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Recent studies have suggested the existence of a blood microbiome in the healthy host.
However, changes in the blood microbiome upon bloodstream infection are not known.
Here, we analyzed the dynamics of the blood microbiome in a porcine model of
polymicrobial bacteremia induced by fecal peritonitis. Surprisingly, we detected
bacterial populations in the bloodstream even before the infection, and these
populations were maintained over time. The native blood microbiome was notably
taxonomically different from the fecal microbiome that was used to induce peritonitis,
reflecting microbial tropism for the blood. Although the population composition after the
infection was similar to that of the native blood microbiome, new bacterial strains entered
the bloodstream upon peritonitis induction as clinical symptoms relevant to sepsis
developed. This indicates that the bacteria detected in the blood before peritonitis
induction were derived from the blood rather than a contamination. Comparison of the
functional pathways enriched in the blood and fecal microbiomes revealed that
communication and stress management pathways are essential for the survival of the
blood microbiome.

Keywords: blood microbiome, peritonitis, porcine (pig) model, bloodstream infection (BSI), dysbiosis
INTRODUCTION

Bloodstream infection (BSI) is defined as a medical condition, in which viable bacteria or fungi are
present in the bloodstream (Viscoli, 2016). BSI is a major threat to human health, as it can cause
sepsis and organ dysfunction (Cecconi et al., 2018). A survey of the incidence of BSI in America and
Europe during the years 1974-2008 reported rates between 80 and 189 per 100,000 individuals per
year; this number has increased in recent years (Laupland, 2013; Laupland et al., 2020).
Furthermore, many cases progress to critical conditions. BSI is estimated to cause 79,000–94,000
Abbreviations: BSI, bloodstream infection; IL, interleukin; KEGG, Kyoto Encyclopedia of Genes and Genomes; MNP,
mannose-binding lectin(MBL)-coated magnetic nanoparticles; OTU, operational taxonomic unit; PICRUSt, Phylogenetic
Investigation of Communities by Reconstruction of Unobserved States.
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deaths per year in North America and 157,000 deaths per year in
Europe (Goto and Al-Hasan, 2013).

Blood culture is a well-established method of detecting BSI,
but the blood culture findings are not always clinically relevant.
According to a recent study, 42.6% of 2,659 patients with
suspected sepsis had a positive blood culture result, whereas
the remaining 1,526 patients (56.4%) were blood culture-
negative (Nannan Panday et al., 2019). False positives caused
by contamination are a concern when testing for BSI. For
example, according to some studies, only 51% of blood
culture-positive samples represent actual BSI, 41% are a result
of contamination, and 8% have unknown clinical significance
(Weinstein et al., 1997; Pien et al., 2010). The expected sensitivity
and specificity of blood culture findings vary depending on the
experimental conditions, including collection time, skin
preparation prior to sampling, sampling site, and sample
volume (Lamy et al., 2016).

High-throughput sequencing is an alternative technique for
detecting microbes in the blood, even without culturing (Grumaz
et al., 2016). However, this highly sensitive method raises some
questions about BSI, i.e., on the existence of the blood
microbiome [reviewed in (Castillo et al., 2019)]. Although the
bloodstream is considered to be a sterile environment, recent
evidence suggests that it may contain bacteria (or a microbiome),
which may also colonize other organs. According to a 1969
study, metabolically active bacteria might be present in the blood
(Tedeschi et al., 1969), and recent studies propose that bacteria
may use the bloodstream as a transport system. For example,
bacteria have been identified in the blood and adipose tissue
samples from patients with type 2 diabetes (Massier et al., 2020),
and in the liver of patients with non-alcoholic fatty liver disease
(Sookoian et al., 2020). Furthermore, Porphyromonas gingivalis
derived from chronic periodontitis is thought to contribute to
Alzheimer’s disease (Dominy et al., 2019), leading to a
speculation that the human microbiome can disseminate to
other organs via the bloodstream.

Nonetheless, most of the above studies analyzed the blood
microbiome at a single time point, making it difficult to rule out
the possibility of contamination. Suppose the microbiota is stably
maintained in the bloodstream. In that case, it should be
detectable over time, like other microbiomes in the body.
Concordance between data for different time points could
support the existence of the blood microbiome. However, this
type of data is difficult to collect for human samples.
Furthermore, these data should be assessed alongside blood
culture results. Even in cases of BSI, a limited number of
bacterial cells are present in the blood (approximately 0.1 to
100 cells per 1 mL of infected blood) (Lamy et al., 2016). If in fact
the blood microbiome exists, it is questionable why these bacteria
are not detected by blood culture. Hence, a controlled
experimental environment is required to evaluate the
relationship between BSI and the blood microbiome.

Recently, we have developed a porcine model of fecal-induced
peritonitis (Park et al., 2019). In the model, we observed
symptoms of organ dysfunction approximately 7 hours
(median) after introducing feces into the pig abdomen.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
The likelihood of detecting bacteria by blood culture also
gradually increased after the induction. Here, we used the same
blood samples as those obtained in a previously reported study of
the porcine fecal-induced peritonitis model (Park et al., 2019) to
investigate the role of the blood microbiome in bacteremia.
Surprisingly, we detected many bacterial cells in the pig blood
even before fecal induction. These bacteria likely constitute the
blood microbiome. In addition, the bacterial species identified by
blood culture were not the dominant species detected by 16S
rRNA gene sequencing, although their increases over time
tended to be the similar over time. The data presented herein
provide new insights into the relationship between BSI and the
blood microbiome.
MATERIALS AND METHODS

Animal Experiments
Six domestic pigs (Sus scrofa domesticus), weighing
approximately 45–55 kg each, were used, as described
previously (Park et al., 2019). Autologous feces were collected
1 day before the experiment and preserved overnight at room
temperature. The pigs were anesthetized by an intramuscular
administration of zolazepam (zoletil, 5 mg/kg; Virbac, Carros,
France). The animals were scrubbed with povidone-iodine soap
and shaved, and monitoring devices , including an
electrocardiograph, pulse oximeter, and a temperature probe,
were attached. Then, the animals were intubated using an
endotracheal tube and connected to a mechanical ventilator
(Drager Fabius GS, Lubeck, Germany) providing an inhalation
agent (sevoflurane; Baxter Inc., Deerfield, IL) to maintain
adequate ventilation with anesthesia. A sterile surgical drape
for the abdomen was applied after meticulous dressing with
povidone-iodine. Under the guidance of ultrasound, two 6-Fr
arterial catheters (Merit Medical, South Jordan, UT) were
inserted into the two femoral arteries to allow invasive blood
pressure monitoring and repetitive blood sampling for blood
culture. The feces (1 g/kg) that had been collected the previous
day were diluted in 5% dextrose saline (10 g/dL) and warmed at
37°C for 1 hour in a water bath. A midline surgical incision was
made in the abdomen, and the feces were introduced into the
abdominal cavity. Using the aseptic technique, blood samples
(10 mL) were abstracted via the femoral arterial catheter at 1 or 2
hour intervals, and split between a bottle containing DNA/RNA
Shield reagent (Cat # R1150; Zymo Research, Irvine, CA), and a
pair of bottles for aerobe and anaerobe blood culture (BD
BACTEC, Becton Dickinson, NJ). The pairs of blood culture
bottles were then immediately placed in a blood culture system
(BD BACTEC). The final microbiological report on blood
culture findings was obtained 5 days after the experiment from
the Department of Laboratory Medicine (Seoul National
University Hospital, Seoul, Republic of Korea). After the
induction with feces, the pigs were monitored for 12 hours.
The primary goal was to maintain the mean arterial pressure
over 65 mmHg, with maximal fluid (balanced crystalloid
solution) and vasopressor (norepinephrine, vasopressin, and
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epinephrine) support. All procedures were approved by SNUBH
IACUC (BA1804-246/040-01).

Blood Microbiome Capture
Mannose-binding lectin (MBL)-coated magnetic nanoparticles
(MNPs; 2 mg/mL) were added to 3 mL of the blood–DNA/RNA
Shield solution (Cat # R1150, Zymo Research), and the samples
were incubated for 20 min at room temperature. Captured
bacteria were harvested using N52 magnets (BYO88-N52; KJ
Magnetics, Pipersville, PA) and washed with PBS to remove
other blood components. The captured bacteria were stored in
the DNA/RNA Shield reagent at –20°C before use.

Fecal Sample Preparation for
Microbiome Analysis
Autologous feces (3 mL) from each pig were diluted in dextrose
saline (10 g/mL) in a tube of DNA/RNA Shield reagent (Cat #
R1150, Zymo Research) and stored at –20°C before analysis. Total
genomic DNA was extracted using the MoBio PowerFecal® DNA
Isolation Kit (Cat # 12830-50, MO BIO Laboratories, Carlsbad,
CA) and FastPrep-24™ (MP Biomedicals, LLC, Irvine, CA).

DNA Extraction From ZymoBIOMICS
Microbial Community Standard
Total genomic DNA was extracted from 20 mL ZymoBIOMICS
Microbial Community Standard (Cat # D6300, Zymo Research)
using the ZymoBIOMICS DNA Miniprep Kit (Cat # D4300,
Zymo Research).

Library Preparation
Beads with the captured bacteria were incubated at 37°C for
1 hour in a solution of lysozyme (10 mg/mL; Cat # 10837059001;
Roche, Basel, Switzerland) in 10 mM Tris-HCl (pH 8.0). The
beads were then transferred to lysis buffer (10 mM Tris-HCl [pH
7.4], 10 mM EDTA, and 2% SDS) containing 0.5 mg/mL
proteinase K (Cat # B-2008; GeNetBio, Daejeon, Republic of
Korea), and incubated overnight at 37°C. Genomic DNA was
extracted from cell lysates by adding a phenol–chloroform–
isoamyl alcohol mixture, followed by overnight incubation at
–20°C. Next, DNA was precipitated with 0.6 volumes of
isopropanol and 0.1 volume of 3 M sodium acetate (Cat #
SR2006-050-55; Biosesang, Seongnam, Republic of Korea).
After washing with 70% ethanol, the pellet was resuspended in
100 mL TE buffer for 30 min at 37°C. Then, 1 mL RNase A (Cat #
B-2007, GeNetBio) was added, and the samples were incubated
for 30 min at 37°C to remove RNA contamination. DNA was
purified using Zymo DNA Clean & Concentrator-5 Kit (Cat #
D4014, Zymo Research) and eluted in 20 mL RNase-free water.

Sequencing of the V34 Region of the
16S rRNA Gene
Because all samples (except the fecal samples) contained a
limited amount of DNA, RT-Q-PCR was performed using
MIC qPCR (BioMolecular Systems, Upper Coomera, QLD) to
determine the number of amplification cycles before saturation
(typically, 20–28 cycles). After an initial PCR with V34 primers,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
eight cycles of adapter-ligation PCR were performed. The final
library was sequenced using Illumina MiSeq (Illumina, San
Diego, CA) in a 2 × 250 bp configuration.

Fluorescence In Situ Hybridization (FISH)
for Native Blood Microbiome
The bacterial samples enriched by the human recombinant
mannose-b ind ing l e c t in (hrMBL)-coa ted magne t i c
nanoparticles (MNPs) were fluorescently stained with 4′,6-
diamidino-2-phenylindole (DAPI), and Cy3-labeled DNA
FISH probes (5’-CTTGTACACACCGCCCGTCACACC-3’)
targeting universal bacteria-specific ribosomal RNA sequences
for quantitating the blood microbiome in the control blood
sample from a porcine model. To magnetically concentrate the
sample, we adopted a sinusoidal-shaped polydimethylsiloxane
(PDMS) microfluidic device (300 µm × 200 µm; width × height)
to capture the MNP-bound bacterial cells by locating a magnet
(BYO88-N52, KJ Magnetics, PA, USA) underneath the device.
Then, FISH reagents were sequentially injected by a syringe
pump at a flow rate of 10 mL/min into the microfluidic channel.
For fixation and permeabilization, the bacterial samples
magnetically sequestered in the device were treated in the
order of 24% ethanol(v/v) in 1X Tris-Buffered Saline (TBST)
with 5 mMCaCl2 (5 min), washing buffer (3 min), 99%methanol
(5 min), and washing buffer (3 min). 1X TBST supplemented
with 5 mM CaCl2 was used for the washing buffer. Then, DNA
FISH probes suspended in a hybridization solution (0.5 µM)
were incubated with the samples (1 hour at 45°C), followed by a
DAPI staining (30 min) and washing by 2X Saline Sodium
Citrate Buffer (SSC) buffer. Finally, FISH images were obtained
with a confocal microscope (LSM 780 Configuration 16 NLO
multi-photon confocal microscope, Zeiss, Germany) with DAPI
and Cy3 fluorescence filter sets.

Taxonomic Analysis
PCR amplicons obtained using the Illumina V34 PCR primers
were selected using ipcress (provided in exonerate version 2.2)
after concatenating paired-end reads (Slater and Birney, 2005).
Next, taxonomic information was assigned to each paired read
using the Ribosomal Database Project (RDP) classifier (version
2.11) (Wang et al., 2007) and the RDP database (release 11.5)
(Cole et al., 2014), at a confidence score > 0.8. The cut-off was
determined by sequencing of the ZymoBIOMICS Microbial
Community Standard, as described in Supplementary
Figure 1. Operational taxonomic units (OTUs) were defined
by clustering concatenated V34 amplicons at 99% identity
using VSEARCH (version 2.13.6) (Rognes et al., 2016)
(Supplementary Data 1). Ambiguous clusters with > 5% of
reads assigned to a different genus than the seed genus assigned
to the same cluster were removed. OTUs with low abundance,
i.e., accounting for less than 0.4167% of all OTUs in all analyzed
samples (N=6), were excluded from the taxonomic analysis.
After defining genus-level clusters, additional taxonomic levels
(from the genus to the phylum, including the family, order, and
class) were defined. OTUs that were not present at the initial
time point (i.e., before the induction of fecal peritonitis) were
August 2021 | Volume 11 | Article 676650
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identified after selecting clusters with no reads from the initial
samples. Changes in the initial microbiome after fecal induction
were analyzed by using SourceTracker2 with default options
(Knights et al., 2011). The proportions of bacterial species from
unknown sources for the first three time points (T02, T04, and
T05) and the last three time points (T10, T11, and T12) were
compared using Wilcoxon test.

Pathway Analysis Using Phylogenetic
Investigation of Communities by
Reconstruction of Unobserved
States (PICRUSt2)
Differences in biological pathways enriched in different
microbiome populations were investigated using PICRUSt2
(version 2.2.0-b) (Douglas et al., 2020), by determining the
relative enrichment of biological pathways in each sample.
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs
and pathways inferred at the genus level (99% OTUs) were
entered into the PICRUSt2 metagenome pipeline. Results of the
KEGG ortholog analysis were assigned to KEGG pathways based
on PICRUSt2-appended default files. KEGG ortholog
enrichment values without pathway information were
discarded, and the remaining values were summed. If KEGG
orthologs belonged to more than two KEGG pathways, they were
added in individually. The proportion of each pathway between
the blood microbiome over time and the fecal microbiome used
to induce peritonitis were compared using one-sample
Wilcoxon test.
RESULTS

Blood Microbiome in the Porcine Model
Before Peritonitis Induction
Because the number of bacteria in the blood is estimated to be
0.1–100 colony-forming units (CFUs)/mL, even in BSI (Lamy
et al., 2016), we expected to observe similar numbers for the
blood microbiome in the porcine bacteremia model. First, we
enriched bacteria present in 3 mL blood using opsonin-coated
magnetic beads (Kang et al., 2014). We then extracted the
genomic DNA and performed 16S rRNA gene sequencing
using Illumina V34 primers. For the 12 time points analyzed,
we obtained 116,062.39 paired reads, on average, per sample
from each of the six animals (median, 102,654 reads; minimum,
38,160 reads; maximum, 333,130 reads; all reads are available at
the ENA under the accession ID PRJEB39083). We next
clustered the reads to define OTUs and performed taxonomic
analysis (from the phylum to genus level) using the RDP
classifier (Wang et al., 2007) (See Materials and Methods for
details; Supplementary Data 2 for genus and Supplementary
Data 3 for phylum).

Surprisingly, we observed many bacterial species at the initial
time point, i.e., even before the induction of fecal peritonitis.
Furthermore, the bacterial populations did not change much over
12 h (Figure 1, phylum level; Supplementary Figure 2, genus
level). Firmicutes and Bacteroidetes were the most abundant phyla
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
in the fecal microbiome, while Proteobacteria was the most
abundant phylum in the blood. The bacterial composition of
four out of six animals tested (P1120, P1126, P1211, and P1219;
Figure 1) was relatively constant, with few perturbations (e.g., at
11 h post-induction in P1120 and 6 h post-induction in P1219).
The microbiome composition in the two other animals (P1016
and P1103) showed some fluctuations during the early induction
stage, but it stabilized 4 h after the induction.

To confirm the presence of microbiome before the fecal
induction, we also performed a DNA-FISH experiment using
the bead-captured bacterial cells and a universal probe
(5 ′-CTTGTACACACCGCCCGTCACACC-3 ′) , which
hybridizes to the 16S rRNA sequences of 98% bacterial species
available in the Genome Taxonomy Database (GTDB; release 89)
(Parks et al., 2018) (Supplementary Figure 3). Although the
blood culture findings for all samples were negative, we verified
that the blood samples obtained before peritonitis induction
contained bacteria as observed in the FISH images. These
observations suggest the presence of the blood microbiome in
the porcine bacteremia model even before obtaining a positive
blood culture result.

Characterization of the Initial Blood
Microbiome in the Porcine Model
It is possible that the microbiome detected in the blood samples
may have reflected the native blood microbiome or
contamination of the arterial catheter used for sampling or
contamination by the skin microbiome, as discussed previously
(Trautner and Darouiche, 2004; Horiba et al., 2018; Okuda et al.,
2018). Further, because the number of bacterial cells in the
samples was small, the observed microbiome could represent
an uncontrollable low biomass contamination from an unknown
source, known as the “KitOme” (Stinson et al., 2019). If the
majority of identified bacteria came from an accidental
contamination, one would expect to not see any discernible
patterns in the blood microbiome profiles. However, if the
bacteria were blood microbiome related to peritonitis
induction, we would detect new types of bacteria that entered
the bloodstream.

To distinguish between the two possibilities, we used
SourceTracker2 (Knights et al., 2011) and compared the blood
microbiomes before and after peritonitis induction (Figure 2;
Supplementary Data 4). We assumed that the initial time point
would be the “sink” for “the native blood microbiome” and
attempted to identify their trends over time. In all animals, the
bacterial population detected at the initial time point (sink)
decreased gradually until approximately 6–8 hours after
peritonitis induction and then remained constant until 12
hours after the induction. This trend matched the physiological
symptoms of sepsis (Park et al., 2019). Therefore, we speculated
that the blood microbiome was altered approximately 6–8 hours
after the fecal induction. We compared the proportion of species
from unknown sources at the early time points with those at the
late time points and observed significant differences in five out of
six animals with Wilcoxon test (Figure 2G). By contrast, when
we used 12-hour samples as the sink, we did not observe any
August 2021 | Volume 11 | Article 676650
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trends. We then set the first three time points as T00, T02, and
T04, and the last three time points as T09, T10, and T11, and we
used Wilcoxon test to compare the two groups. We detected a
significant difference between the early and late time points in
only one animal (Supplementary Figure 4).

To validate the above findings ruling out low biomass
contamination, we also analyzed two public datasets: a serially
diluted mock community standard (Karstens et al., 2019) and a
serially diluted Salmonella bongori culture (Salter et al., 2014)
(Supplementary Figure 5). As expected, when we used the mock
community standard as the sink, we observed a linear reduction
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
in its proportion as the dilution factor increased. However, when
we used the most dilute sample as the sink (mimicking low
biomass at the initial time point), we observed no changes in the
population. Similarly, for the S. bongori study (Salter et al., 2014),
when we used 107 cells or 103 cells as the sink, we found that the
populations were different from those in the blood microbiome.
We hence concluded that the blood microbiome that we detected
herein does not represent a contamination associated with
sample preparation or “noise” (KitOme), even for the
microbiome detected at the initial time point, which may be
the “native blood microbiome” of each animal.
A B

D

E F

C

FIGURE 1 | (A–F) Percentage of operational taxonomic units (OTUs) from each phylum identified in the blood of pigs with fecal-induced peritonitis. The proportion
of each phylum in the blood microbiome was maintained throughout the induction period, which was different from the observations for the fecal microbiome.
Although Proteobacteria was the major phylum identified in the blood, its percentage contribution varied in each of the six animals tested. The proportions at the
genus level are shown in Supplementary Figure 2.
August 2021 | Volume 11 | Article 676650
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Detection of Altered Blood Microbiome
After Peritonitis Induction
Although SourceTracker2 analysis revealed noticeable changes in the
blood microbiome after peritonitis induction, the composition of the
overall bacterial population was relatively consistent. We speculated
that the pre-existing bloodmicrobiomemight mask small changes in
the blood microbiome caused by peritonitis induction. To test this,
we computationally discarded OTU clusters containing any OTUs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
observed at the initial time point, thus obtaining newly emerged
OTUs for each sample. We noted gradual changes in bacterial
populations as BSI progressed (Figure 3).

At the phylum level, the blood and fecal microbiomes harbored
different amounts of Proteobacteria and Firmicutes. Proteobacteria
was the most abundant phylum in the bloodstream of all animals
but was not dominant in the feces. Firmicutes showed the opposite
trend. We observed this difference regardless of computational
A B

D E F

G

C

FIGURE 2 | SourceTracker2 analysis indicating that the population of novel bacterial strains not present at the initial time point increased throughout the induction
period. (A–F) The microbiome observed at the initial time point is designated as the “source”. The proportions of species that originated from the source were then
tracked throughout the induction period. The proportion of unknown strains increased gradually until approximately 7 to 8 h after the induction before being
maintained. (G) Wilcoxon test was used to determine the significance between first three time points (2, 4, 5 hours after induction) and the last three time
points (10, 11, 12 hours after induction), and meaningful increase of an “unknown” microbiome was observed in five of six animals. * denotes the p-value of
the Wilcoxon test is less than 0.05. N.S., Not Significant.
August 2021 | Volume 11 | Article 676650
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filtering of the intrinsic microbiome population. Interestingly,
Bacteroidetes, the representative gut microbiome phylum (Crespo-
Piazuelo et al., 2019), was detected at all-time points, and its relative
abundance gradually increased over time; this was not observed in
the absence of the background bloodmicrobiome (the light blue line
in Figure 3). However, the composition of the blood microbiome
did not change, even when we discarded the background
populations (i.e., the microbiome detected before the fecal
induction) from the analysis.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Biological Pathways Enriched in the
Blood Microbiome
Genes and pathways enriched in a particular population are
more relevant to microbiome function than bacterial
composition (Gevers et al., 2014; Goodrich et al., 2014). In the
porcine bacteremia model used in the current study, the blood is
a unique environment for bacteria. It contains high levels of
inflammatory cytokines and immune cells, with a unique
composition of chemical compounds, such as lactic acid
A B

D

E F

C

FIGURE 3 | (A–F) Percentage of newly emerged operational taxonomic units (OTUs) from each phylum in the blood of pigs with fecal-induced peritonitis. The microbiome
observed at the initial time point was discarded computationally from data for all other time points, and the proportion at each time point was re-calculated.
August 2021 | Volume 11 | Article 676650

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Hyun et al. Longitudinal Analysis of Blood Microbiome
(Park et al., 2019). Therefore, we performed PICRUSt2 analysis
to identify the putative functions of the blood microbiome
(Figure 4). In the analysis presented above, we confirmed that
new bacterial phyla have emerged into the bloodstream after
peritonitis induction, and the populations of the native blood
microbiome are notably different in each animal. So we utilized
OTUs subtracting the native blood microbiome for this analysis
to identify pathways essential for bacteria to survive in the
bloodstream. Pathways related to ABC transporters, two-
component systems, and oxidative phosphorylation were
enriched in the blood microbiome. By contrast, pathways
related to purine metabolism, pyrimidine metabolism, and
ribosome expression were enriched to a lesser extent than
observed in the feces. To validate these findings, we used
Wilcoxon test to reveal pathways that are significantly enriched
or depleted.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
The ABC transporters and two-component systems
constitute essential mechanisms that allow bacteria to
appropriately respond to environmental signals (Messenger
and Barclay, 1983; Levy, 2000; Gebhard, 2012; Mattos-Graner
and Duncan, 2017). For example, some bacteria utilize ABC
transporters to regulate acid–base balance and metal iron
homeostasis (Messenger and Barclay, 1983; Gebhard, 2012).
Furthermore, bacteria can use these transporters to defend
themselves against antimicrobial peptides and proteins in the
bloodstream (Levy, 2000; Gebhard, 2012). Two-component
systems, each composed of a histidine kinase and a response
regulator, are major bacterial signaling pathways that sense
environmental cues (Mascher et al., 2006; Mattos-Graner and
Duncan, 2017), such as pH (Gao and Lynn, 2005; Liu and Burne,
2009) and oxidative stress (Ortiz de Orué Lucana et al., 2012).
They are also tightly linked to bacterial responses to the host
A B

D

E F

C

FIGURE 4 | (A–F) Pathways differentially enriched in the blood microbiome. Pathways related to ABC transporters, two-component systems, and oxidative
phosphorylation were over-represented in the blood microbiome compared with those in the fecal microbiome. By contrast, pathways related to central metabolism,
such as purine and pyrimidine metabolism, and ribosome-related pathways, were under-represented. Wilcoxon test was used to check the significance of the
enrichment and depletion of each pathway. *denotes the p-value of the Wilcoxon test is less than 0.05.
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immune system (Barrett and Hoch, 1998; Kawada-Matsuo and
Komatsuzawa, 2017). Therefore, it is likely that cells in the
microbiome would utilize these systems to survive.

Conversely, purine metabolism, pyrimidine metabolism, and
ribosome expression were suppressed in the blood microbiome,
which may limit cell proliferation and growth (Samant et al.,
2008; Polymenis and Aramayo, 2015; Shaffer et al., 2017).
Because the bloodstream is a harsh environment, cells therein
may downregulate essential metabolic functions to survive.
Simultaneously, reducing cell proliferation or maintaining low
metabolic activity (e.g., dormancy) may enable bacteria to escape
immune surveillance in the blood (Lennon and Jones, 2011;
Rittershaus et al., 2013).
DISCUSSION

Here, we analyzed the blood microbiome in a bacteremia-induced
porcine model. Microbiota transmission between organs,
presumably via the bloodstream, has been reported in previous
studies (Dominy et al., 2019; Massier et al., 2020; Sookoian et al.,
2020). However, based on these studies, it is unclear how the blood
microbiome is maintained because these studies provide only a
“snapshot” view of a single point in time. By monitoring the blood
microbiome over time, we here confirmed that each animal
maintains a relatively consistent blood microbial population.
Furthermore, by identifying potential pathways enriched in this
population, we revealed that the bloodstream bacteria might have
adapted to respond to the blood environment by using ABC
transporters and two-component systems. On the other hand, the
bacteria may not grow under these unfavorable conditions and,
hence, pathways related to nucleotide biosynthesis may be
suppressed under these conditions.

The biggest challenge to monitoring bacteria in the bloodstream
is their low number compared with the microbiome at other body
sites; such a low number means that even a minor contamination
can have a major effect on the detection results (Eisenhofer et al.,
2019; Karstens et al., 2019). To overcome this, we here selectively
enriched bacteria from the blood using opsonin-coated MNPs
(Kang et al., 2014) and then identified them by 16S rRNA gene
sequencing. Nonetheless, it could have been difficult to distinguish
the actual bacteria from bacterial DNA from the debris circulating
in the bloodstream because the sequencing-based method is
destructive (i.e., preparation for analysis involves bacterial cell
lysis). Therefore, after capturing the bacteria with MNPs, we
performed RNA-FISH targeting the common region within the
bacterial 16S rRNA; this confirmed that bacteria were indeed
present in the bloodstream, even before the induction of
peritonitis (Supplementary Figure 3). Because of cell membrane
integrity and a high abundance of ribosomal RNAs inside the cell,
and because it is unlikely that DNA debris from as similar bacterial
species can be observed over time, we concluded that the signal
from the dead bacteria is not prominent in the analysis.

Dormant bacteria, which are metabolically suppressed and
not immediately culturable, are quite common in the blood
(Potgieter et al., 2015), and bacterial species that we identified
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
by sequencing in the current study may have also been dormant.
This may explain why we observed a discrepancy between the in
vitro blood culture and the sequencing data. It is nonetheless
surprising that similar (possibly dormant) bacterial populations
were maintained in the blood over time, even after peritonitis
induction, because the biological function of dormant bacteria is
not well known. Further studies are required to understand their
roles in the bloodstream.

Another common source of contamination in blood
microbiota studies is the skin microbiome. According to one
study, Firmicutes (55.6% of relative abundance), Bacteroidetes
(20.8%), Actinobacteria (13.3%), and Proteobacteria (5.1%) are
representative resident phyla in the porcine skin microbiota
(McIntyre et al., 2016). Among them, Staphylococcus is the
dominant genus within the skin microbiota of animals (Kloos
et al., 1976) and humans (Byrd et al., 2018; O’Sullivan et al.,
2019). If contamination with the skin microbiome had occurred,
we should have observed these bacteria consistently, even in
blood culture, because we sampled the blood via a catheter.
However, these bacteria were not a major component of the
blood microbiome in the current study, except one case (P1219),
which showed a moderate amount of Firmicutes (Figure 1).
Considering the above, we concluded that the skin microbiome
contamination was reasonably controlled to analyze the blood
microbiome in the current study.

The bacteremia model used herein yielded detectable bacteria in
the blood after the induction (confirmed by culturing) (Park et al.,
2019). We, therefore, used these samples as a “positive control” to
detect the blood microbiome. We observed that the composition of
the blood microbiome changed gradually after peritonitis induction
by autologous feces, with an over-representation of Bacteroidetes
from the gut microbiota (Crespo-Piazuelo et al., 2019) slightly
increasing over time (Figure 3). The gut microbiome can enter
the bloodstream when the host is immunocompromised (Taur and
Pamer, 2013). Hence, the observed over-representation could
indicate a septic symptom of peritonitis. When we systematically
traced the microbiota source, we found that new populations were
introduced gradually into the bloodstream 4–6 h after the peritonitis
induction (Figure 2), mirroring the clinical symptoms, such as
increased cytokine production (Figure 6). However, it is not clear
whether these newly introduced bacteria induced the septic
symptoms or entered the blood because of sepsis.

Surprisingly, the bacterial species identified by standard clinical
laboratory culture testing were not the dominant species identified
by culture-free bacterial population analysis, even though we
observed a moderate association for the species and the time of
detection (Figure 5). We speculate that culturable bacteria comprise
only a small portion of the total blood microbiota. Further, the
blood microbiome may enact a homeostatic mechanism that
maintains the community members. The composition of the
commensal microbiome is preserved upon exposure to exogenous
bacteria (Littman and Pamer, 2011; Kamada et al., 2013; Khan and
Shekhar, 2019), and the blood microbiome may operate a similar
protective mechanism. Because the blood microbiome may not be
metabolically active relative to other commensal bacteria, further
study is required to examine this possibility.
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The porcine peritonitis model used herein provides a unique
opportunity to study the blood microbiome. Because of the large
body size of pigs, the dynamics of the blood microbiome can be
analyzed over time by multiple sampling, which is challenging
when using a small animal model, such as a mouse. Although the
animals used in the current study were not raised in an aseptic
environment, the mult iple sampling approach and
computational methods for population comparisons used
herein made it possible to comprehensively characterize the
blood microbiota. Hence, this model may provide an excellent
platform for developing new diagnostic techniques to detect BSI
(Grumaz et al., 2016; Wanda et al., 2017; Horiba et al., 2018).
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As reported in our previous study (Park et al., 2019), of the 82
bacterial species identified by blood culture, 83% were Escherichia
coli (57.3%) or Streptococcus (25.7%) species, which were also
identified by sequencing (Figure 5). For example, we identified E.
coli and Streptococcus dysgalactiae in animals P1016 and P1120 at
the late stages after the peritonitis induction, and we observed a
significant increase in their relative abundance at the time point that
coincided with blood culture positivity. In animal P1126, we
detected Streptococcus alactolyticus only 7–8 h after the induction,
and we detected E. coli at a later time point. Similarly, we observed a
slight increase in the relative Streptococcus abundance 7–8 h after
the induction in animal P1120. Moreover, we detected E. coli in
A B
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C

FIGURE 5 | (A–F) Bacteria detected by blood culture. E. coli and other species (Streptococcus dysgalactiae, Enterococcus hirae, Streptococcus alactolyticus,
Streptococcus gallolyticus, and Bacillus cereus) confirmed previously by blood culture (Park et al., 2019) were also detected by blood microbiome sequencing from
each sample.
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animal P1219 at an early stage after the induction, and the
sequencing data supported a high proportion of E. coli
throughout the experiment of P1219.

On the other hand, based on the microbiome sequencing data,
bacterial species confirmed by blood culture were not the most
abundant in the bloodstream, even 12 h after the peritonitis
induction. This could be attributed to that the sequencing might
have detected bacterial DNA contained in white blood cells (Thwaites
and Gant, 2011) or cell-free bacterial DNA (Wanda et al., 2017;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
Camargo et al., 2020). Although microbial DNA can induce
inflammation and other host responses, it is a false positive in the
analysis of the blood microbiome. Another explanation may be
dormant bacteria, which cannot be cultured under test conditions
(Lennon and Jones, 2011; Rittershaus et al., 2013; Potgieter et al.,
2015). Because dormant bacteria can become reactivated depending
on the environmental conditions, they can contribute to the blood
microbiome function even if they are not immediately culturable.
Further investigation is required to explain these discrepancies.
A B

D

E F

C

FIGURE 6 | (A–F) Association between cytokine induction and introduction of new bacterial species into the bloodstream. Measurement of IL-1b and IL-6 levels in
the blood revealed that most animals began to develop septic responses between 4 and 8 h after fecal induction. The proportion of newly emerging bacteria was
determined by SourceTracker2 (Figure 2) by comparing the altered microbiome with the microbiome detected before peritonitis induction. The original cytokine data
were published previously (Park et al., 2019). Pearson correlation coefficient p-value was calculated to verify the correlation between the newly emerging bacteria and
cytokine markers.
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Previously, we also reported that all animals showed
symptoms relevant to sepsis, which developed gradually 5–6 h
after the fecal induction (Park et al., 2019). Here, in addition to
comparison with the blood culture result, we compared the
emergence time points of the altered blood microbiome with
those of pro-inflammatory host responses. Using SourceTracker2
analysis, we found that the levels of proinflammatory cytokines
(interleukin (IL)-1b and IL-6) in the blood increased as the new
microbiome emerged in the blood (Figure 6). We calculated
the Pearson correlation coefficient p-value for those two
parameters (the newly emerging bacteria and IL-1b or IL-6), and
observed significant correlations between those for all animals
except for P1113. Although we cannot at this point conclude
whether the new blood microbiome plays a role in developing a
septic symptom in the porcine peritonitis model induced by
fecal inoculation, the data indicate some involvement of the
blood microbiome.

Here, we reported changes in the composition of the blood
microbiome in a porcine bacteremia model. By analyzing the
blood microbiome in the same individual over time, we showed
that the bacterial population remains relatively consistent, even
after peritonitis induction. However, at the same time, we found
that new bacterial populations entered the bloodstream, with the
dynamic patterns similar to those observed during a
physiological response to BSI (e.g., cytokine level increase).
Further, by analyzing population-enriched pathways, we
confirmed that sensing mechanisms, such as ABC transporters
and two-component systems, are upregulated in the blood
microbiome. Conversely, central nucleotide metabolism,
essential for cell proliferation and growth, was suppressed in
these bacteria, which probably helps the blood microbiome to
survive the harsh bloodstream environment and escape immune
surveillance. Finally, the current study indicates that further
investigations of the blood microbiome are required to
improve the current diagnostic approaches for BSI.
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M., Castelló, A., et al. (2019). Association Between the Pig Genome and Its
Gut Microbiota Composition. Sci. Rep. 9, 8791. doi: 10.1038/s41598-019-
45066-6
August 2021 | Volume 11 | Article 676650

https://www.frontiersin.org/articles/10.3389/fcimb.2021.676650/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2021.676650/full#supplementary-material
https://doi.org/10.1128/AAC.42.7.1529
https://doi.org/10.1038/nrmicro.2017.157
https://doi.org/10.12688/f1000research.19766.4
https://doi.org/10.12688/f1000research.19766.4
https://doi.org/10.3389/fcimb.2019.00148
https://doi.org/10.1016/S0140-6736(18)30696-2
https://doi.org/10.1093/nar/gkt1244
https://doi.org/10.1038/s41598-019-45066-6
https://doi.org/10.1038/s41598-019-45066-6
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Hyun et al. Longitudinal Analysis of Blood Microbiome
Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., et al.
(2019). Porphyromonas Gingivalis in Alzheimer’s Disease Brains: Evidence for
Disease Causation and Treatment With Small-Molecule Inhibitors. Sci. Adv. 5,
eaau3333. doi: 10.1126/sciadv.aau3333

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C.
M., et al. (2020). PICRUSt2 for Prediction of Metagenome Functions. Nat.
Biotechnol. 38, 685–688. doi: 10.1038/s41587-020-0548-6

Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., and Weyrich, L. S.
(2019). Contamination in Low Microbial Biomass Microbiome Studies: Issues and
Recommendations. Trends Microbiol. 27, 105–117. doi: 10.1016/j.tim.2018.11.003

Gao, R., and Lynn, D. G. (2005). Environmental pH Sensing: Resolving the VirA/
VirG Two-Component System Inputs for Agrobacterium Pathogenesis.
J. Bacteriol. 187, 2182–2189. doi: 10.1128/JB.187.6.2182-2189.2005

Gebhard, S. (2012). ABC Transporters of Antimicrobial Peptides in Firmicutes Bacteria
- Phylogeny, Function and Regulation: Antimicrobial Peptide Transport in
Firmicutes. Mol. Microbiol. 86, 1295–1317. doi: 10.1111/mmi.12078

Gevers, D., Kugathasan, S., Denson, L. A., Vázquez-Baeza, Y., Van Treuren, W.,
Ren, B., et al. (2014). The Treatment-Naive Microbiome in New-Onset Crohn’s
Disease. Cell Host Microbe 15, 382–392. doi: 10.1016/j.chom.2014.02.005

Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R.,
et al. (2014). Human Genetics Shape the Gut Microbiome. Cell 159, 789–799.
doi: 10.1016/j.cell.2014.09.053

Goto, M., and Al-Hasan, M. N. (2013). Overall Burden of Bloodstream Infection
and Nosocomial Bloodstream Infection in North America and Europe. Clin.
Microbiol. Infec. 19, 501–509. doi: 10.1111/1469-0691.12195

Grumaz, S., Stevens, P., Grumaz, C., Decker, S. O., Weigand, M. A., Hofer, S., et al.
(2016). Next-Generation Sequencing Diagnostics of Bacteremia in Septic
Patients. Genome Med. 8, 73. doi: 10.1186/s13073-016-0326-8

Horiba, K., Kawada, J., Okuno, Y., Tetsuka, N., Suzuki, T., Ando, S., et al. (2018).
Comprehensive Detection of Pathogens in Immunocompromised Children
With Bloodstream Infections by Next-Generation Sequencing. Sci. Rep. 8,
3784. doi: 10.1038/s41598-018-22133-y

Kamada, N., Chen, G. Y., Inohara, N., and Núñez, G. (2013). Control of Pathogens
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