predicted proteome with
the predicted proteins from different nematode species. The predicted
proteome from different species of trichurids and unrelated nematodes were
compared against the predicted proteome from T. trichiura and plotted in a
heatmap. All predicted proteomes were downloaded from Parasite
WormBase (v.14.0) and protein identity was calculated using Blast. Colour
represents the number of proteins within a range of identity percentage.
April 2021 | Volume 11 | Article 639573
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the host (to eliminate host-associated proteins) and only proteins
identified with two or more peptides were used for further
analysis, Leroux et al. only used a parasite database (no
contaminants were included in the search) and proteins
identified with only one peptide were considered as valid
identifications (Tritten et al., 2017; Eichenberger et al., 2018b;
Leroux et al., 2018). It is noteworthy the low number of SCP/
TAPS proteins identified in the T. muris secretome compared to
parasites from clade V, which agrees with previous observations
where this family of proteins is significantly expanded in clades
IVa and V but not in clade I (Wilbers et al., 2018; International
Helminth Genomes Consortium, 2019). To elucidate the degree
of similarity between animal models and human whipworm
infections, a comparative analysis of the secretomes from all
three parasites would be of high interest, although the difficulty
in obtaining viable worms from the human host makes this type
of analysis currently very challenging.
DEVELOPMENT OF VACCINE
CANDIDATES IN MURINE MODELS

Since resistance to different antihelminthic drugs is being widely
reported in human and animal nematodes, there is an urgent
need for vaccines that could complement the current approach to
helminth control. In this regard, the different rodent models used
to study STHs could be of importance. Indeed, both hookworm
hamster models (N. americanus and A. ceylanicum) have been
used for the screening of vaccine candidates (Ghosh et al., 2006;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Bungiro et al., 2008; Zhan et al., 2010), and A. ceylanicum has
been proven a good model for selection of vaccine candidates
using bioinformatic and functional approaches (Wei et al., 2016),
providing important information for the development of
these candidates.

Currently there are no licensed vaccines against human STH,
and The Human Hookworm Vaccine initiative is, at present, the
only vaccine for hookworm infection in clinical development.
This vaccine contains two recombinant antigens, Na-GST-1 and
Na-APR-1, both key enzymes involved in the capacity of
hookworms to use host blood as source of nutrients (Hotez
et al., 2013). Furthermore, challenge studies conducted in
laboratory animals have shown the capacity of Na-GST-1 and
Na-APR-1 to induce protective efficacy (Hotez et al., 2010; Hotez
et al., 2013). Interestingly, both proteins have homologues in
other hookworm and hookworm-like parasites, with the highest
homology found with A. ceylanicum, A. caninum and A.
duodenale (Figures 3 and 4) as expected due to closeness of
species. Homology found with mice models such as H. polygyrus
bakeri and N. brasiliensis was also high, particularly for Na-
APR-1, with >83% aminoacid identity in homologues from both
parasites (Figure 4). Interestingly, the percentage of identity
found with Trichuris spp. was ~60% while it was ~80% for
Ascaris spp., suggesting a key role of this enzyme in ascarids,
most likely due to these parasites potentially being blood-feeders
(Toh et al., 2010). This could be of interest when ranking
and selecting potential candidates against Ascaris infection,
and a modified Na-APR-1 could be incorporated into a
pan-anthelminthic vaccine as discussed by other authors
FIGURE 3 | Similarity plot. Circos plot generated using Circoletto (Darzentas, 2010) showing the percentage of identity between Na-GST-1 and their homologues in
different rodent model nematodes. Only homologues with e-values < 1E-50 are shown. Protein names as per Parasite WormBase database (v.15) have been used
for comparison. ALUE, Ascaris lumbricoides; AgR, Ascaris suum; ANCCAN, Ancylostoma caninum; Acey, Ancylostoma ceylanicum; ANCDUO, Ancylostoma
duodenale; HPOL, Heligmosomoides polygyrus; NBR, Nippostrongylus brasiliensis; TMUE, Trichuris muris; TTRE, Trichuris trichiura.
April 2021 | Volume 11 | Article 639573
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FIGURE 4 | Similarity plot. Circos plot generated using Circoletto (Darzentas, 2010) showing the percentage of identity between Na-APR-1 and their homologues in
different rodent model nematodes. Only homologues with e-values < 1E-50 are shown. Protein names as per Parasite WormBase database (v.15) have been used
for comparison. ALUE, Ascaris lumbricoides; AgR, Ascaris suum; ANCCAN, Ancylostoma caninum; Acey, Ancylostoma ceylanicum; ANCDUO, Ancylostoma
duodenale; HPOL, Heligmosomoides polygyrus; NBR, Nippostrongylus brasiliensis; TMUE, Trichuris muris; TTRE, Trichuris trichiura.
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(Zhan et al., 2014). In the case of Na-GST-1, >65% aminoacid
identity was found in different homologues from both mice
models (Figure 3), while similarity with Ascaris spp. was
~50%, which hampers its use as a vaccine candidate in other
nematodes as discussed below for Trichuris.

The high similarity found between both vaccine candidates and
their N. brasiliensis homologues has highlighted the conservation
in the blood-feeding pathways with N. americanus (Bouchery
et al., 2018). Indeed, vaccination with both hookworm vaccine
candidates induced protection against N. brasiliensis in mice,
which made authors suggest that N. brasiliensis is a suitable
model for vaccine identification and drug screening against
hookworms (Bouchery et al., 2018). On the other hand, the fact
that H. polygyrus bakeri has homologues to these two proteins is
intriguingly, since this parasite is believed to feed on epithelial cells
and not on blood (Bansemir and Sukhdeo, 1994), and more
experiments should be done to ascertain the role of Na-APR-1
and Na-GST-1 homologues in this hookworm-like model. Indeed,
vaccination with GST in a mouse model did not confer protection
against H. polygyrus bakeri, despite eliciting a significant humoral
response (Brophy et al., 1994). Thus, it is tempting to speculate
that GST might be a potential vaccine candidate only in blood-
feeding nematodes, whereas in non-hematophagous nematodes,
where this protein is suggested to play a role only as a defence
mechanism against toxic substances (Smith, 1992), other
candidates must be tested. As mentioned earlier, >60% sequence
identity between two proteins usually results in similar functions;
however, performing functionality studies and integrating
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
different omic technologies is essential to obtain a more holistic
picture of the biological problem.

It is also worth highlighting that different studies using
experimental infection with helminths show that GST influences
the immune responses and cross-reactive allergy (Mitchell, 1989;
Smith, 1992; Brophy et al., 1995; Santiago et al., 2012).
Furthermore, helminth and cockroach GST cross-react because
of their noteworthy molecular and structural similarities, which
has led several authors to suggest that vaccine development should
take into account the potential impact of cross-reactivity with
common allergens (Santiago et al., 2012). In this regard, it is also
necessary to consider the ability of vaccines to induce strong Th2
responses, remembering the case described by Diemert et al.
(Diemert et al., 2012) where generalized urticarial reactions were
developed in several volunteers after vaccination with a single dose
of Na-ASP-2. These allergic reactions were linked to pre-existing
Na-ASP-2-specific IgE probably induced by previous infection
with N. americanus (Diemert et al., 2012; Diemert et al., 2018).

Different studies have used the N. brasiliensis rodent model to
(i) discover new vaccine candidates that could be extrapolated to
human hookworm infections and (ii) develop novel
administration routes of known vaccine candidates to improve
their immunogenicity and reduce undesirable effects. Indeed,
since N. brasiliensis has a highly conserved orthologue of Na-
APR-1 (Bartlett et al., 2020), Bartlet et al. designed a lipopeptide-
based vaccine using a B cell epitope derived from Na-APR-1,
attached to a T helper epitope and administered it orally. In this
study, several lipidated peptides were obtained and tested for
April 2021 | Volume 11 | Article 639573
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vaccine efficacy using the N. brasiliensis hookworm model
(Bartlett et al., 2020).

In previous studies, other researchers assessed the use of
N. brasiliensis as a suitable model for testing vaccine
candidates for hookworm infections. Using recombinant
acetylcholinesterase B (AChE “B”), the most abundant enzyme
isoform secreted by N. brasiliensis adult worms (Edwards et al.,
1971; Clare Blackburn and Selkirk, 1992), these authors reported
a level of protection in AChE-vaccinated animals and concluded
that AChE “B” could be considered as a suitable vaccine antigen,
with intranasal delivery being the most effective (Ball et al., 2007).
Furthermore, the activity of the recombinant enzyme and
subtypes of AChE in the somatic extract of N. brasiliensis
could be inhibited by serum antibody (Ball et al., 2007);
however, despite the promising results, no further studies
pursued the development of a vaccine us ing this
recombinant protein.

Cystatins, a group of proteins with immunomodulatory
properties secreted by helminths, are implicated in several
biological and pathological processes such as antigen
processing, protein catabolism, and inflammation (Hartmann
et al., 1997). Furthermore, cystatins have been identified in
numerous parasite species including N. brasiliensis, where mice
immunized with recombinant nippocystatin became partially
resistant to infection, suggesting that N. brasiliensis might
evade the host defense system using this protease inhibitor
(Dainichi et al., 2001), although no other studies have tried to
develop this molecule into a vaccine candidate in N. brasiliensis
or other hookworms.

Coakley et al. showed that extracellular vesicles (EVs) from
H. polygyrus bakeri are internalized by macrophages and can
suppress host macrophage activation and inhibit expression of
the IL-33 receptor subunit ST2. Further, vaccination with EVs
elicited a protective immunity against H. polygyrus bakeri
challenge in mice, suggesting EVs might play an important
role in vivo (Coakley et al., 2017). The similarity of the EV
proteomes between H. polygyrus bakeri and N. americanus is yet
to be determined since EVs from the human hookworm have not
been characterized yet.

T. muris is a well-established model for host immunity.
Chronic infections using this model are obtained by a high-
dose infection in the susceptible mouse strain AKR or by a low-
dose infection in C57BL/6 mice. Furthermore, this model is
widely used for assessing the efficacy and immunogenicity of
vaccine antigen candidates against whipworm infections (Boes
and Helwigh, 2000; Hurst and Else, 2013). Indeed, vaccination
with T. muris ES products has been shown to elicit protective
immunity in murine models (Jenkins andWakelin, 1977; Jenkins
and Wakelin, 1983; Dixon et al., 2008; Dixon et al., 2010; Liu
et al., 2017). Furthermore, a recent study showed that
immunisation with T. muris ES proteins stimulates long-lasting
protection against a subsequent low dose infection, which
naturally results in chronic infections (Shears et al., 2018). In
this study, 11 potential immunogenic proteins were identified,
including serpin, TCTP, GSCP and iPMG, all of which have
direct homologues in T. trichiura (Shears et al., 2018) and could
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
potentially be developed against the human whipworm. Despite
these results constitute a great advance in the quest for a vaccine
against T. trichiura, translation of these molecules into an
effective treatment against the human whipworm will be
challenging and further studies are needed.

Furthermore, several authors reported the identification of a
whey acidic protein in the ES products from T. muris, Tm-WAP
(rTm-WAP49) (Briggs et al., 2018). In this study, the Tm-WAP
protein was used to evaluate immunogenicity and protective
efficacy in a T. muris infection mice model and determined that
recombinant WAP protein (rTm-WAP49) induces strong
type 2 protective immunity (48% worm burden reduction).
These authors also confirmed Tm-WAP is a potent
immunodominant antigen abundantly secreted by T. muris
adult worms and that recombinant Tm-WAP does not elicit
antigen-specific IgE response. Furthermore, in this study the
immunogenicity of the protein expressed with a Na-GST-1-tag
(rTm-WAP-F8+Na-GST-1) was shown to be protective (38%
protection) in the susceptible AKR strain, although protection
was related to the WAP fragment and not to the GST tag (Briggs
et al., 2018), which could reflect the unessential requirement of
blood in the parasite’s feeding process and impact a potential
pan-nematode vaccine using this enzyme as discussed above.

In the case of Ascaris, A. suum has been widely used to assess
the protection efficacy of different recombinant proteins in a
mouse model of infection, and at least 5 candidates have been
characterized to date (i.e. As14,As16, As24, As37 and As-Enol-1),
all of them having direct homologs in A. lumbricoides (reviewed in
(Zhan et al., 2014). While As-Enol-1 was developed as a DNA
vaccine, having 61% efficacy in terms of larval recovery (Chen
et al., 2012), As14,As16, As24 and As37 were tested in
recombinant form and elicited a significant protection against
subsequent infection ranging from 58-69% (Tsuji et al., 2001; Tsuji
et al., 2002; Tsuji et al., 2003; Islam et al., 2005). Despite As-GST-1
has been proposed as a potential candidate mainly due to its
homology (>50%) to Na-GST-1 at the aminoacid level (Liebau
et al., 1997), its high allergenicity will have an important impact for
the design on an anti-Ascaris vaccine (Acevedo et al., 2013).
Importantly, since A. lumbricoides feeds on the host’s luminal
content and not on blood, we might also speculate that this protein
will not be part of the blood-feeding detoxification pathway, which
might hamper its use as a vaccine, similarly to what occurs in
H. polygyrus bakeri as described above.
USING MURINE MODELS FOR THE
DISCOVERY OF NOVEL
IMMUNOMODULATORS

Despite the significant harm caused by parasitic worms,
numerous investigations have shown the faculty of helminths,
and hookworms in particular, to modulate inflammation and
their potential to treat inflammatory diseases (Croese, 2006;
Feary et al., 2009; Croese et al., 2015). Indeed, different authors
have suggested that allergies and autoimmune disorders are a
consequence of our altered and reduced exposure to infectious
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antigens, including helminths (Wills-Karp et al., 2001;
Yazdanbakhsh, 2002; Rook, 2005; Maizels and Nussey, 2013).
Chronic hookworm infections are characterized by a robust and
enduring Th2 cell response, and infected individuals do not show
any signs of allergy and are, in fact, protected from developing
allergies (Scrivener et al., 2001). In the case of hookwormmodels,
rodents develop similar Th2 responses as observed in humans,
and different studies have demonstrated the role of secreted
proteins and other molecules in the immunomodulatory
processes (Hewitson et al., 2009). Since the secretome of N.
americanus was unknown until very recently (Logan et al., 2020),
the scientific community has put the focus on the proteins
secreted by the rodent hookworms and other STHs for their
potential therapeutic action against allergies and possibly other
inflammatory and autoimmune diseases (Table 1) (van Riet
et al., 2007), including inflammatory bowel disease (IBD), type
1 diabetes, celiac disease and others (Helmby, 2015; Smallwood
et al., 2017).

Human trials using live hookworm infections have been and
are currently in development, but present strong limitations and
challenges such as cost, reproducibility and ethical issues.
Consequently, animal models are invaluable research tools that
might provide new knowledge about the individual molecules
involved in the immunomodulatory processes. For instance, the
41 kDa neutrophil inhibitory factor (NIF) and the tissue
inhibitors of metalloprotease Ac-TMP-2 (renamed as Ac-AIP-
2) were characterised from A. caninum and have been shown to
have important anti-inflammatory properties (Xu et al., 2000;
Navarro et al., 2016). Similarly, a serine protease inhibitor from
T. suis (TsCEI), as well as the proteins triosephosphate isomerase
and nucleoside diphosphate kinase have been shown to have
important immunomodulatory properties (Rhoads et al., 2000;
Leroux et al., 2018). Other hookworm proteins and their
immunomodulatory roles have been reviewed elsewhere
(Abuzeid et al., 2020; Ryan et al., 2020).

The immunomodulatory role of H. polygyrus bakeri is
indisputable. This role has been attributed, among others, to
different secreted proteins, including three proteins that belong
to the complement control protein (CCP) superfamily: Hp-TGM
(H. polygyrus bakeri TGF-bmimic), HpARI (H. polygyrus bakeri
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Alarmin Release Inhibitor) and HpBARI (H. polygyrus bakeri
Binds Alarmin Receptor and Inhibits). Hp-TGM has been shown
to drive Treg production in mice and humans by binding to the
mammalian TGF-b complex, despite it has no sequence
homology to mammalian TGF-b (Johnston et al., 2017).
Furthermore, treatment with rHp-TGM increased the number
of Treg cells in draining lymph nodes at the site of graft
transplant in mice, resulting in delayed allograft rejection
(Grainger et al., 2010; Johnston et al., 2017). HpARI is a
cytokine-binding protein that prevents alarmin release within
necrotic cells by binding directly to IL-33 and nuclear DNA
(Osbourn et al., 2017; Chauché et al., 2020). Indeed, intranasally-
administered rHpARI suppressed eosinophil responses and
ILC2s in the lungs of mice following the exposure to
Alternaria allergen, while it increases worm burden and
suppresses type 2 responses in N. brasiliensis-infected mice
(Osbourn et al., 2017). It has also been shown that H.
polygyrus bakeri can block the IL-33 pathway by blocking the
cytokine and its receptor via both HpARI and HpBARI,
respectively (Vacca et al., 2020). The same authors also
identified a close homologue of HpBARI (HpBARI_Hom2),
which binds and inhibits the human form of the IL-33
receptor (Vacca et al., 2020). These discoveries highlight a
potential use for the referred proteins in a wide variety of
inflammatory settings, particularly in asthma (Chauché
et al., 2020).

It is also remarkable that calreticulin fromH. polygyrus bakeri
has been shown to promote Th2 cell-responses but no further
studies have explored into the immunomodulatory effects of this
molecule (Rzepecka et al., 2009).

Although cystatins have been used as vaccination targets,
rHp-CPI fromH. polygyrus bakeri is also capable to modulate the
activation and differentiation of bone-marrow-derived CD11c+
DC (BMDC), and to interfere with antigen and MHC-II
molecule processing and Toll-like receptor signalling pathway,
resulting in functionally deficient dendritic cells that induce a
suboptimal immune response in mouse models. (Sun
et al., 2013).

In addition to individual molecules, the recent characterization
of EVs secreted by different nematodes has highlighted their
TABLE 1 | Immunomodulatory molecules expressed in the hookworm models Heligmosomoides polygyrus bakeri and Nippostrongylus brasiliensis.

Molecule and
description

Specie Function Reference

Hp-TGM H. polygyrus bakeri Ligation of TGF-b receptor on T cells leading to induction of Treg cells (Grainger et al., 2010; Johnston
et al., 2017)

HpARI H. polygyrus bakeri Blocks human and mouse IL-33 (Osbourn et al., 2017; Chauché
et al., 2020)

HpBARI H. polygyrus bakeri Blocks the receptor of IL-33 (Vacca et al., 2020)
HpBARI_Hom2 H. polygyrus bakeri Blocks the receptor of IL-33 (Vacca et al., 2020)
Calreticulin H. polygyrus bakeri Promotes Th2 cell-responses by interacting with scavenger receptor A (Rzepecka et al., 2009)
EVs H. polygyrus bakeri Suppresses host macrophage activation and inhibits expression of the IL-33

receptor subunit ST2.
(Buck et al., 2014; Coakley et al.,
2017)

EVs N. brasiliensis Suppresses inflammatory cytokines and increases expression of IL-10 (Eichenberger et al., 2018a)
Cystatin (HpCPI) H. polygyrus bakeri Modulates differentiation and activation of BMDCs resulting in non-functional

dendritic cells.
(Sun et al., 2013)
Ap
Hp-TGM, TGF-b mimic; HpARI, Alarmin release inhibitor; HpBARI, H. polygyrus Binds Alarmin Receptor and Inhibits; EVs, extracellular vesicles.
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potential role as immunomodulators. Administration of
H. polygyrus bakeri EVs reduced lung immunopathology by
modulating innate immunity via suppression of the early IL-33
and the later type 2 (specially ILC2) allergic responses (Buck et al.,
2014). Furthermore, N. brasiliensis secreted EVs suppressed the
production and secretion of proinflammatory cytokines and
increased the expression of IL-10, protecting mice from T-cell-
dependent induced colitis (Eichenberger et al., 2018a).

In conclusion, the latest advances have highlighted the
similarities between several human nematodes and their
respective murine models at a genomic and proteomic level.
These results highlight the suitability of these models, not only
for the study of the immune responses associated to infection
with STHs, but also, in some cases, for the development of new
vaccine candidates and immunomodulatory molecules.
However, further research should aim at integrating the
different available omic technologies (e.g. transcriptomic,
proteomic, metabolomics and lipidomic, among others) to
obtain a more comprehensive picture of the biology of these
worms and confidently validate candidate molecules.
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