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Parkinson’s disease (PD) is the most prevalent movement disorder known and
predominantly affects the elderly. It is a progressive neurodegenerative disease wherein
a-synuclein, a neuronal protein, aggregates to form toxic structures in nerve cells. The
cause of Parkinson’s disease (PD) remains unknown. Intestinal dysfunction and changes
in the gut microbiota, common symptoms of PD, are evidently linked to the pathogenesis
of PD. Although a multitude of studies have investigated microbial etiologies of PD, the
microbial role in disease progression remains unclear. Here, we show that Gram-negative
sulfate-reducing bacteria of the genus Desulfovibrio may play a potential role in the
development of PD. Conventional and quantitative real-time PCR analysis of feces from
twenty PD patients and twenty healthy controls revealed that all PD patients harbored
Desulfovibrio bacteria in their gut microbiota and these bacteria were present at higher
levels in PD patients than in healthy controls. Additionally, the concentration of
Desulfovibrio species correlated with the severity of PD. Desulfovibrio bacteria produce
hydrogen sulfide and lipopolysaccharide, and several strains synthesize magnetite, all of
which likely induce the oligomerization and aggregation of a-synuclein protein. The
substances originating from Desulfovibrio bacteria likely take part in pathogenesis of
PD. These findings may open new avenues for the treatment of PD and the identification of
people at risk for developing PD.

Keywords: hydrogen sulfide, magnetite, alpha-synuclein (a-Syn), gut Desulfovibrio bacteria, Parkinson’s
disease (PD)
INTRODUCTION

In Parkinson’s disease (PD), intestinal symptoms such as constipation often precede the appearance of
motor symptoms, suggesting that an etiological agent may be present in the intestine. Based on
neuropathological findings, Braak and colleagues proposed in 2003 that PD is caused by an intestinal
pathogen capable of passing through the gut mucosal barrier and traveling through enteric neurons
before finally entering the central nervous system via the vagus nerve (Braak et al., 2003). In support of
this view, Lewy bodies and Lewy neurites containing phosphorylated a-synuclein protein (a-Syn), the
classic neuropathological hallmarks of PD, can be found in both the central nervous system and the
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enteric nervous system (Barrenschee et al., 2017). Additionally,
injected forms of a-Syn are transported to the lower brainstem
via the vagus nerve in rats (Holmqvist et al., 2014). It is proposed
that the production of toxins andmetabolites by gut microbes play a
critical role in the pathogenesis of PD and that gut enteroendocrine
cells serve as sites for the initial emergence of pathologic a-Syn
(Chandra et al., 2017).

Since 2015, changes in gut microbiota compositions in PD have
been found in several large-scale case-control studies (Scheperjans
et al., 2015; Shen et al., 2021). Composition changes concerning
the phylum level are difficult to establish due to high variability in
the relative abundances of bacterial phyla in PD studies (Chiang
and Lin, 2019). Concerning the family level of bacteria, a recent
meta-analysis on fourteen case-control studies showed, by 95%
confidence interval analysis, significantly increased relative
abundances of Verrucomicrobiaceae, Bifidobacteriaceae, and
Christesenellaceae in PD gut microbiota (Shen et al., 2021). At
the genus level , opportunistic pathogens including
Porphyromonas, Prevotella and Corynebacterium were found to
be elevated in PD in a microbiome-wide association study (Wallen
et al., 2020). A limitation of these studies is that assessing relative
changes in microbiota composition, rather than absolute
quantitative changes, limits the chances of identifying disease-
associated ecosystem configurations (Vandeputte et al., 2017;
Boertien et al., 2019; Haikal et al., 2019). In this respect, the
dynamics ofDesulfovibrio bacteria (DSV) are not fully captured by
studies focusing on the relative bacterial changes in PD gut
microbiota. One case-control study offered a broad indication of
DSV dynamics, finding that the relative abundance of bacteria in
the Desulfovibrionaceae family was elevated in PD patient
microbiota (Lin et al., 2018). DSV have several interesting
characteristics that lend themselves toward a potential role in
PD pathogenesis and warrant further investigation. DSV are
sulfate-reducing bacteria (SRB), commonly found in the
environment and the human intestine with the potential to
cause infections in humans (Loubinoux et al., 2002; Goldstein
et al., 2003). As such, DSV produce hydrogen sulfide (H2S), a
metabolite known to influence cell signaling in neuronal cells at
low concentrations and pose serious toxicity at higher
concentrations (Carbonero et al., 2012; Panthi et al., 2018;
Haouzi et al., 2020). H2S has been observed to release
mitochondrial cytochrome c into the cytosol, where the
cytochrome is able to form a-Syn radicals and thereby
initiate a-Syn oligomerization (Guo et al., 2015; Kumar et al.,
2016). Further, H2S can interfere with iron metabolism by
increasing iron levels in the cytosol (Cassanelli and Moulis,
2001; Hälldin and Land, 2008), an event potentially inducing a-
Syn aggregate formations (Joppe et al., 2019). DSV have been
found to colonize the mucus gel layer of the colon (Nava et al.,
2012; Earley et al., 2015). Therefore, the a-Syn-expressing
enteroendocrine cells located in the gut wall, in close proximity
to intestinal DSV, may be especially vulnerable to the toxic effects
of H2S and serve as a seeding point for a-Syn aggregation in the
nervous system. Additionally,DSV have the ability to reduce ferric
iron to ferrous iron by employing a periplasmic [FeFe]-
hydrogenase enzyme, present in practically all DSV, conferring
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
the ability to produce magnetite (Fe3O4) (Chistyakova et al., 2004;
Park et al., 2008; Pereira et al., 2011). Uncoated magnetite
nanoparticles have been reported to accelerate a-Syn
aggregation and are considered to be involved in PD
pathogenesis (Joshi et al., 2015; Murros et al., 2019). As DSV are
found in the gut microbiota of humans and are capable of
producing extracellular magnetite and H2S, both of which
induce oligomerization and aggregation of a-Syn, it is rational
to suspect that there may be a correlation between these bacteria
and PD. Here, we employed a targeted PCR-based approach to
determine absolute quantitative changes in the levels of DSV
bacteria between PD patients and healthy controls.
MATERIALS AND METHODS

Research Subjects, Sample Collection,
and Ethical Issues
The study participants consisted of 20 PD patients and 20 healthy
controls. PD patient were recruited from the patient material of the
Neurology Outpatient Clinic of Terveystalo Healthcare, Kamppi,
Helsinki. The control group consisted of 10 spouses and 10 non-
spouses of PD patients. As a prerequisite, selected PD patients had
to fulfill the clinical features of the UK Parkinson’s Disease Society
Brain Bank diagnostic criteria (Hughes et al., 1992). Furthermore,
PD patient disease progression was scored using the Hoehn and
Yahr scale as an estimate of the clinical stage of PD (Hoehn and
Yahr, 1967). Symptoms or signs of parkinsonism were exclusion
criteria for the controls. Exclusion criteria for both groups included
cognitive disturbance (Mini-Mental State Examination points < 25)
and a history of antibiotic use within 3 months prior to the date of
fecal sampling. Fecal samples were collected by donors in sealed
polypropylene containers and subsequently frozen and stored at
-75°C until further analyses. The study was approved by the Ethics
Committee of Helsinki and the Uusimaa Health District area of
Finland, and all procedures were in accordance with the relevant
regulations. Each study participant also provided written
informed consent.

Bacterial Strains and Culture Conditions
Two collection strains, D. desulfuricans MB (DSM 6949) and D.
vulgaris DSM 644, were obtained from the Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell Cultures,
Braunschweig, Germany. Liquid Postgate medium (DSMZ
medium 63) for bacterial culture was made anoxic by sparging
with nitrogen gas for 1 hour at 80°C prior to autoclavation. The
medium was aliquoted into Hungate-type tubes and bacterial
inoculation was performed in an anaerobic workstation (Don
Whitley Scientific, West Yorkshire, UK). The bacteria were
cultured anaerobically at 37°C. Anaerobic conditions inside the
anaerobic jar were maintained using the Microbiology
Anaerocult® A system (Merck KGaA, Darmstadt, Germany)
and indicated by an Anaerotest® strip (Merck KgaA). Ferrous
sulfide (black precipitate) formation after two to seven days was
used as an indicator for bacterial growth.
May 2021 | Volume 11 | Article 652617
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DNA Techniques
DNA from the fecal samples was extracted using the Stool DNA
Isolation Kit (Norgen Biotek, Ontario, Canada). The bacterial
DNA of D. desulfuricans MB (DSM 6949) and D. vulgaris DSM
644, for use as positive controls, were isolated using the
MagAttract HMW DNA Kit (Qiagen GmbH, Hilden, Germany).
PCR products were purified using the SanPrep Column PCR
Product Purification kit (BBI Life Sciences, Shanghai, China).
Gel electrophoresis was performed in 0.9% or 1.5% (w/v)
agarose gel containing 0.1 mg/ml ethidium bromide, followed by
visualization under UV light. The size markers used were 100 bp
GeneRuler DNA ladder or 1 kb GeneRuler DNA ladder (Thermo
Fisher Scientific, Waltham, MA, USA).

Primers and PCR Conditions
A pair of universal primers targeting the bacterial 16S rRNA gene
were used to validate the success of DNA isolation from fecal
samples. Primers for detecting periplasmic [FeFe]- hydrogenase
gene were designed by multiple sequence alignment of the
periplasmic [FeFe]- hydrogenase large subunit (hydA) genes of
different Desulfovibrio spp. The primer specificity was analyzed
using the Primer-BLAST webtool by NCBI (https://www.ncbi.nlm.
nih.gov/tools/primer-blast/). The 16S rRNA gene primer sequences
used for specific detection of the Desulfovibrio genus and species
including Desulfovibrio desulfuricans, D. fairfieldensis, D. piger, and
D. vulgaris were obtained from previous studies. All primers used in
this study are listed in Table 1.

A standard PCR procedure was followed in both conventional
and quantitative PCR according to the manufacturer’s protocol
for Phusion High-Fidelity DNA polymerase (Thermo Fisher
Scientific). Specifically, each 20 µl reaction comprised of 1×
Phusion HF buffer (Thermo Fisher Scientific), 0.2 mM dNTP
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
mix (Thermo Fisher Scientific), 0.5 µM of each primer, 1 U of
Phusion High-Fidelity DNA polymerase (Thermo Fisher
Scientific), and DNA. The thermal cycle was set as follows: 98°C
for 30 secs followed by 30-40 cycles of denaturing at 98°C for 10
secs, annealing at 55-62°C, depending on the primers used, for 10
secs and elongation at 72°C for 20 secs, continuing with 72°C for
5 min and final 4°C for 15 min. Reaction mixtures contained
approximately 170 ng of total DNA extracted from fecal samples or
20 ng of bacterial genomic DNA or water as negative control.

The PCR products were checked by gel electrophoresis,
purified, and sequenced (Institute of Biotechnology, University
of Helsinki, Finland), followed by comparison to the NCBI
GenBank database for analysis.

Cloning of 16S rRNA and hydA Gene
PCR Products
Vector pHelix1 (Roche Diagnostics GmbH, Mannheim,
Germany) was amplified with the primers AmpF and OriR to
obtain an amplicon containing only the ampicillin resistance
gene and the origin of replication (ampR-ori). The amplicons
were purified and checked by gel electrophoresis.

The purified PCR products of the 16S rRNA gene of the four
DSV species and the hydA amplicons of D. desulfuricans MB,
after being verified by sequencing, were phosphorylated with T4
Polynucleotide Kinase (Thermo Scientific) and ligated with the
ampR-ori fragment using T4 DNA ligase (Thermo Scientific).
The ligation mixtures were introduced into competent E. coli
XL1-Blue cells (Agilent Technologies, Santa Clara, CA, USA) by
electroporation with pulse 2.5 kV, 200 W and 25 mFD
(Zabarovsky and Winberg, 1990). The transformed cells were
plated on LB agar plates containing 100 mg/ml ampicillin.
Plasmids were isolated using a SanPrep Column Plasmid Mini-
TABLE 1 | Primers used in the study.

Primer name Sequence 5’ ! 3’ Target Amplified region (nt) PCR product size (bp) Source

pA AGAGTTTGATCCTGGCTCAG Bacterial 16S rRNA 8-929 922 Edwards et al., 1989
pE’ CCGTCAATTCCTTTGAGTTT
DSV691-F CCGTAGATATCTGGAGGAACATCAG Desulfovibrio genus 704-839 136 Fite et al., 2004
DSV826-R ACATCTAGCATCCATCGTTTACAGC 16S rRNA
27K-F CTGCCTTTGATACTGCTTAG D. desulfuricans MB 630-1025 396 Loubinoux et al., 2002
27K-R GGGCACCCTCTCGTTTCGGAGA (DSM 6949) 16S rRNA
Fair-F TGAATGAACTTTTAGGGGAAAGAC D. fairfieldensis 181-714 534 Loubinoux et al., 2002
P687-R GATATCTACGGATTTCACTCCTACACC (ATCC 700045) 16S rRNA
Pig-F CTAGGGTGTTCTAATCATCATCCTAC D. piger 460-714 255 Loubinoux et al., 2002
P687-R GATATCTACGGATTTCACTCCTACACC (ATCC 29098T) 16S rRNA
Dv1F AAGACCTTCCCGAAAAGGAA D. vulgaris 1004-1158 155 Chakraborty et al., 2011
Dv1R ACCAGAGTGCCCAGCATTAC (DSM 644) 16S rRNA
Pair hydA1
hydA-F(a)
hydA-R(a)

GACGTGACCATCTGGGAAGA Periplasmic [FeFe]- 448-1127 680 This study

Pair hydA 2 CAGGCCATGAATTCGATGAA hydrogenase gene of DSV
hydA-F(b) ACCGTCTCCATCATGCCCTG Periplasmic [FeFe]- 676-1127 462 This study
hydA-R(a) CAGGCCATGAATTCGATGAA hydrogenase gene of DSV
Pair hydA 3
hydA-F(a) GACGTGACCATCTGGGAAGA ¨ Periplasmic [FeFe]- 448-695 248 This study
hydA-R(b) CAGGGCATGATGGAGACGGT hydrogenase gene of DSV
AmpF GCACTTTTCGGGGAAATG ampR-ori fragment 2020 This study
OriR CAGTCGGGAAACCTGTCGTG
May 2021 | Vol
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preps kit (BBI Life Sciences), and the correct constructs were
confirmed by PCR with corresponding insert primers and gel
electrophoresis. Plasmids with correct inserts were used as
standards in quantitative real-time PCR.

Quantitative Real-Time PCR (qPCR)
Samples which were deemed to contain bothDSV and hydA were
selected for bacterial quantification using a QuantStudio 3 Real-
Time PCR System (Thermo Fisher Scientific). SYBR™ Green I
(FMC BioProducts, Rockland, ME, USA) at a final concentration
of 0.1× was used as a fluorescent dye. Constructed plasmids
carrying 16S rRNA or hydA fragments were used as standards.
Reaction mixtures contained approximately 70 ng of total DNA
extracted from fecal samples or standards with final amount
ranging from 2×103 to 2×107 copies. Reaction mixtures
containing 70 ng of extracted DNA from DSV-bacteria-
negative healthy controls stool were also created and used to
construct standard curves. Reactions containing sterile Milli-Q
water instead of DNA were used as negative controls. Each PCR
reaction was performed in technical triplicates. The specificity of
the amplification was assessed by melt curve analysis. Gel
electrophoresis was performed to confirm these predictions.

Statistical Analysis
IBM SPSS Statistics 20 software was used to analyze the results. A
Fisher’s exact test was used to examine the association between
the presence of DSV bacteria or the DSV-specific hydA gene and
Parkinson’s disease. The strength of the association was analyzed
by Phi and Cramer’s V test with an outcome value greater than
0.25 indicating a strong relationship. A Mann-Whitney U test
was used to compare DSV quantities between PD patients and
healthy controls, as well as between patients with high and low
levels of disease progression. The significance threshold was set
at 0.05. All tests were two-sided.
RESULTS

Basic Characteristics of
Study Participants
The PD group was well-matched with the control group with
regard to age, gender, and body mass index. Fifteen PD patients
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
presented with idiopathic hyposmia, and fourteen patients
suffered from chronic constipation (fewer than three bowel
movements a week) in contrast to none in the control group
(Table 2).

Association of Desulfovibrio spp., hydA,
and Parkinson’s Disease
In order to establish a relationship between the presence of
Desulfovibrio spp. in the human intestinal tract and the
development of PD, we performed conventional PCR to
specifically detect DSV within fecal samples obtained from PD
patients and healthy controls. All PCR products from control
laboratory strains and fecal samples were tested for target
specificity by gel electrophoresis and subsequent sequencing.
By sequencing, it was confirmed that the species-level primers
specific to D. desulfuricans, D. fairfieldensis, D. piger, and D.
vulgaris showed high specificity, as they amplified 16S rRNA
fragments of expected sizes only from the corresponding
bacterial species. The genus-level primers to detect
Desulfovibrio also amplified fragments of correct sizes from the
fecal samples, but some amplicons were later determined to not
be Desulfovibrio DNA by sequencing. Thus, as the genus-level
primers were not specific, they were excluded from
subsequent experiments.

In total, sixteen PD patients (80%) and eight healthy controls
(40%) were positive with species specific DSV PCR (Table 3).
Some samples from healthy controls were detected with more
than one species of DSV. In PD patients, D. desulfuricans, D.
fairfieldensis, and D. piger were found, whereas for the healthy
controls group, all four examined species were detected (Table 3).
Statistical analysis revealed a strong association between the
presence of DSV and PD (P = 0.022, Fisher’s exact test, Phi
value = 0.408). Due to the non-specificity of the genus-level 16S
rRNA primers, three additional primer pairs targeting the DSV-
specific [FeFe]- hydrogenase (hydA) gene were designed and
tested as a proxy for detecting a wider range of DSV species, as
well as an indicator of putative magnetite production in
participants’ microbiota. Sequencing of the obtained test-PCR
products showed that only hydA-primer pair 1 specifically
amplified DSV-hydA fragments of correct sizes, and thus those
primers were selected for further experiments. As a result, hydA
was detected in fecal samples from all 20 PD patients (100%) and
TABLE 2 | Clinical characteristics of patients and controls.

Patients (n = 20) Controls (n = 20)

Age in years, median (range) 70.0 (58-80) 68.5 (54-79)
Gender, male (%) 60 40
Body Mass Index, kg/m2, median (range) 25.0 (18.3-33.0) 23.5 (18.4-29.4)
Years from PD diagnosis, median (range) 10 (2-26) –

Hoehn & Yahr stage > 2, prevalence (%) 55 –

Daily levodopa dose (mg), median (range) 525 (200-1100) –

Dopamine agonist users (%) 70 –

Probiotic users (%) 10 5
Hypertensive, on medication (%) 25 20
Idiopathic hyposmia, prevalence (%) 75 0
Constipation, prevalence (%) 70 0
Current smokers (%) 0 0
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13 healthy controls (65%).The PCR results were confirmed by
sequencing. In comparison to the results from strain/species-
specific primers, an additional four patients and five healthy
controls were determined to possess DSV bacteria with the
hydA-specific primers. The presence of the DSV-specific [FeFe]-
hydrogenase gene was strongly correlated with PD (P = 0.008,
Fisher’s exact test, Phi value = 0.461).

Quantity of DSV Bacteria in Human Feces
and Parkinson’s Disease
To assess whether there is a difference in DSV quantity between
healthy controls and PD patients, quantitative real-time PCR was
carried out to determine the bacterial amount in the DSV- and
hydA-positive fecal samples from both groups. Standard curves
were constructed for every PCR reaction using serial dilutions of
the constructed standard plasmids with known copy numbers.
The qPCR products were checked by gel electrophoresis. The
results revealed that PD patients had significantly higher
amounts of DSV in their feces than healthy controls (P =
0.044, Mann-Whitney U-test). Although most PD patients had
relatively low levels of DSV (< 105 bacteria/g feces), the quantity
reached to as high as 3.3×107 bacteria/g feces. In the healthy
controls group, the maximum DSV level was approximately
1.9×106 bacteria/g feces (Table 3).

In addition, we examined whether the amount ofDSV present
in PD patient fecal samples correlated with the severity of the
disease. The level of disability exceeded 2.0 points in 11 patients
based on the Hoehn-Yahr classification system. Notably, all
seven patients with DSV loads higher than any of the healthy
controls belonged to this category. Furthermore, the eleven
patients with a more severe disability of PD had a significantly
higher amount of DSV bacteria than the nine patients that were
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
classified below 2.0 points under the Hoehn-Yahr system (P =
0.009, Mann-Whitney U-test). We also investigated the DSV
levels between subjects experiencing constipation (n=14) and not
experiencing constipation (n=26). The statistical result suggested
that the DSV amount was significantly higher in the group
suffering from constipation (P = 0.036, Mann-Whitney U-test).
As idiopathic hyposmia was very prevalent among PD patients,
Mann-Whitney U test was performed to compare DSV quantity
between individuals who suffered from hyposmia (n=15) and
those who did not (n=25). Statistically, DSV bacteria were
significantly more abundant in patients with hyposmia
(P = 0.009).
DISCUSSION

Our results established a significant correlation between DSV
bacteria and PD. The quantity of DSV bacteria in fecal samples
correlated with the severity of the disease, and higher amounts of
DSV were found in PD samples compared to control samples. All
fecal samples of PD patients were positive for the DSV-specific
[FeFe]-hydrogenase gene. DSV bacteria, D. desulfuricans, D.
fairfieldensis, and D. piger, were significantly more common in
PD samples than in control samples. Previous attempts to
correlate DSV abundance with different intestinal diseases have
failed to show correlations (Zinkevich and Beech, 2000; Fite et al.,
2004; Scanlan et al., 2009). In our study, all PD patients harbored
DSV, but as the primers used for hydA detection were not
suitable for qPCR (results not shown), we cannot exclude the
possibility that the patients with low levels of the four examined
DSV species may have high levels of other DSV species. As 20%
of the PD patients had unknown DSV species, these bacteria
TABLE 3 | Summary of the PCR detection and quantification of Desulfovibrio spp. from patients and healthy individuals.

Parkinson’s group (n=20) Control group (n=20)

Gender DSV species detected by
PCR

DSV quantity (bacteria/g
feces)

hydA Gender DSV species detected by PCR DSV quantity (bacteria/g
feces)

hydA

M* D. piger 3.3×107 + M D. fairfieldensis 1.9×106 +
M* D. fairfieldensis 2.6×107 + M D. fairfieldensis 1.0×106 +
M* D. fairfieldensis 2.6×107 + M D. fairfieldensis 5.6×105 +
M* D. fairfieldensis 1.6×107 + F D. desulfuricans 1.9×105 +
M* D. desulfuricans 7.3×106 + M D. desulfuricans, D. vulgaris 7.8×104 +
F* D. fairfieldensis 4.2×106 + F D. desulfuricans 5.1×104 +
M* D. piger 2.2×106 + M D. desulfuricans, D. fairfieldensis, D. piger,

D. vulgaris
2.6×104 +

F D. desulfuricans 1.2×104 + M D. piger 1.3×104 +
M D. desulfuricans 4.4×103 + M None +
F D. desulfuricans 4.1×103 + F None +
F* D. desulfuricans 2.1×103 + F None +
F* D. desulfuricans < 2.0×103 + M None +
F* D. desulfuricans < 2.0×103 + F None +
M* D. desulfuricans < 2.0×103 + M None None
F D. desulfuricans < 2.0×103 + F None None
M D. desulfuricans < 2.0×103 + F None None
M None + M None None
M None + F None None
M None + F None None
F None + M None None
May
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must be isolated and characterized to enable the development of
primers suitable for qPCR. Together, the data strongly suggests
that DSV play a role in the pathogenesis of PD.

DSV have an ability to bind to human colonic mucin, and they
are found at high levels (approximately 104 to 106 bacteria/g feces)
in mucosal samples of the large intestine (Zinkevich and Beech,
2000; Nava et al., 2012; Earley et al., 2015). An important
characteristic of DSV is its ability to perform dissimilatory sulfate
reduction by utilizing sulfate as an electron acceptor for respiration,
thereby producing hydrogen sulfide (H2S) (Carbonero et al., 2012).
H2S can also be produced from cysteine degradation catalyzed by
L-cysteine desulfhydrase, present in intestinal pathogens such as
Salmonella Typhimurium, Helicobacter pylori, Escherichia coli and
in pathogens belonging to genera of DSV, Clostridium,
Enterobacter, Klebsiella and Streptococcus. Additionally, Bilophila
wadsworthia andD. desulfuricans can produce H2S through a third
pathway as a byproduct of taurine catabolism (Carbonero
et al., 2012).

H2S displays Janus-faced characteristics by carrying
physiologic signaling events in neuronal cells and showing
neuroprotective properties while also being highly toxic at high
concentrations (Panthi et al., 2018; Haouzi et al., 2020). In
humans, an acute low-dose H2S gas exposition can cause eye
irritation and olfactory dysfunction whereas a high-dose
exposition can lead to severe central nervous system
dysfunction and even death (Rumbeiha et al., 2016; Haouzi
et al., 2020). As a diffusible gas that is more soluble than CO2

or O2, H2S can enter the blood circulation from the gut
(Tomasova et al., 2016; Haouzi et al., 2020). It is reasonable to
assume that H2S concentrations are raised in the gastrointestinal
wall structures in cases where the gut harbors an increased
amount of H2S-producing DSV. Elevated H2S concentrations
in these structures may result in constipation due to the
compound’s ability to inhibit gastrointestinal motility (Singh
and Lin, 2015). In the present study, the constipation prevalence
among PD patients was as high as 70%. Notably, constipation is a
prevalent ailment in PD and it can precede the motor features of
PD and form a risk for PD onset (Abbott et al., 2001; Lin et al.,
2014; Stirpe et al., 2016). In one study, constipation was reported
to associate with increased quantities of DSV, Cristensenellaceae
and Firmicute bacteria in fecal samples of non-PD subjects
(Jalanka et al., 2019). However, whether DSV species are a
cause or a consequence of constipation in PD remains an
unanswered question. Possibly, DSV species take part in the
evolution of PD after their quantity exceeds a certain
threshold level.

Hydrogen sulfide has been demonstrated to alter
intracellular biochemistry to favor a-Syn aggregation.
Hydrogen sulfide can release iron from mammalian ferritin in
cells and raise iron levels in the cytosolic labile iron pool
(Cassanelli and Moulis, 2001; Hälldin and Land, 2008). The
resultant effect on a-Syn-expressing nerve cells is of concern as
both ferric and ferrous iron are capable of inducing a-Syn
aggregates, the main neuropathologic feature of PD (Joppe
et al., 2019). Overexpression of endogenously produced H2S
can also release mitochondrial cytochrome c into the cytosol,
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where this cytochrome has been observed to form a-Syn
radicals and subsequently induce a-Syn oligomerization, an
early stage in a-Syn aggregation (Guo et al., 2015; Kumar et al.,
2016; Li et al., 2019). The colonic mucosa is normally protected
from H2S by the sulfide oxidation pathway, including the
enzymes sulfide quinone oxidoreductase, persulfide
dioxygenase, rhodanese and sulfide oxidase (Picton et al.,
2002; Ramasamy et al., 2006; Libiad et al., 2014). If DSV, the
dominant SRB in the intestinal mucosa (Zinkevich and Beech,
2000; Nava et al., 2012; Earley et al., 2015), increase in number,
H2S will likely be produced at higher levels that may exceed the
capacity of the detoxifying enzymes. In addition, inflammation
decreases the detoxification capacity of the mucosal tissue,
resulting in an increased level of H2S (Flannigan et al., 2013).
The observation that smoking induces a causally protective
effect on PD occurrence lends support for the role of H2S and
its interaction with detoxifying enzymes in PD pathogenesis
(Mappin-Kasirer et al., 2020). It is known that cyanide, present
in variable amounts in cigarette smoke, reacts with H2S under
the influence of rhodanese to form thiocyanate, thus resulting in
lowered H2S levels (Picton et al., 2002).

The enteroendocrine cells of the gut, which display neuron-
like properties and are connected to autonomous enteric
nerves, express a-Syn (Chandra et al., 2017). Anatomically,
enteroendocrine cells extend their apical cytoplasmic processes
towards the gut luminal surface. Thus, it is reasonable to argue
that this feature will increase the DSV-borne H2S exposure risk.
In addition, overgrowth of DSV may induce colonic mucosal
barrier dysfunction by influencing the metabolism of butyrate,
a short-chain fatty acid (SCFA), which has been reported to be
the major energy substance for the colonic epithelium
(Chapman, 2001). Overgrowth of H2S-producing bacteria
such as DSV poses an apparent threat to this barrier function,
as sulfides impair the oxidation of butyrate (Babidge et al.,
1998). In this context, it has been shown that PD patients
exhibit increased intestinal permeability correlating with
increased intestinal mucosa staining for a-Syn (Forsyth et al.,
2011). In addition, lipopolysaccharides produced by DSV can
apparently increase intestinal permeability and a-Syn
expression (Kelly et al., 2014; Fuke et al., 2019; Gorecki et al.,
2019). Notably, the mucin layer of the colon consists primarily
of glycoproteins, which carry sulfate residues, and degradation
products of these sulfomucins serve as a source of sulfate for
SRB such as DSV (Derrien et al., 2008). Further, Akkermansia
muciniphila and Bifidobacterium, abundant inhabitants of the
human gut, can degrade mucin (Derrien et al., 2008; Ruas-
Madiedo et al., 2008). Several studies on gut microbiota in PD
have shown increases in the relative abundance of these bacteria
(Chiang and Lin, 2019; Shen et al., 2021). Bifidobacteria are
commonly available as commercial products, and their
abundance in the gut is reported to correlate to the levodopa
dose in PD (Wallen et al., 2020). A. muciniphila, in addition to
its ability to degrade mucin, seems to promote mucus thickness
and stimulate mucus turnover rate, thus apparently freeing
considerable amounts of sulfate for SRB (Zhou, 2017). Support
for this interaction between A. muciniphila and SRB is provided
May 2021 | Volume 11 | Article 652617

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Murros et al. Desulfovibrio Bacteria and Parkinson’s Disease
by a study on the metabolome profile of PD patients wherein
significant changes in sulfur metabolism, including H2S, were
verified through computational modeling, and the observed
changes were driven by A. muciniphila and B. wadsworthia
(Hertel et al., 2019). As a pathogenetic model, it is justifiable to
propose that excessive production of H2S by gut DSV, cross-fed
by A. muciniphila, leads to a-Syn oligomerization and
aggregation in the adjacent enteroendocrine cells. From there,
a-Syn oligomers may make their way to the brain via the vagus
nerve. This proposed model agrees with the initial proposal by
Braak and colleagues that PD is caused by a pathogen capable of
passing through the mucosal barrier of the gastrointestinal tract
(Braak et al., 2003). Routes other than the vagal route for a-Syn
oligomer transport come into consideration as well. Elevated
levels of oligomeric a-Syn have been detected in plasma
samples of PD patients, and it has been documented that a-
Syn can cross the blood brain barrier (BBB) in both the blood-
to-brain and brain-to-blood direction (El-Agnaf et al., 2006; Sui
et al., 2014). If DSV-produced H2S plays a central role in the
pathogenesis of PD, it is reasonable to presume that, in addition
to DSV, other H2S-producing bacteria, such as H. pylori and
Clostridium species, may also induce PD (Murros, 2021). In
fact, people with PD have an increased prevalence of H. pylori
infections, and eradication of this pathogen has been reported
to improve motor functions in PD patients (McGee et al., 2018).
Recently, a population-based cohort showed that Clostridium
difficile infections temporarily elevate the risk of PD (Kang
et al., 2020). Although increased production of H2S may play a
pivotal role in PD pathogenesis, inflammation caused by DSV
and other infective agents like curli-producing E. coli and
Proteus mirabilis evidently play a role as well (Chen et al.,
2016; Choi et al., 2018). Experimentally, an exposure to bacteria
that produce the curli protein results in a-Syn depositions in
both the gut and the brain (Chen et al., 2016). Furthermore, it
has been shown that LPS can accelerate the synthesis of curli
fibrils (Swasthi and Mukhopadhyay, 2017). After a primary
inflammatory event, a sustained low-level inflammation may
develop, resulting in increased intestinal permeability, leakage
of inflammatory agents, and ultimately a chronic systemic
immune response that may weaken the BBB (Houser and
Tansey, 2017).

The potential capability of DSV to produce magnetite
(Fe3O4) deserves special attention, as uncoated magnetite
nanoparticles can accelerate a-Syn aggregation (Joshi et al.,
2015). Most of the DSV contain a [FeFe]-hydrogenase
metalloenzyme system, which catalyzes both the oxidation
and reduction of molecular hydrogen and protons,
respectively (Pereira et al., 2011). Based on studies on D.
vulgaris, it has been suggested that the reduction of soluble
ferric iron to ferrous iron is a periplasmic process that requires
the presence of a [FeFe]-hydrogenase (Park et al., 2008). An
interaction between ferrous iron and amorphous ferric
hydroxide can result in magnetite formation, and it has been
shown that magnetite can be formed from amorphous ferric
hydroxide in the presence of iron- and sulfate-reducing bacteria
(Chistyakova et al., 2004; Lenders et al., 2016). D. desulfuricans
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has the ability to synthesize magnetite (Lovley et al., 1993), and
this DSV species was the most frequently found DSV species in
the patients included in this study. Notably, magnetite
production in anaerobic condition by dissimilatory iron-
reducing bacteria is coupled with energy-metabolism and the
produced magnetite is extracellular (Konhauser, 1997).
Magnetite nanoparticles can be absorbed into intestinal cells
and blood circulation by endocytosis (Fröhlich and Roblegg,
2012; Bergin and Witzmann, 2013). In a study on skin samples
of patients having PD, low-temperature magnetometric
measurements revealed apparent superparamagnetic
magnetite particles in the dermal layer of several PD patients,
and it was proposed that these particles were probably gut-
borne and produced by DSV (Murros et al., 2019). Support for
the ability of magnetite to accumulate in the brain is provided
by a study on 822 brain specimens sampled from seven human
cadaver brains (Gilder et al., 2018). However, the possible
connection between bacterial magnetite nanoparticles and PD
pathogenesis is still speculative; magnetometric data from stool
samples and biopsy specimens from the colon and brain of PD
patients are currently unavailable.

In the present study, specific DSV species were identified in
most of the fecal samples of PD, with the quantities of DSV
correlating with the PD severity. In addition, the DSV-specific
[FeFe]- hydrogenase gene was found in all PD samples indicating
an existence of other unidentified DSV species. These findings
suggest that DSV may be an etiological agent promoting
microbiome-related PD pathogenesis. We present the following
pathogenetic model. First, DSV colonize the intestine
permanently, increase in numbers and produce hydrogen
sulfide in amounts exceeding the H2S detoxification capacity of
the mucosal sulfide oxidation pathway (especially the rate-
limiting sulfide quinone oxidoreductase), while also producing
LPS and magnetite (in at least some DSV species) near the
enteroendocrine cells. These agents subsequently induce a-Syn
ol igomerizat ion and aggregat ion in the intes t ina l
enteroendocrine cells. Secondly, toxic a-Syn oligomers spread
in a prion-like manner, traveling from enteroendocrine cells to
the brain mainly via the vagal nerve and possibly via the
bloodstream, where they ultimately cause damage to the brain
dopaminergic system. In addition, magnetite nanoparticles
produced by DSV may pass into the bloodstream from the
intestine, cross the BBB, and accelerate a-Syn aggregation in
the brain. This proposed model should be further evaluated in
future research. Future studies could, in the prevention and
treatment of PD, focus on developing methods to eradicate
DSV from the human intestine by antibiotics, phage therapy,
fecal transplantation, diet changes, or a combination of these
interventions. Isolation of DSV from the human intestine is
critical, as it allows for designing better primers, antibiotic
profiling and phagotype screening. Isolation of these bacteria
also enables genome sequencing of PD-associated DSV and
genomic comparison to environmental and healthy-carrier
isolates of DSV, potentially aiding in the identification of
therapeutic targets among the gene products specific to PD-
associated DSV.
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