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To characterize the salivary microbiota in patients at different progressive histological
stages of gastric carcinogenesis and identify microbial markers for detecting gastric
cancer, two hundred and ninety-three patients were grouped into superficial gastritis (SG;
n = 101), atrophic gastritis (AG; n = 93), and gastric cancer (GC; n = 99) according to their
histology. 16S rRNA gene sequencing was used to access the salivary microbiota profile.
A random forest model was constructed to classify gastric histological types based on the
salivary microbiota compositions. A distinct salivary microbiota was observed in patients
with GC when comparing with SG and AG, which was featured by an enrichment of
putative proinflammatory taxa including Corynebacterium and Streptococcus. Among the
significantly decreased oral bacteria in GC patients including Haemophilus, Neisseria,
Parvimonas, Peptostreptococcus, Porphyromonas, and Prevotella, Haemophilus, and
Neisseria are known to reduce nitrite, which may consequently result in an accumulation
of carcinogenic N-nitroso compounds. We found that GC can be distinguished accurately
from patients with AG and SG (AUC = 0.91) by the random forest model based on the
salivary microbiota profiles, and taxa belonging to unclassified Streptophyta and
Streptococcus have potential as diagnostic biomarkers for GC. Remarkable changes in
the salivary microbiota functions were also detected across three histological types, and
the upregulation in the isoleucine and valine is in line with a higher level of these amino
acids in the gastric tumor tissues that reported by other independent studies.
Conclusively, bacteria in the oral cavity may contribute gastric cancer and become new
diagnostic biomarkers for GC, but further evaluation against independent clinical cohorts
is required. The potential mechanisms of salivary microbiota in participating the
pathogenesis of GC may include an accumulation of proinflammatory bacteria and a
decline in those reducing carcinogenic N-nitroso compounds.
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INTRODUCTION

Gastric cancer (GC) constitutes the third highest cause of cancer
mortality worldwide (Bray et al., 2018), and the 5-year survival
rates are 27.4 and 32% in China and the USA, respectively. The
occurrence and development of gastric carcinogenesis is a
complex pathogenic process involving multiple factors, multi-
stage changes and polygenic alterations (Massarrat and Stolte,
2014; Goral, 2016). A late-stage presentation is common in most
GC cases, because symptoms in early stages of the disease are
usually vague and non-specific. As early detection leads to better
outcomes, there is a critical need for new avenues of prevention,
risk stratification, and early detection for GC.

Microbes in the upper digestive tract have been shown to
facilitate carcinogenesis by contributing inflammatory processes
via activation of Toll-like receptors pathway (Kauppila and
Selander, 2014), or protect against carcinogenesis by providing
barriers to pathogen invasion (Yang et al., 2014). Chronic
infection with Helicobacter pylori is a well-established risk
factor for gastric carcinogenesis . Lines of evidence
demonstrated that the process of Correa’s cascade of gastric
carcinogenesis initiated by H. pylori involves multiple virulence
factors, host genetic make-up, and nutritional factors (Warren
and Marshall, 1983; Polk and Peek, 2010; Engstrand and
Lindberg, 2013; Plummer et al., 2015). Nevertheless, only
about 3% of those infected with H. pylori will eventually
develop into gastric cancer, and the eradication of H. pylori
does not completely prevent the occurrence of GC (Peek and
Crabtree, 2006). These lines of evidence suggest that non-H.
pylori microorganisms colonizing the stomach may represent an
additional modifier of gastric cancer risk (Sung et al., 2020). The
enrichment of some bacteria in the gastric mucosa has been
associated with the progression of gastric cancer, including
Peptostreptococcus stomatis , Streptococcus anginosus ,
Parvimonas micra, Slackia exigua, and Dialister pneumosintes
(Coker et al., 2018). Our recent study suggested that a reduction
of nitrite-oxidizing Nitrospirae taxa in the gastric mucosa may
contribute to gastric neoplastic progression via nitrate
accumulation (Wang et al., 2020).

Most of the microbial sources in the stomach are believed
from the external environment. The oral cavity contains a large
number of microorganisms, including bacteria, viruses, fungi,
mycoplasma, and chlamydia (Aas et al., 2005; Wade, 2013; He
et al., 2015). The oral microbiota can enter the downstream
digestive tract from the oral cavity through saliva and can also
migrate to various parts of the body to cause infections and local
inflammatory reactions in corresponding sites (Han and Wang,
2013), oral microbes are closely correlated with several systemic
diseases such as the oral tumors, type 2 diabetes, cardiovascular
disease, urinary systemic diseases and rheumatoid arthritis
(Seymour, 2010; Ahn et al., 2012; Salazar et al., 2012;
Whitmore and Lamont, 2014; Gao et al., 2018). Recently, oral
microbiota has been suggested to play a role in the etiology of
esophageal cancer, colorectal cancer (CRC), and pancreatic
cancer (Michaud and Izard, 2014; Peters et al., 2017; Flemer
et al., 2018). Interestingly, a higher incidence of GC was found
among people with worse oral hygiene (Watabe et al.), indicating
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
a potential link between the oral microbiota and the occurrence/
development of gastric cancer. In this study, we characterized the
microbial compositional and ecological changes in salivary
microbiota of patients with GC and non-malignant gastric
lesions including superficial gastritis (SG) and atrophic gastritis
(AG). We demonstrated the possibility of using salivary
microbes as biomarkers GC detection, and explored the
potential mechanisms of oral microbiota in the pathogenesis
of GC.
MATERIALS AND METHODS

Participants
Two hundred and ninety-three patients who received an
endoscopic examination in the Chinese PLA General Hospital
and Civil Aviation General Hospital were enrolled in this study.
The study cohort was recruited from October 2017 to October
2019. The inclusion criteria were: (1) adult male or female; (2)
Han nationality from northern China; (3) able and willing to
provide signed and dated informed consent; (4) able and willing
to provide salivary samples. The exclusion criteria were: (1)
taking antibiotics, proton pump inhibitors (PPIs), probiotics,
prebiotics, chemotherapeutic drugs, and any other drugs
affecting oral microbiota within the last month; (2) diagnosed
with acute or chronic pulmonary, cardiovascular, hepatic, or
renal disorders; (3) positive test for human immunodeficiency
virus, hepatitis B or C virus; (4) a history of major surgery; and
(5) women who were pregnant or lactating.

Data collection was conducted for all subjects, including
demographics, medical history, drugs, and hematology tests.

Endoscopic and Histologic Examination
Patients’ diagnostic evaluation was based on the endoscopic and
histological examination. SG was confirmed according to the
infiltrating depth and density of chronic inflammatory cells in
the mucosa, without the reduction of proper gastric glands at
each biopsy site. If the gastric mucosa in the antrum and the body
were atrophied and thinned, the submucosal vessels could be well
visualized under the gastroscopy; in the meantime, the proper
gastric glands reduced at each biopsy site, it was defined as
AG. IM was defined as the replacement of gastric mucosal
epithelial cells by intestinal epithelial cells at each biopsy site.
GC was confirmed by the histological examination; according to
WHO gastric adenocarcinoma grading criteria, it was divided
into well differentiated, moderately differentiated, and poorly
differentiated (Jean-François, 2011).

Sample Collection
Salivary sample collection and preparation were carried out in
accordance with previously published consensus (Shi et al.,
2019). All the subjects were fasting and did not brush the teeth
in the morning. Thirty minutes before sampling, subjects were
asked to rinse the mouth with water, and then 1 ml saliva was
collected in a sterilized tube containing 1.0 ml RNAlater (Life
Technologies, USA), transferred to the laboratory and stored at
room temperature until DNA extraction.
March 2021 | Volume 11 | Article 640309
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DNA Extraction and 16S rRNA Gene
Amplicons
To evaluate the salivary bacterial diversity, high-throughput
sequencing of the 16S rRNA was performed. Bacterial genomic
DNA of the saliva was isolated using the QIAamp DNA
Mini Kit (QIAGEN, Valencia, CA, USA) combined with
the bead-beating method. The DNA concentrations of each
sample were adjusted to 50 ng/ml and stored at −80°C for
sequencing. The hypervariable V3–V4 region of the 16S
rRNA gene was amplified using the universal primers (515F,
GTGCCAGCMGCCGCGGTAA and 806R, GGACTACHV
GGGTWTCTAAT) with a 6-bp barcode. All PCR reactions
(including denaturation, annealing and elongation) were
carried out with Phusion ® High-Fidelity PCR Master Mix
(New England Biolabs). The single amplifications were
performed in 25 µl reactions with 50 ng template DNA.
Normalized equimolar concentrations of PCR products were
pooled and sequenced using the Illumina MiSeq PE300 platform
(Illumina, San Diego, CA, United States) at Shenzhen Decipher
Biotechnology Laboratory.

We employed the QIIME 2 (Bolyen et al., 2019) dada2
denoise-paired method to denoise, dereplicate, and filter
chimeras from the sequence data. For taxonomic classification,
we trained a Naive Bayes classifier on the 16S rRNA V3–V4
regions with q2-feature-classifier method (Supplementary File
S1). The metagenome functions of the salivary microbiota were
predicted through PICRUSt2 on the basis of 16S rRNA gene
sequencing profiles (Douglas et al., 2020).

Statistical and Bioinformatic Analyses
The baseline continuous data were presented by mean ±
standard deviation (SD) and analyzed by independent t test or
non-parametric rank test. The categorical data were described in
percentages and compared by c2 test or Fisher’s exact test. All
tests for significance were two-sided, and P <0.05 was
considered significant.

Calypso (version 8.84) was used to conduct statistical analysis
of the microbiota compositional data. The read counts were
normalized with total sum normalization, and taxa having less
than 0.02% relative abundance across all samples were excluded
from the following analysis. The Amplicon sequence variant
(ASV) counts were normalized with total-sum scaling (TSS)
followed by cumulative-sum scaling (CSS). The alpha diversity of
the salivary microbiota was measured by Shannon’s index and
Chao1 index. The relative abundances of taxa were log2
transformed to account for the non-normality. Principal
coordinate analysis (PCoA) based on unweighted and weighted
UniFrac distance matrices were employed to stratify samples and
identify group level clusters, and the corresponding statistical
significance was assessed using Permutational multivariate
analysis of variance (PERMANOVA). Anosim was applied to
compare the intra-group distances with between-group
distances. Kruskal–Wallis test was used to detect significant
differences in the alpha diversity, abundances of taxa, and
metabolic pathways across the histological stages, which was
followed by Wilcoxon rank-sum test confirming the significant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
differences between each two groups. Benjamini–Hochberg (BH)
procedure was applied to control the false discovery rate. The
Linear discriminant analysis Effect Size (LEfSe) (Segata et al.,
2011) was applied to identify the features (ASV or functions)
most likely to explain differences in the salivary microbiota
between histological types. Spearman correlation networks
were constructed based on the top 30 most abundant genera
and edges of correlations with Holm-corrected P <0.05
were shown.

The random forest (RF) model was built through the caret R
package. Five-fold cross-validation and area under the receiver
operating characteristic (ROC) curve (AUC) were used to
evaluate the prediction performance of the model and was
implemented using pROC R package. The RF disease classifier
using oral bacterial abundances at the genus level was
constructed with 60% randomly selected samples as the
training set and tuneLength = 4. The R code and taxa
abundance table used for constructing the random forest
model are provided in the Supplementary Code 1.
RESULTS

Demographic Characteristics of the
Patient Cohort
After a standardized endoscopic procedure and histopathological
evaluation, a total of 101 SG, 93 AG (21 without IM, 72 with IM),
and 99 GC subjects were enrolled. The gender and age were
matched among the four groups (P = 0.9152 and P = 0.3582,
respectively). There were also no significant differences in body
mass index (BMI), socioeconomic, medical history (including
periodontosis), or lifestyle characteristics (smoking and drinking
status) among the four groups (Table 1).

Salivary Microbiota Changes Are
Associated With Gastric Neoplastic
Progression
This study assessed the salivary microbiota by sequence analysis
of the 16S ribosomal RNA gene. A total of 14,989,371 raw reads
were obtained after quality filtering, with an average of 51,158 for
each sample. The refined reads were clustered into 1,275 ASVs.
The salivary microbiota alpha diversity was significantly lower in
TABLE 1 | Distribution of demographic characteristics among SG, AG, and GC.

Histological
types

SG AG GC P-
value

Without IM With IM

n 101 21 72 99
Gender
(male,
female)

(51, 50) (10, 11) (39, 33) (64, 35) 0.9152

Age 48.2 ± 10.2 49.9 ± 12.5 48.5 ± 11.7 49.6 ± 8.8 0.3582
BMI 23.5 ± 2.4 22.7 ± 3.4 22.8 ± 4.5 21.4 ± 2.2 0.8062
Periodontosis 15 13 21 42 0.0951
Smoking 34 10 29 40 0.2482
Drinking 42 14 38 51 0.8502
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GC than that of SG and AG (Figures 1A, B). Beta analysis with
PCoA showed that the cluster of GC samples could be separated
from SG and AG (Figures 1C, D). Regarding AG, the alpha and
beta diversities in the salivary microbiota in patients with and
without intestinal metaplasia were not distinguishable (Figure
S1). For GC patients with different histological grades (well
differentiated, moderately differentiated, and poorly
differentiated), there was no significant difference in the
biodiversity among in the salivary microbiota (Figure S2).

Compositionally, the most abundant phyla in the salivary
microbiota are Bacteroidetes, Protobacteria, Firmicutes,
Fusobacteria, and Acinobacteria, which account for more than
94% of the bacterial community for each histological stage of GC
(Figure S3A). Patients with GC had a higher relative abundance
of Cyanobacteria (Table S1). At the genus level, Prevotella,
Neisseria , Veillonella , Haemophilus , Porphyromonas ,
Streptococcus, Fusobacterium, and Rothia constitute more than
70% of the salivary microbiota for each histological stage of GC
(Figure S3B). The levels of Anaerovorax, Bulleidia, unclassified
F16, and Peptostreptococcus gradually decreased from SG
through AG to GC (Figure 2; Table S1), indicating a negative
association of these bacteria with GC development. The genera
Streptococcus and unclassified Streptophyta were significantly
higher in GC, whereas Fusobacterium, Haemophilus, Neisseria,
Parvimonas, Peptostreptococcus, Porphyromonas, and Prevotella
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
were less abundant in GC. In addition, Bacteroides genus was
found particularly more abundant in the patients with AG.

It has been shown that the composition and function of the
oral microbiota are affected by lifestyle factors such as alcohol
and tobacco use and health characteristics such as periodontitis,
tooth status, and HP infection (Bornigen et al., 2017; Zhao et al.,
2019). We used MaAsLin2 to access the multivariable association
between metadata and salivary microbiota. Analysis result
indicated that only Faecalibacterium had a significant negative
correlation with tabaco usage (Figure 3), while no taxa were
found to be significantly associated with alcohol usage,
periodontosis, or HP-infection. There were 13 genera that had
significant correlationships with GC, including five positive
correlations (enriched in GC) and eight negative correlations
(reduced in GC). Six genera were found to be negatively
correlated with both AG and GC, and Bacteroidetes had a
significant positive correlation with AG. Taken together, the
results of multivariate analysis are in accordance with the results
of univariate analysis.

Salivary Microbiota Is Predictive of Stages
of Gastric Carcinogenesis
To identify the most relevant taxa responsible for the differences
among the disease stages, we performed LEfSe analysis based on
the genus (Figure 4A; Figure S4A). The representative bacterial
A B

D
C

FIGURE 1 | The salivary microbiota biodiversity in patients with malignant and non-malignant gastric lesions. The alpha diversity of salivary microbiota was measured
at the ASV level by using (A) Shannon index, (B) Chao1. Significance was determined by using Kruskal–Wallis rank sum test, and Wilcoxon rank-sum tests for each
of the two groups. PCoA based on (C) unweighted UniFrac distance matrix, and (D) weighted UniFrac distance matrix revealed distinct clustering of GC samples.
March 2021 | Volume 11 | Article 640309
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genera in the salivary microbiota of GC patients were unclassified
Streptophyta, Streptococcus, and Bifidobacterium; patients with
AG showed increased levels of Bacteroides and Haemophilus
genera; the salivary microbiota in SG patients was featured by an
enrichment of Peptostreptococcus, unclassified Mogibacteriaceae,
and unclassified SR1 genera.

To further explore the potential of the salivary microbiota as
diagnostic biomarkers for GC, we constructed a random forest
model for identifying malignancy based on the salivary
microbiota at the genus level. This model showed a high
accuracy in distinguishing GC from non-malignant lesions,
yielding an AUC of 0.91 (95% confidence interval 0.778–0.99)
(Figure 4B). Moreover, the random forest modeling approach
was also able to distinguish SG, AG, and GC subjects, resulting in
an AUC of 0.84, 0.76, and 0.877 for SG, AG, and GC, respectively
(Supplementary Figure S4B). Among the top 10 genera with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
highest contributions to the model classification performance
(Figure 4C; Figure S4C), unclassified Streptophyta and
Streptococcus were also identified as GC-associated microbial
features by LEfSe (Figure 4A; Figure S4A), enhancing their
potential in becoming biomarkers for GC diagnosis.

In addition, we performed a network analysis to visualize the
commensal relationships among the salivary microbiota of the
three histological types (Figure S5). Interestingly, we found that
the correlations between Prevotella and other taxa dominated the
negative relationships for all the three histological types, with
their number reduced in AG and GC.

Salivary Microbiome Functional Capacity
in SG, AG, and GC
Analysis of PICRUSt2 revealed differentially abundant metabolic
functions in the bacterial communities across the histological
FIGURE 2 | The salivary microbiota composition in patients with malignant and non-malignant gastric lesions. The salivary microbiota composition in patients with
malignant and non-malignant gastric lesions. Relative abundance of salivary taxa of the three groups were compared at the genus level. Significance was determined
by using Kruskal-Wallis rank sum test with BH-adjusted P < 0.001, and Wilcoxon rank-sum tests for each of the two groups with *BH-adjusted P < 0.05, **BH-
adjusted P < 0.01, and ***BH-adjusted P < 0.001.
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FIGURE 3 | Heatmap summarizing the significant associations between oral bacteria and metadata. Color key: -log(q-value)*sign(coefficient). Cells that denote
significant associations are colored (red or blue) and overlaid with a plus (+) or minus (−) sign that indicates the direction of association.
A

B C

FIGURE 4 | Salivary bacterial biomarkers for classifying different stages of gastric carcinogenesis. (A) Microbiological features of the salivary microbiota associated
with different histological stages of gastric tumorigenesis. Bacteria taxa that enriched in each histological stage were determined by LEfSe with Kruskal–Wallis test
P <0.05 and log 10 LDA score >3.4. (B) ROC curves analysis to evaluate the discriminatory potential of salivary bacteria in identifying GC out of pre-malignant
lesions. (C) The top 10 bacterial genera that are most important for discriminating GC with non-malignant types. Each genus is ranked according to an importance
score (mean decrease accuracy).
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stages of gastric carcinogenesis (Figure S6). The expression of
thiamin salvage II (PWY-6897), lipid IVA biosynthesis
(NAGLIPASYN-PWY): CMP-3-deoxy-D-manno-octulosonate
biosynthesis I (PWY-1269), Kdo transfer to lipid IVA III
(PWY-6467) , preQ0 biosynthes is (PWY6703) , and
superpathway of thiamin diphosphate biosynthesis I (THISYN-
PWY) were found to be decreased from SG, through AG to GC.
In contrast, pathways involved in L-isoleucine biosynthesis
II (PWY-5101 and PWY-5103), L-valine biosynthesis
(VALSYN-PWY), L-isoleucine biosynthesis I from threonine
(ILEUSYN-PWY), superpathway of branched amino acid
(BRANCHED-CHAIN-AA-SYN-PWY), pyruvate fermentation
to isobutanol (PWY-7111), and UDP-N-acetyl-D-glucosamine
biosynthesis I (UDPNAGSYN-PWY) were upregulated from SG
through AG to GC. It is worth noting that the increased
expression of biosynthesis of amino acids such as isoleucine
and valine was also previously detected in the gastric cancer
tissues (Jung et al., 2014; Wang et al., 2016).
DISCUSSION

Previous studies have shown that periodontal disease and poor
oral health status were associated with increased incidence of
malignant diseases (Dizdar et al., 2017; Michaud et al., 2018),
pointing to a potentially oncogenic role of oral microorganisms
in the development of cancer. Some species have been identified
that correlate strongly with oral squamous cell carcinoma
(OSCC), such as Capnocytophaga gingivalis, Prevotella
melaninogenica, and Streptococcus mitis (Mager et al., 2005),
which were suggested as diagnostic markers since they predicted
80% of cancer cases. Oral microbes are also detected in tumors
distant to the oral cavity. For example, many works have shown
that the oral periopathogens Fusobacterium nucleatum and
Porphyromonas gingivalis are essential in the development of
colorectal and pancreatic cancer, respectively (Rubinstein et al.,
2013; Fan et al., 2018a). The oral microbiota was shown to reflect
an inflammatory status of the stomach in patients with H. pylori
infection (Zhao et al., 2019), and could detect GC with a high
accuracy (Coker et al., 2018; Wu et al., 2018). In this study, we
demonstrated that the salivary microbiota could identify GC
among patients with non-malignant gastric diseases including
SG and AG, yielding a high accuracy (AUC of 91%). With a
cohort consisting of 37 GC patients and 13 healthy individuals, a
previous study also showed a high sensitivity rate (AUC of 97%)
of using oral microbiota screening gastric cancer (Sun et al.,
2018), further enhancing the diagnostic potential of the oral
bacteria for gastric malignancy. The microbiome is exclusive to
the individual and influenced by lifestyle and phenotypic and
genotypic determinants. For example, alcohol consumption and
tobacco usage have been shown to influence the oral microbiome
composition (Wu et al., 2016; Fan et al., 2018b). Therefore,
lifestyle should be considered as confounding factors when
identifying diagnostic microbial markers from the oral
microbiome. Multivariate analysis method revealed that
enrichment of Faecalibacterium was negatively associated with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
smoking, and no significant correlation was found between
salivary bacteria and alcohol or HP-infection. Thus, the
potential biomarkers identified based on our data seemed not
affected by the recorded lifestyle and HP infection.

Our data showed that alpha diversity of the salivary
microbiota was similar among patients with different gastric
histological types, which was consistent with another study
(Kageyama et al., 2019). One previous study found that the
microbial diversity of saliva and dental plaque significantly
increased in GC patients (Sun et al., 2018), whereas another
one suggested that the microbiota diversity significantly reduced
in the tongue coating of GC patients (Cui et al., 2019). Taken
together, the microbial diversity of oral microbiota seems not
strongly associated with the development of GC.

Data from our recent study (Wang et al., 2020) as well as
others (Dicksved et al., 2009; Castano-Rodriguez et al., 2017;
Chen et al., 2019) showed that commensals of the oral cavity
including Fusobacterium, Peptostreptococcus, Prevotella,
Streptococcus, and Veillonella were found to have higher
relative abundances in the gastric mucosa of GC patients.
Notably, these genera are also commensals of oral cavity, but
their translocation and expansion may be involved in the onset
and development of multiple diseases including cancers. One
possible mechanism of oral microbiota participating
carcinogenesis is enrichment of pro-inflammatory oral
bacterial species. For example, Streptococcus bovis has been
shown to promote the development of colon cancer by
enhancing the inflammation (Abdulamir et al., 2011). We
observed that Streptococcus genus was enriched in the saliva
microbiota of GC patients, which agrees with the findings in a
recent study (Sun et al., 2018). Interestingly, an enrichment of
Streptococcus spp. was also reported across several types of
cancer such as colorectal adenocarcinomas (Abdulamir et al.,
2011). Taken together, these results indicate a potential of some
strains of Streptococcus being involved in gastric carcinogenesis.
In addition, Corynebacterium genus was also found to be
enriched in the saliva of GC patients, which was in line with
(Wu et al., 2018) a higher level Corynebacterium; this genus was
found higher in the tongue coating microbiota community of GC
patients than that of the healthy controls. Species of
Corynebacterium are widely distributed in the microbiota of
human skin, and most of them are innocuous while some
species are known to cause infection such as C. diphtheria. In
recent years, they have been increasingly reported as emerging
opportunistic pathogens in immunocompromised patients with
cancer, hematologic malignancy, and critical condition (Chen
et al., 2012). Thus, a higher level of Corynebacterium spp., which
appeared in the oral cavity, may reflect immune deficiency in
cancer patients. Altogether, an enrichment of proinflammatory
bacteria in the oral cavity is likely an import factor contributing
to the development and progression of GC.

Several bacterial taxa were found reduced in the salivary
microbiota of GC patients, including Bulleidia, Fusobacterium,
Haemophilus, Lachnoanaerobaculum, Neisseria, Parvimonas,
Peptostreptococcus , Porphyromonas , and Prevote l la .
Intriguingly, a decreased carriage of Bulleidia was also
March 2021 | Volume 11 | Article 640309
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captured in the oral cavity of patients with esophageal squamous
cell carcinoma (Chen et al., 2015). Moreover, some taxa of these
genera were found to be enriched in tumor and stool samples of
colorectal cancer patients, such as Fusobacterium nucleatum,
Parvimonas micra, Porphyromonas asaccharolytica, and
Peptostreptococcus stomatis, Prevotella intermedia (Ternes
et al., 2020). And we recently found a higher load of
Fusobacterium in the gastric mucosa of GC patients compared
to SG (Wang et al., 2020). In the present study, a low level of
these genera was observed in the oral cavity of GC patients as
compared with SG and/or AG. In fact, bacterial abundance is
majorly regulated by nutrient availability and antimicrobial
signals specific to their environmental conditions. Thus, albeit
these bacteria colonize and expanded in the tumor site (such as
gut of patients with colorectal cancer), they may not overgrow in
their original localization such as the oral cavity.

Network analysis revealed that Prevotella was negatively
correlated with a variety of oral bacteria in the oral cavity of all
three histological stages, and the number of its negative
relationships decreased in AG and GC groups. In the GC
patients, the abundance of Prevotella in the salivary cavity was
lower than that of SG and AG groups, which is opposite to the
findings in Sun et al.’s study (Sun et al., 2018). This discrepancy at
the genus level may be explained by increasing the phylogenetic
resolution viametagenomic sequencing and identifying the specific
species/strains that related to gastric cancer.

We previously found that patients with intraepithelial
neoplasia had higher relative abundances of Haemophilus
parainfluenzae and Nitrospirae family in the gastric mucosa,
which decreased in that of GC patients (Wang et al., 2020). Both
Haemophilus and Nitrospirae are nitrate-reducing bacteria,
which convert nitrate to nitrite, and also to nitric oxide (NO),
which can be absorbed through the blood vessels in the oral
cavity or through being swallowed into the gastrointestinal
system. Accumulation of N-nitroso compounds in the
gastrointestinal tract is likely to increase the risk of
carcinogenesis (Forsythe and Cole, 1987; Bryan et al., 2012).
Thus, the decreased abundances of Haemophilus in the salivary
microbiota may contribute to the formation of gastric tumor.

Functional analysis based on the PICRUSt2-predicted
pathways suggested that metabolic functions of salivary
microbiota changed along with the disease progression in the
stomach. In particular, pathways involved in isoleucine and
valine biosynthesis were highly expressed by the salivary
microbiota in GC patients compared to the non-malignant
stages. Interestingly, an upregulation of amino acids including
isoleucine and valine was also detected in human gastric tumor
tissues (Jung et al., 2014; Wang et al., 2016). Higher levels of most
amino acids and their primary derivatives in gastric tumor
tissues were thought to be related to two main sources: the
degradation of extracellular matrix by matrix metalloproteinases
and the autophagic degradation of intracellular proteins
(Hirayama et al., 2009). The production of amino acid from
microbes in the oral cavity and gastrointestinal tract has not been
quantified and deserves further investigation in terms of
proliferation and survival of gastric cancer cells.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
There were several limitations in this study. Firstly, we didn’t
collect samples from healthy individuals as control. Secondly,
amplicon sequencing of 16S rRNA has limited resolution in
determining the bacterial species or strains, and it is therefore
difficult to access the functions of specific bacteria involved in
gastric cancer development and progression. In addition, the 16S
rRNA gene V1–V3 region has been shown to provide superior
taxonomic resolution for the bacterial microbiota of the human
oral and respiratory tracts compared to the V3–V4 region
(Zheng et al., 2015; Escapa et al., 2018). Thus, some other oral
taxa with diagnostic potential for gastric cancer might not have
been detected in the present data. Finally, independent clinical
cohorts from multiple centers are required to evaluate the
diagnostic value of the identified GC-associated saliva bacteria.
CONCLUSIONS

We demonstrated, with a large cohort, that the salivary
microbiota can be used to predict GC as well as its non-
malignant stages. The contributions of the oral microbiota in
the pathogenesis of GC include an accumulation of
proinflammatory bacteria and a decline in those reducing
carcinogenic N-nitroso compounds.
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Supplementary Table 1 | Differences in the salivary microbiota compositions
among patients at different progressive histological stages of gastric
tumorigenesis.

Supplementary Figure 1 | The salivary microbiota biodiversity in AG patients
with and without intestinal metaplasia. The alpha diversity of salivary microbiota was
measure at the ASV level by using (A) Shannon index, (B) Chao1. Comparison
between intra-group and inter-group community distances by (C) unweighted
UniFrac distance matrix and (D) weighted UniFrac distance matrix revealed no
significant difference between the microbiota compositions between AG patients
with and without intestinal metaplasia. P value was calculated by Anosim comparing
the intra-group distances with between-group distances.

Supplementary Figure 2 | The salivary microbiota biodiversity in GC patients
with different histological grades. The alpha diversity of salivary microbiota was
measure at the ASV level by using (A) Shannon index, and (B) Chao1 index.
Comparison between intra-group and inter-group community distances by (C)
unweighted UniFrac distance matrix and (D) weighted UniFrac distance matrix
revealed no significant difference between the microbiota compositions among
patients with well differentiated (W), moderately differentiated (M), and poorly
differentiated(P) gastric tumor. P value was calculated by Anosim comparing the
intra-group distances with between-group distances.

Supplementary Figure 3 | The salivary microbiota compositions in patients at
different histological stages of gastric tumorigenesis. The relative abundances of
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most abundant (A) phyla and (B) genera detected in the salivary microbiota in SG,
AG, and GC patients.

Supplementary Figure 4 | Microbiological features of the salivary microbiota
associated with different histological stages of gastric tumorigenesis. (A) Bacteria
taxa that enriched in each histological stage were determined by LEfSe with
Kruskal–Wallis test P<0.05 and log 10 LDA score>3.4. (B) ROC curves analysis to
evaluate the discriminatory potential of salivary bacteria in identifying GC out of pre-
malignant lesions. (C)The top 10 bacterial genera that are most important for
discriminating between SG, AG, and GC. Each genus is ranked according to an
importance score (mean decrease accuracy).

Supplementary Figure 5 | Network analyses reveal commensal relationships
among the salivary bacteria. Spearman correlation network analyses showing the
commensal relationships among the top 30 most abundant genera in the salivary
microbiota of (A) superficial gastritis, (B) atrophic gastritis, and (C) gastric cancer.
Taxa are represented as nodes, taxa abundance as node size, and are colored
based on their belonging phylum. Edges represent significant correlations (Holm-
corrected P < 0.05) among these taxa. Red and blue edges represent positive and
negative correlations, respectively.

Supplementary Figure 6 | Functional changes in the salivary microbiota are
associated with the progression of gastric carcinoma. PICRUSt2 predicted
metabolic pathways that significantly different in the salivary microbiota of patients at
different progressive histological stages of gastric tumorigenesis. Significance was
determined by using Kruskal–Wallis rank sum test with BH-adjusted P < 0.05.

Supplementary File 1 | ASVs obtained from Naive Bayes classifier on the 16S
rRNA sequencing of V3–V4 hypervariable regions.

Supplementary Code 1 | R code and taxa abundance table used for
constructing the random forest model and generating the AUC ROC curve.
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