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The rapid development of antimalarial resistance motivates the continued search for novel
compounds with a mode of action (MoA) different to current antimalarials. Phenotypic
screening has delivered thousands of promising hit compounds without prior knowledge
of the compounds’ exact target or MoA. Whilst the latter is not initially required to progress
a compound in a medicinal chemistry program, identifying the MoA early can accelerate hit
prioritization, hit-to-lead optimization and preclinical combination studies in malaria
research. The effects of drug treatment on a cell can be observed on systems level in
changes in the transcriptome, proteome and metabolome. Machine learning (ML)
algorithms are powerful tools able to deconvolute such complex chemically-induced
transcriptional signatures to identify pathways on which a compound act and in this
manner provide an indication of the MoA of a compound. In this study, we assessed
different ML approaches for their ability to stratify antimalarial compounds based on varied
chemically-induced transcriptional responses. We developed a rational gene selection
approach that could identify predictive features for MoA to train and generate ML models.
The best performing model could stratify compounds with similar MoA with a classification
accuracy of 76.6 ± 6.4%. Moreover, only a limited set of 50 biomarkers was required to
stratify compounds with similar MoA and define chemo-transcriptomic fingerprints for
each compound. These fingerprints were unique for each compound and compounds
with similar targets/MoA clustered together. The ML model was specific and sensitive
enough to group new compounds into MoAs associated with their predicted target and
was robust enough to be extended to also generate chemo-transcriptomic fingerprints for
additional life cycle stages like immature gametocytes. This work therefore contributes a
new strategy to rapidly, specifically and sensitively indicate the MoA of compounds based
on chemo-transcriptomic fingerprints and holds promise to accelerate antimalarial drug
discovery programs.
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INTRODUCTION

Tremendous progress has been made to decrease clinical incidences
of malaria by 40% in Africa but the global increase in malaria cases
in 2017/8 (World Health Organization, 2019), together with
continued antimalarial resistance development, highlights the
fragile nature of malaria elimination strategies. Disease
pathogenesis is caused by Plasmodium falciparum as the most
lethal form, and occurs when erythrocytes are infected as host
cells for the asexual replication cycle of the parasite, a repetitive
process occurring every ~48 h. Transmission to mosquito vectors is
ensured by the stochastic development of sexual gametocyte forms
from a minor proportion of asexual parasites (Josling et al., 2018),
with mature gametocytes able to be taken up by a feeding female
Anophelesmosquito. Sexual replication of the parasite subsequently
occurs in the mosquito to ultimately form sporozoites that are able
to be transmitted back to humans. Gametocytogenesis in P.
falciparum is a uniquely extended process of 10-14 days and relies
on development from immature early-stage (morphologically
distinguished stage I-III) to late-stage (stage IV/V) gametocytes,
prior to maturation to the transmissible stage V gametocytes.

New chemical compounds are required to support malaria
elimination efforts and these compounds should have the ability to
target multiple stages of the malaria parasite’s development
(Birkholtz et al., 2016; Burrows et al., 2017). Additionally, such
compounds should have a novel mode of action (MoA) and will be
used in combination with each other to lower the rate of resistance
emergence (Verlinden et al., 2016). Phenotypic whole-cell
screening has successfully delivered thousands of hit compounds
[validated hits (Quancard et al., 2021)] with nanomolar whole-cell
activity against multiple life cycle stages of P. falciparum (Plouffe
et al., 2008; Gamo et al., 2010; Delves, 2012; Miguel-Blanco et al.,
2017; Delves et al., 2018; Delves et al., 2019; Abraham et al., 2020;
Reader et al., 2021). However, this process is not guided by any
knowledge on a compounds’MoA or target. The latter is typically
only determined during hit-2-lead (H2L) or lead optimization
(LO) phases of the drug discovery process (Yang et al., 2021), and
could decrease the timely progression of compounds through the
drug discovery pipeline. H2L optimization requires iterative
modification of hits to establish structure-activity relationships.
This is used to then guide chemical modifications that increase a
compound’s potency whilst addressing toxicity and safety issues.
Whilst hit validation processes are standardized to streamline the
phenotypic screening process (Quancard et al., 2021), H2L
optimization, however, is fraught with the possibility that
Abbreviations: ANN, artificial neural network; CDPK, Ca2+/calmodulin-
dependent protein kinase; CMap, Connectivity Map; CNV, copy number
variants; DE, differentially expressed; DEG, differentially expressed gene; GBM,
gradient boosting machine; GEP, gene expression profile; GEO, gene expression
omnibus; HDAC, histone deacetylase; H2L, hit-to-lead; LO, lead optimization;
LOOCV, leave-one-out cross validation; ML, machine learning; MLR,
multinomial logistic regression; MMV, medicines for malaria venture; MoA,
mode of action; PI4K , phosphatidylinositol 4-kinase; RF, random forest; RMSE,
root mean squared error; SOM, self-organizing maps; SNV, single nucleotide
variants; SVC, support vector classification; TSA, trichostatin A; Q2LOO, leave-
one-out cross validation correlation coefficient.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
changes in potency as a result of chemical modifications can be
due to a change in the derivative’s MoA and binding of the
compound to a different target, presenting with ‘off-target’ or toxic
effects. Not only this, but compounds with undesired MoAs may
only be discovered during the LO phase when the cost invested in
such leads is already incurred. The challenge is therefore to devise
a tool that can be used in these initial stages of a drug discovery
program to quickly, efficiently and economically stratify a
compound, and its derivatives, based on their potential MoA.

Several approaches are currently used to describe an
antimalarial compound’s MoA and includes in vitro evolution
and whole genome sequencing to identify chemically validated
targets (Yang et al., 2021). Beyond direct target identification,
‘-Omics’ approaches have been useful to describe the MoA
‘fingerprint’ of a compound as a descriptor of a compound’s
induced phenotype on e.g. the transcriptome or metabolome (Hu
et al., 2009; Allman et al., 2016). This has identified targeted
pathways for several frontrunner compounds and (pre-)clinical
antimalarial candidates (Allman et al., 2016). However, only a
handful of metabolites can be quantitatively detected and stage
comparison may be difficult as some stages of the parasite are
more metabolically active than others (Gulati et al., 2015). Some
compounds whose MoA is unrelated to metabolismmay be more
difficult to ascertain or detect (Creek et al., 2016; Tulloch et al.,
2018). This, together with the time and resource-intensive nature
precludes the at scale use of metabolomics to guide the profiling
of compounds early on in the drug discovery pipeline.

Genome-wide expression profiling of chemically-induced
changes in transcriptomes have successfully elucidated the MoA
and even identified possible targets of antineoplastic agents (Iwata
et al., 2017). Indeed, the connectivity map (CMap) database
contains gene expression profiles of five cancer cell lines
perturbed by over 5000 compounds (Sirci et al., 2016). These
profiles are all integrated through gene expression network
analyses to indicate either those processes induced to overcome
the drug effect and retain homeostatic control, or alternatively
indicate the direct effect of a compound on a cellular pathway (Isik
et al., 2015; Woo et al., 2015). Although P. falciparum relies on
tight control of gene expression to regulate various processes
during its complex life cycle (Bozdech et al., 2003; van Biljon
et al., 2019), reproducible, specific and unique chemically-induced
changes in gene expression patterns can be elicited. Asexual blood
stage parasites treated with compounds with different MoAs show
distinct and divergent transcriptomic responses (Hu et al., 2009;
Siwo et al., 2015; van der Watt et al., 2018). This has also been
observed for immature gametocytes (Ngwa et al., 2017; Ngwa
et al., 2019; Reader et al., 2021), which implies that chemically-
induced transcriptome responses can be detected for various life
cycle stages of the parasite. The parasite’s transcriptome can
therefore be mined to stratify compounds to specific MoAs.
However, this requires extensive deconvolution of the complex
transcriptome profiles obtained as a result of the perturbation and
may again not be feasible to perform at scale for multiple
compounds during e.g. H2L phases.

Machine learning (ML) algorithms provide powerful,
unbiased approaches to deconvolute complex transcriptional
June 2021 | Volume 11 | Article 688256
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drug signatures in order to either identify pathways on which a
compound act or describe the global phenotypic effect of
inhibition of a particular drug target (Tan et al., 2018). One
benefit that these algorithms have over gene interaction network
analysis methods, is that there is no prerequisite for defining in
detail the structure of interaction between genes (Melas et al.,
2013). ML has already successfully delineated the MoA of various
compounds/drugs in human cells in a cell-specific manner and at
scale (Zhang et al., 2016; Iwata et al., 2017), and was even able to
predict drug targets in cancer studies (Hizukuri et al., 2015; Pabon
et al., 2018; Sawada et al., 2018; Xie et al., 2018). However, aside
from some reports where large datasets of phenotypic screening
data were used to predictively identify antiplasmodial hit
compounds using transfer and deep learning (Keshavarzi
Arshadi et al., 2019), the use of ML to define chemically-
induced transcriptome signatures for MoA classification has not
been explored in depth for P. falciparum.

We aimed to develop a ML model that can stratify potential
antimalarial compounds with similar MoA based on their
chemically-induced transcriptional responses on asexual stages
of P. falciparum parasites. We show that only a limited number
of differentially expressed genes (DEGs), that are unique for a
MoA and pervasive throughout a compound’s treatment, was
needed as predictive features to train a robust MoA stratification
model. These biomarkers could be used to generate chemo-
genomic fingerprints for compounds associated with similar
MoA. The ML model and biomarkers could be used at scale to
enable medium through-put MoA elucidation and guide
preclinical decisions to fast-track H2L optimization in
drug discovery.
MATERIALS AND METHODS

Data Acquisition, Quality Control Filtering,
and Pre-Processing of GEP Datasets
An in-house database was generated consisting of gene
expression profiles (GEPs) of P. falciparum parasites treated
with different compounds (see Supplementary Table S1). Each
GEP dataset was assessed individually for quality and inclusion
based on the filtering criteria in Supplementary Table S2.
Inclusion criteria included the presence of acceptable and
comparable controls, >65% coverage of the P. falciparum
transcriptome, treatment with known MoA, ≥2 time points
available, IC50 or higher concentrations and an acceptable
parasite strain used. Accepted datasets with accession codes
GSE19468, GSE13578, GSE1 00692, GSE39485, GSE33869,
GSE19468 and GSE25642 were downloaded from Gene
Expression Omnibus (GEO) before being merged to form a GEP
database (Figure 1). To negate platform differences, between-array
normalizationwas required to enable comparisonbetweendatasets.
This was also an essential pre-processing step before the data could
be used to build a model using machine learning algorithms, as
some algorithms require normalized data. Different microarray
between-array normalization strategies were assessed for their
ability to allow comparisons between different GEPs using the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
limma package (version 3.46.0) in R (Ritchie et al., 2015).
Ultimately, cyclic loess normalization performed the best
(Supplementary Figure S1) and was applied to all the data in
the database.

Feature Selection
To identify features i.e., transcripts that may be useful for MoA
stratification and that would be used to build the ML models,
a rational transcript selection criterion was developed
(Supplementary Figure S2). Transcripts that fell within the
upper or lower 5th percentile of expression in the GEP during
any time point in a compound treatment were defined as
differentially expressed (DE). These selection criteria for the
rational selection included: 1) removal of non-informative
transcripts that are not significantly DE: 2) removal of DEGs
that display discontinuous DE profiles throughout treatment
with a compound and vary across time points. Such DEGs may
not function as predictive features and were removed to reduce
noise and variability in the model; 3) only genes that were
continuously DE across all time points of a treatment was
selected; 4) to prevent inclusion of DEGs that are due to
general drug stress or other factors, those shared between
compound treatments were excluded.

In addition to the above rational selection, an objective
transcript selection approach was also applied, whereby ML-
inferred top features were identified through variable importance
by the best antiplasmodial MoA stratification ML algorithm. The
database model generated by the algorithm after tuning and
training on the transcripts for all 2463 genes, was used to rank
transcripts according to their variable importance i.e., importance a
transcript has in aiding a model in MoA stratification.

Supervised ML Models
Three different algorithm categories were investigated. Firstly,
elementary ML algorithms for multiclass classification problems
such as support vector classification (SVC) and multinomial
logistic regression (MLR) that use statistics were investigated.
Secondly, ensemble classifiers algorithms like random forest (RF)
and gradient boosting machines (GBM) were also examined as
they combine multiple shallow learner models produced during
training to create a more optimal model. Lastly, deep learning
algorithms that create artificial neural networks (ANN) was also
explored due to how these ANN uses multiple layers to extract
higher-level features from data.

These SVC, MLR, RF, GBM and ANN algorithms were
evaluated for their ability to create a stable and robust
antiplasmodial MoA stratification model from transcriptomic
data. Transcripts were used as training features and their
respective expression values within a specific treatment time
point were used as the input data points. Compound treatments
were labelled according to their respective MoA and the collection
of treatment time points were randomly split into training and
testing sets at an 80:20 ratio. Model hyperparameters define a
model’s architecture and affect model performance, thus to
ensure models were optimized and had the optimal architecture
to address the MoA classification problem, hyperparameters (e.g.
number of trees in the case of RF and GBM) were fine-tuned
June 2021 | Volume 11 | Article 688256
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individually for each algorithm using the training set
(Supplementary Table S4) (Schratz et al., 2019).

To build a MLR model for multiclassification, the h2o (version
3.32.0.1) R package was used by employing the h2o.glm() function,
which is abbreviated for a generalized linearmodel and can be used
for both binary and multiclassification problems (Cawley et al.,
2007; LeDell et al., 2019), and for which hyperparameter tuning
could be excluded (Moreira et al., 2018).

Multiclass SVC models were built with the e1071 (version 1.7-
6) R package to train and fine-tune the hyperparameters required
(Meyer et al., 2019), and optimal hyperparameters were identified
based on classification error. Different kernels were also
investigated as they are mathematical functions often used within
SVCs to transform input data into a desirable form whereby
patterns can be more readily discovered. During hyperparameter
tuning, no assumptions were made regarding the data space and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
hence various kernels (sigmoid, polynomial, linear and radial) were
assessed for their MoA stratification performance.

Variations of RF models for multiclassification were built using
either the randomForest (version 4.6‑14), or the h2o R package
(Liaw and Wiener, 2002; LeDell et al., 2019). Hyperparameter
tuning was implemented using the e1071 R package for
randomForest models and an internal grid search function was
used for hyperparameter tuning for the h2o models (Meyer et al.,
2019). Classification error was used to identify the optimal
hyperparameters, however, for the mtries hyperparameter the
out-of-bag error was used to identify the optimal hyperparameter
value. With the h2o package hyperparameters were selected with
the lowest Logloss value (Brownlee, 2016).

Similarly to RF, variations of GBM models were built either
using either the xgboost (version 1.3.2.1) R package or the h2o R
package (Chen et al., 2019; LeDell et al., 2019). Hyperparameter
A

B

FIGURE 1 | Workflow of data acquisition and model building. (A) Accepted GEPs of treated P. falciparum formed our inclusive database (pink) and underwent
feature-selection (purple). In both instances the GEPs were merged and underwent normalization. The resultant transcripts from the (pink) accepted GEPs produced
our inclusive database. Similarly, the consequential transcripts from our feature selection produced our rational selection database (purple). (B) Both transcripts in the
inclusive database and in the rational selection database were used to separately build models. Treatment time points were randomly split at an 80/20 ratio, whereby
80% was used as a training set for model tuning, training and K-fold cross validation. The resultant 20% of treatment time points were used as a test set to evaluate
model performance on untrained data. Prediction accuracy of treatment MoA from both the K-fold cross validation and prediction on the test set was used to
determine the best classification algorithm for antiplasmodial MoA. From this classification algorithm, the resultant models trained on either the inclusive database or
rational selection database were compared and assessed which selection approach was the best in identifying the minimum number of transcripts for robust MoA
prediction using a sliding gene-scale approach.
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tuning was implemented using the caret R package for xgboost
models and internal grid search function was used for
hyperparameter tuning for the h2o models (Kuhn et al., 2019;
LeDell et al., 2019). The caret package used classification
accuracy as a performance measure in selecting the optimal
hyperparameters, whereas the h2o package used Logloss to select
the optimal hyperparameters.

The h2o R package with the h2o.deeplearning() function was
used to build a ANN capable of multiclassification and an
internal grid search was done to find the optimal model
hyperparameters using Logloss as a performance measure
(LeDell et al., 2019). Due to computational cost and efficiency,
not all the neural network hyperparameters and/or large ranges
could be investigated (see Supplementary Table S4).

Assessing Different ML Algorithms to
Stratify Antiplasmodial Compounds
With Similar MoA
A 10-fold cross-validation was performed during model training
to assess model stability and to obtain a more accurate metric to
assess model accuracy. The test set was used as an external
validation of models on untrained data. Both were used to assess
overfitting of the models. The caret package was used to perform
a 10-fold cross-validation on the RF and SVCmodels made using
the randomForest and e1071 R packages, respectively (Liaw and
Wiener, 2002; Kuhn et al., 2019; Meyer et al., 2019). In instances
where the h2o R package was used to make models (such as the
ANN, MLR, RF and GBM), the 10-fold cross-validation was
done simultaneously without the requirement of another
RStudio package (LeDell et al., 2019).

For downstream selection analysis, each algorithm was used
to construct two ML models: 1) one model trained on all 2463
transcripts within the inclusive database, which excluded all
filtering or selection and includes all the available transcripts in
the database; and 2) the other model trained on only the 174
transcripts identified from the rational gene selection criterion
(Supplementary Figure S2) i.e., the rational selection database.
The best algorithm was selected based on results from the 10-fold
cross-validation, model stability and classification accuracy on test
data of models trained on the 2463-transcript inclusive database
and those trained on 174-transcript rational selection database.

Comparison of the Rational Selection and
ML-Inferred Selection Strategies
Feature selection is an essential part of ML as it helps reduce the
dimensionality of high dimensionality datasets such as GEP data
and also improves predictive accuracy by focusing on data that is
relevant for the model (Motoda and Liu, 2002).

We evaluated if the transcripts identified from our rational
selection approach (defined as genes selected based on criterion
defined in Feature Selection as per Supplementary Figure S2)
compared to transcripts objectively identified in an unsupervised
fashion by the ML algorithm with good predictive value. To
prevent unintended bias in selection, the 2463-transcript
inclusive database model was used by the best ML algorithm to
rank transcripts according to variable importance for MoA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
stratification when determining compound MoA. Variable
importance is an indication of how much the model relies on
that variable to make accurate predictions. From these top ML-
inferred transcripts, a model was built using the same number of
transcripts (174) that was present in the 174-transcript rational
selection database model to allow proper computational
comparison between the two models. Based on results from
the 10-fold cross validation, model stability and classification
accuracy on test data the best gene selection approach (ML-
inferred vs. rational selection) was identified.

To further ensure that the best selectionmethodwas identified, a
sliding gene-scale approach was applied on both the ML-inferred
transcripts and the rationally selected transcripts. Transcripts were
ranked according to variable importance in MoA stratification.
From this ‘minimodels’ were made for both selection approaches
with each sequential model containing fewer transcripts to train on
than the previousmodel. Theminimodel that performed the best in
their classification accuracy, model stability and test set (untrained
data) using the least number of transcripts determined which
approach was more suitable for gene selection. The theory is that
as the number of transcripts decreases, transcripts that are noisy or
redundant will become more apparent in affecting the model’s
performance by lowering the accuracy of the model, whereas the
opposite is true for good predictive transcripts. From this also the
minimum number of transcripts for robust MoA stratification
was determined.

To highlight any loss in model performance and overfitting
for minimodels due to the reduced number of transcripts used
for training, leave-one-out cross validation (LOOCV) was
implemented, and the root mean squared error (RMSE),
average log-loss and LOOCV correlation coefficient (Q2LOO)
calculated for each minimodel. Minimodels which indicated low
values for RMSE and log-loss as well as a decreased difference
between their R2 and Q2LOO were considered as models with
good fit to training data.

Validation of the ML Model on New
Compounds and Chemo-Transcriptomic
Fingerprinting
To determine whether unique expression patterns could be
associated with the biomarker transcripts that define each
compound treatment (Table 1), the normalized log2 fold
change profiles for each of the 50 biomarker transcripts was
extracted from the original datasets (Supplementary Table S3)
for all the treatments used to generate the model (Table 1). This
was then used to construct an expression profile heatmap using
the ggplots2 package (version 3.3.3) (Wickham, 2016) in R. Only
one timepoint, where the strongest perturbation within the 50
biomarkers were evident, was included for each compound
treatment. Gene transcripts were grouped according to the
compound MoA they were identified from (Table 1).

To further define the grouping within this dataset and reduce
the dimensionality of the expression profiles of the 50 transcripts,
self-organizing maps (SOMs) were used to cluster and summarize
the expression patterns using the supraHex (version 1.28.1) R
package (Fang and Gough, 2014). The normalized log2 fold
June 2021 | Volume 11 | Article 688256
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change profiles of these biomarker transcripts were extracted again
for all 50 transcripts across all 12 the treatments included in the
model building and used to train SOMs. SOMs were subsequently
visualized as two-dimensional suprahexagonal chemo-
transcriptomic fingerprints, with each hexagon defining a cluster
of genes with the same or similar expression patterns. Within the
suprahexagonal fingerprints, the most influential biomarkers are
allocated to hexagons at the edge, whereas genes with random or
no change in expression were allocated to hexagons in the center.
The geographical location of the hexagons depicts the similarity to
other hexagons. Input data (distribution, distance, identity and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
relationship for each biomarker transcript) is retained between
fingerprints. Additionally to SOMs, the expression profiles of all
50 transcripts across all 12 the treatments were hierarchically
clustered using Ward linkage on Euclidian distance of expression
profiles and then visualized with dendextend (version 1.14.0) R
package and the SOMs fingerprints for the corresponding
treatments that clustered together were compared to one
another (Murtagh and Legendre, 2014).

Lastly, to interrogate the sensitivity and multifaceted use of
the biomarker transcripts, they were further evaluated in their
usefulness to classify the MoA of new compounds, without the
TABLE 1 | The top 50 biomarkers identified from the ML modeling.

Treatment Mode of action/target protein PlasmoDB Gene ID Gene product description

ML-7 & W7 (Hu et al., 2009) Ca2+/calmodulin-dependent
protein kinase inhibitor

pf3D7_0108700 Secreted ookinete protein
pf3D7_0203700 protein MAK16
pf3D7_0206700 Adenylosuccinate lyase
pf3D7_0508700 Pre-mRNA-processing ATP-dependent RNA helicase PRP5
pf3D7_0618100 Conserved Plasmodium protein, unknown function
pf3D7_1308500 Conserved Plasmodium protein, unknown function

TSA (Hu et al., 2009) SAHA,
TSA & ASA-9 (Andrews et al., 2012)

Histone deacetylase pf3D7_0322100 mRNA-capping enzyme subunit beta
pf3D7_0614300 Major facilitator superfamily-related transporter
pf3D7_1015500 Nucleotidyltransferase
pf3D7_1039000 Serine/threonine protein kinase, FIKK family
pf3D7_1112700 Conserved Plasmodium protein, unknown function
pf3D7_1323800 Vacuolar protein sorting-associated protein 52
pf3D7_1438000 Eukaryotic translation initiation factor eIF2A

Febrifugine (Hu et al., 2009) Prolyl-tRNA synthetase pf3D7_0623900 Ribonuclease H2 subunit A
pf3D7_1030600 tRNA N6-adenosine threonylcarbamoyltransferase
pf3D7_1467400 50S ribosomal protein L22, apicoplast

Staurosporine A (Hu et al., 2009) Serine/threonine kinases pf3D7_0206100 Cysteine desulfuration protein SufE
pf3D7_0619800 Conserved Plasmodium membrane protein, unknown function
pf3D7_0806600 Kinesin-like protein
pf3D7_1220400 Debranching enzyme-associated ribonuclease
pf3D7_1317100 DNA replication licensing factor MCM4

Artemisinin (Hu et al., 2009) Free radicals formation and
protein & heme alkylation

pf3D7_1325400 Conserved Plasmodium protein, unknown function
pf3D7_1475100 Conserved Plasmodium protein, unknown function

DFMO (van Brummelen et al., 2008) Ornithine decarboxylase pf3D7_0503400 Actin-depolymerizing factor 1
pf3D7_0509100 Structural maintenance of chromosomes protein 4
pf3D7_1019800 tRNA methyltransferase
pf3D7_1242700 40S ribosomal protein S17
pf3D7_1425800 Conserved Plasmodium protein, unknown function
pf3D7_1440500 Allantoicase

Cyclosporine A (Hu et al., 2009) Binds sphingomyelin pf3D7_0317300 Conserved Plasmodium protein, unknown function
pf3D7_1013500 Phosphoinositide-specific phospholipase C
pf3D7_1127900 Conserved Plasmodium protein, unknown function
pf3D7_1352000 GTP-binding protein
pf3D7_1474500 Splicing factor 3A subunit 1

Chloroquine & Quinine (Hu et al., 2009) Heme metabolism pf3D7_0612600 Cytoplasmic tRNA 2-thiolation protein 1
pf3D7_0704500 Serine/threonine protein kinase
pf3D7_1324000 Conserved Plasmodium protein, unknown function
pf3D7_0604100 AP2 domain transcription factor
pf3D7_1322200 Conserved Plasmodium protein, unknown function
pf3D7_1427000 Conserved Plasmodium protein, unknown function

PMSF (Hu et al., 2009) Serine protease pf3D7_0511800 Inositol-3-phosphate synthase
pf3D7_0717800 Conserved Plasmodium protein, unknown function
pf3D7_0823800 DnaJ protein
pf3D7_1115400 Cysteine proteinase falcipain 3
pf3D7_1458900 Golgi apparatus membrane protein TVP23

Ionomycin (Cheemadan et al., 2014) Ca2+-binding ionophore pf3D7_1038400 Gametocyte-specific protein
MMV’048 & UCT’943
(van der Watt et al., 2018)

Phosphatidylinositol 4-kinase (PI4K) pf3D7_0213000 Conserved protein, unknown function
pf3D7_0301800 Plasmodium exported protein, unknown function
pf3D7_1340900 Sodium-dependent phosphate transporter
pf3D7_1404400 Ribosomal protein L16, mitochondrial
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use of our trained ML model. Two compounds that are closely
related to the PI4K kinase inhibitors MMV’048 and UCT’943
were included: MMV666810 and MMV675850 (van der Watt
et al., 2018) with transcriptome data obtained from GEO with
accession code GSE167068 (van Biljon et al. submitted to this
special issue). These compounds were used to treat immature
gametocytes, and this allowed an additional dimensionality in
our analysis to include stage-specific variability between asexual
parasites and immature gametocytes. Additionally, we included
a dataset where immature gametocytes were treated with
trichostatin A (TSA) (GSE99223) (Ngwa et al., 2017).
Correlation plots were generated with the ‘corrplot’ package
(version 0.84) in R (Simko, 2017) to visualize similarity in gene
expression profiles between different treatments using the 50
biomarker transcripts. Additionally, chemo-transcriptomic
fingerprints were generated using SOM for each of the new
compounds treated on early gametocytes and where then
compared to the chemo-transcriptomic fingerprints of those
with similar MoA treated on asexual parasites.
RESULTS

Database Generation and Model Building
Two parallel approaches were used to evaluate and compare the
performance of different ML algorithms to build MoA
stratification models. This was based either on an objective
selection approach (which relied on model building and ML-
inferred transcript selection without imposing additional
filtering and selection criteria, called henceforth the ‘inclusive
database’), or to a rational selection approach (where transcripts
were specifically and rationally selected based on a set of criteria
imposed (described in Feature Selection and Supplementary
Figure S2, called the ‘rational selection database’). In both
instances, a smaller database was generated from the complete
input dataset (Figure 1A). Both databases was subsequently used
for ML model building. In each instance, the respective database
was randomly fractionated into a training:test set (80:20), and
different ML algorithms applied to determine their ability to build
an accurate model for MoA stratification. Finally, the best model
from the inclusive database was compared to the best model from
the rational selection database (Figure 1B) based on accuracy
scores from 10-fold cross validation, variability indicators and
performance on the test set data (the remaining 20%).

In totality, six datasets (each with 3500-4000 transcript
profiles) were included to generate our database (Figure 1A).
These datasets span treatment of asexual parasites with 20
compounds with a variety of MoAs (Supplementary Table S3),
ranging from cell signaling [Ca2+/calmodulin protein kinase
(CDPK) inhibitors and serine/threonine kinase inhibitors], to
heme metabolism (heme polymerase enzyme inhibitors) and
transcription [histone deacetylases (HDAC) inhibitors]. Most of
the datasets included had a high transcript coverage at ≥ 65% and
treatments in these datasets had 2-5 time points to allow for
selection present over a broad timeframe.

The inclusive database was generated by including transcripts
that were shared between the six datasets to allow for comparison
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
of GEP under different treatments. Merging of these datasets
resulted in a reduction of transcripts from the 3000-4500 per
dataset to 2463 transcripts in total in the final inclusive database,
after normalization (Supplementary Figure S1). This database
spans a total of 103 time points for 20 compounds and could be
used to explore different ML algorithms for their efficacy and
relevancy for subsequent use in MoA stratification. The 2463-
transcript inclusive database was then used for building the
predictive inclusive models (Figure 1B).

In parallel, the six datasets underwent further individual feature
selection to extract the minimum informative transcripts to be
included in the rational selection database and thereby eliminate
non-informative transcripts to improve model performance
(Supplementary Figure S2). DEGs were identified and extracted
that continuously fell within the upper/lower 5th percentile of
expression throughout a specific treatment and did not show this
behavior towards other treatments with different MoA. This
resulted in a stringent reduction to an exclusive 217 unique
DEGs that was further reduced to only 174 (Supplementary
Table S6) since incomplete transcript coverage of some datasets
resulted in the loss of some transcripts during merging
(Figure 1A). The 174 transcripts are therefore present in each of
the 20 compound treatments in the six datasets and cover all 103
time points in total. The 174-transcript rational selection database
was used for building the predictive rational selection
models (Figure 1B).

Evaluating Different ML Algorithms
on the Inclusive Database
During the model building, inclusive ML models were trained
using 80% of the randomly selected data points from the 2463-
transcript inclusive database (defined as the training set) and
hyperparameter tuning was applied to SVC, GBM, RF and ANN
inclusive models (Figure 1B and Supplementary Tables S4, S5).
Elementary ML models such as the polynomial and linear kernel
SVCs displayed similar high model variability with accuracies of
78.2 ± 17.7% and 81.7 ± 14.2%, respectively, compared to MLR
which had lower model variability with an accuracy of 77.8 ±
11.6% (Figure 2). The other SVC kernels trained on either the
inclusive or rational database performed extremely poorly
(Supplementary Figure S3) and were not further investigated.

The ensemble classifier set performed slightly worse with most
of the models displaying accuracies between 73-77%, with GBM
(h2o R package) the most inaccurate at 62%. The RF model built
using the randomForest R package performed well at 77.3 ±
10.6% compared to MLR and the other RF model (h2o), which
displayed less model variability (10%) but also lower accuracy
(73%). Quite high model variability was observed (up to 20%) for
the remaining ensemble classifiers. Within the deep learning
classifier, the same large variability regarding accuracy was also
observed for the h2o ANN algorithm (accuracy at 74.77 ± 14.17%).

During the evaluation of model performance on the test set,
both the SVC algorithms performed poorer than their average
accuracy achieved on the 10-fold cross validation, indicating that
these models may have become overfitted to the training set and
struggled in stratifying untrained data. However, all the other
algorithms performed well with the test data. Both the MLR and
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RF (randomForest) algorithms displayed similar efficacy as
evaluated by accuracy, model variability, and ability to perform
on test data, therefore, these algorithms are useful to generate
models on larger datasets that are informative to stratify
compounds based on specific MoAs. Most of these algorithms
generated models with high variability (>10%) in MoA
stratification, possibly as a result of including transcripts that are
‘noisy’ and non-informative for MoA stratification as training
features. Non-informative transcripts were subsequently excluded,
and transcripts representative of a compound’s MoA were
identified in the rational selection approach.

Evaluating Different ML Algorithms
on the Rational Selection Database
Rational selection models were generated using the same
algorithms trained on 80% of the randomly selected data
points from the 174-transcript rational selection database. Both
polynomial and linear kernel for SVCs (Figure 2) showed high
model variability and accuracies of 77 ± 14.3% and 81.8 ± 16.4%,
respectively. By contrast, the other elementary ML model, MLR,
although slightly less accurate at 70.9%, was very robust with
very little model variability observed (± 8%) (Figure 2).

Within the ensemble classifier set, the majority of the models
had fair accuracy ~73%, except for XGBoost at 63%. However, in
all instances, high model variability was observed, ranging
between 11-21%. The same large variability was observed for
the deep learning classifier built using the h2o ANN algorithm
(accuracy at 71.3 ± 14.3%). To evaluate the performance of the
models on untrained data, the remaining 20% from the 174-
transcript rational selection database used as a test set. From this,
only the h2o ANN algorithm for deep learning performed
poorly, indicating overfitting of the model to the training set
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
due to the inability of the model to generalize and recognize
patterns in untrained data (63%). Although ensemble classifiers
did well in predicting the test set, these algorithms do not
perform well during 10-fold cross validation as seen by the
high model variability. Since this cross validation splits the
training data to get a better estimate of the model’s accuracy, it
revealed that these algorithms are not reliable when the number
of samples are reduced.

Taken together, the MLR algorithm generated the most
effective model for the 174-transcript rational selection
database based on its’ accuracy, combined with low model
variability and good performance on test data.

Validation of Rational Gene Selection
To assess which gene selection approach was the best to identify
transcripts representative of MoA, a sliding gene-scale method
was applied, where smaller models (minimodels) are built with
sequentially fewer transcripts as training features, to remove
non-informative features and obtain the minimum transcript
model (Figure 3). Transcripts used to generate these models
were based on their ranked variable importance. The average
MoA prediction accuracy of the rational selection minimodels
was either maintained or increased >70%, even when lowering
the number of training transcripts to only 50 (Figure 3). The
model variability within the minimodels seems to decrease as the
number of training transcripts are reduced, with the minimodel
using the top 75 transcripts being an exception (76.0 ± 8.3%).
Performance of these minimodels on the test set resulted in an
accuracy of >75%.

The opposite is observed for the ML-inferred selection
minimodels, where a general increasing trend in variability is
observed in the minimodels with reduced transcripts as well as a
FIGURE 2 | Robustness and accuracy of different ML algorithm’s ability to stratify treatments with similar MoA using either the 2463-transcript inclusive database or
174-transcript rational selection database. Different ML algorithms are grouped according to statistics-driven elementary ML, ensemble or deep learning classifiers.
Algorithm classifiers were either trained on the 2463-transcript inclusive database (blue) or 174-transcript rational selected database (gray). Classifiers were
hyperparameter tuned before undergoing 10-fold cross-validation. Bars indicate the average accuracy of the classifier obtained from 10-fold cross-validation on the
training data and the error bars are the standard deviation of performance measures. Triangles indicate the accuracy of the classifier in stratifying the MoA of test data.
Some ML algorithms had variations in R packages that could be used for model building, which were also interrogated. SVC, support vector classification with the1071
R package; P, polynomial; L, linear; MLR, multinomial logistic regression; rF, random forest with randomForest R package; RF, random forest with h2o R package;
XGBoost, built with xgboost R package, GBM, gradient boosting machine; ANN, artificial neural network. MLR. RF GBM and ANN was built using h2o R package.
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decline in performance on test data, which indicates overfitting
(Figure 3). The latter was confirmed by increased RMSE and log-
loss values for the 50-transcript ML-inferred minimodel
(Supplementary Figure S5), validated by a higher difference
between R2 and Q2LOO (leave-one-out cross validation
correlation coefficient) of the ML-inferred minimodels
(Supplementary Figure S5). This again reaffirms that the
transcripts from our rational selection approach are more suitable
forMoAstratification than that ofML-inferred transcripts from the
inclusive database. Although a gradual decline in performance on
the test set is observed as the number of training transcripts is
reduced for our rational selectionminimodels (75%), it is not to the
extent as that within the ML-inferred selection minimodels (63%).

Based on the test set performance, as well as accuracy, model
variability and the least number of transcripts used for training,
the rational selection 50-transcript minimodel (76.6 ± 6.4%) was
identified as the optimal minimum number of transcripts for
robust MoA stratification of compounds.

50 Biomarkers as Indicators of MoA
The 50-transcript minimodel from the rational selection MLR
model was subsequently manually interrogated (Table 1). These
top 50 transcripts are therefore defined as biomarkers that were
identified from 14 of the 20 compounds, which account for 12 of
the 15 MoAs of all the compounds in our database. Interestingly,
some compounds contribute more to the overall biomarkers
used in the MLR model than others. For example, from the
artemisinin treatment only two biomarkers are utilized, whereas
for the TSA treatment five biomarkers exist. In fact, the majority
of the compounds that contribute to the overall biomarkers used
by the model are inhibitors of proteins that serve important and
global functions within a cell, such as kinases and deacetylases
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
(Table 1). Of the top 50 biomarkers, 42% have putative protein
products ascribed to them and 30% encode a novel protein with
unknown function that may be involved in important cellular
processes and make them useful for biomarkers in MoA
stratification (Table 1). Of the top 50 biomarkers, 11 are
annotated to be involved in ATP or DNA binding, and eight
seem to be involved in translation and transcription processes
within the parasite.

To evaluate the novelty of the top 50 biomarkers associated
with specific MoAs, we compared them to transcripts identified
by Siwo et al. (2015) and Hu et al. (2009) as associated with
specific MoAs (Figure 4A). No overlap was observed for the 50
biomarkers from our study compared to the Siwo dataset,
possibly due to selection differences in DE cutoffs as the Siwo
dataset defined DE as the top 100 up and down regulated genes
for a treatment. Moreover, only 13% (14) of the biomarkers we
identified associated with the same compound MoA in the Hu
dataset. The Hu et al. dataset used a 3 fold-change cut-off to
define DEGs, whereas we defined DEGs as those within the
upper or lower 5th percentile of gene expression, allowing us to
identify more DEGs.

We next evaluated the expression profiles for each of the 50
biomarkers across all the individual compound treatments used
within our original dataset (Figure 4B). A clear distinction was
observed for each set of transcripts that describe the profile of a
particular compound class, with little overlap between biomarkers
for different compounds (Table 1 and Figure 4B). Importantly,
each of the biomarkers selected from the models are unique
(Table 1). The unique profiles obtained is particularly distinct
for compounds that are known to target single protein targets,
where a specific fingerprint is obtained with a pronounced
differential response (Figure 4B). This corresponds to these
FIGURE 3 | Influence of limiting the number of transcripts used as training features on MoA stratification of MLR models. MLR classifiers trained on either ML-
inferred transcripts (blue) or on rationally selected transcripts (light gray). Using variable importance, transcripts were ranked according to their importance in making
classification decisions for the MLR classifier. With the ranked transcripts a sliding gene-scale approach was applied where the top transcripts were used to make
minimodels with each sequential model containing decreasing number of transcripts used to train the MLR classifier. Each minimodels underwent 10-fold cross-
validation and was also assessed in the accuracy of MoA stratification on test data. Bars indicate average accuracy obtained from 10-fold cross-validation, and
triangles indicate model accuracy on the untrained test set. Error bars indicates the standard deviation of the average accuracy.
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compounds affecting 10-20% of the genome as a result of
inhibition of mechanisms that regulate P. falciparum asexual
development (Hu et al., 2009). Not surprisingly, compounds
such as chloroquine elicit a weaker overall DE response
associated with their biomarkers, similar to previous reports for
chloroquine and others that affect ~5% of the genome with low
amplitude, albeit with reproducible specificity (Hu et al., 2009)
(Figure 4B). The biomarkers are therefore unique to each
compound treatment MoA and are able to distinguish
compounds based on varied transcriptional responses.

Biomarker Fingerprints Stratify
Compounds Based on MoA
We next interrogated the 50 biomarkers selected for their
usefulness to stratify a compound’s MoA and generate a
chemo-transcriptomic fingerprint associated with compound
MoA classes. We generated self-organizing maps (SOMs) for
each treatment (Figure 5), similar to those defined for
metabolomic fingerprints (Allman et al., 2016). This revealed
distinct fingerprints based on the expression profiles of the
biomarkers for each of the treatments used in the ML model.
Importantly, compounds with similar fingerprints group
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
together, indicating similar MoA and supporting the specificity
of the biomarkers identified (Figure 5). However, a number of
compounds with less well-defined molecular targets, or where
their MoA is ascribed to multiple biological processes being
affected, cluster together (Figure 5, cluster ‘metabolism and
homeostasis’). This includes chloroquine and artemisinin that
generally affect hemoglobin catabolism or cause cellular damage
due to radical formation, respectively (Hu et al., 2009; Klonis
et al., 2013; Tilley et al., 2016; Xie et al., 2020). Additionally, the
resolution of the chemo-genomic fingerprint was such that it
could indicate the presence of subclasses: even though ionomycin
(a Ca2+-binding ionophore) has a fingerprint clustered with that
of chloroquine, it is still distinct (Figure 5).

The specificity of the chemo-genomic fingerprints is
exemplified in instances where compounds with similar drug
targets have the same biomarkers and as a result, similar
chemo-transcriptomic fingerprints cluster together (Figure 5).
The HDAC inhibitors TSA and suberoylanilide hydroxamic acid
(SAHA, Vorinostat) have very similar fingerprints and cluster into
the same group. These compounds are both hydroxymate-based
inhibitors that target affect multiple stages of malaria parasites
(Andrews et al., 2012; Coetzee et al., 2020) by inhibiting multiple
A

B

FIGURE 4 | Novelty of 50 rationally selected biomarker transcripts expression patterns associated with similar MoA. (A) The top 50 biomarkers (gray) from the
rational selection 50-transcript MLR minimodel were compared to DEGs associated to MoA as identified by (Hu et al., 2009) shown in black. Biomarker transcripts
which were also identified for the same compound and MoA within these two studies are shown as stacked bars. (B) Correlation in gene expression of the 50
biomarkers between compounds within our database. Log2 fold change values for each transcript was extracted in all the compound treatments to plot the
heatmap. Similar expression patterns (red blocks) are seen within compound treatments with similar MoA. The biomarkers are grouped according to the MoA (black
blocks) they were identified from in Table 1.
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HDACs, particularly HDAC1 (PF3D7_0925700) and HDA1
(PF3D7_147220) (Coetzee et al., 2020). The biomarker-based
chemo-transcirptomic fingerprints are therefore able to classify
these chemically-related compounds together based on similar
drug targets. Moreover, derivatisation of the hydroxymate-based
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
core to include 2-aminosuberic acid in compounds such as ASA-9
(Andrews et al., 2012) resulted in an individual fingerprint with
similarity to the TSA and SAHA fingerprints, but that clusters
with the less distinct group. It must be noted that the target of
ASA-9 is not confirmed and the deviation therefore can indicate
FIGURE 5 | The ML defined biomarkers result in unique suprahexagonal chemo-transcriptomic fingerprints clustered per compound MoA. The dimensionality of
expression profiles for the 50 biomarkers from various compound treatments were reduced using self-organizing maps (SOM) visualized as suprahexagonal chemo-
transcriptomic fingerprints. Each hexagon within each suprahexagonal map defines a cluster of biomarkers colored according to log2 fold change (FC) expression
values, and hierarchically clustered using Ward linkage on Euclidian distance of expression profiles. Known protein targets or biological processes affected by the
compound treatments are indicated. CDPK, Ca2+/calmodulin-dependent protein kinase; Ser/Thr kinase, serine/threonine kinase; Ser protease, serine protease;
HDAC, histone deacetylase; ODC, ornithine decarboxylase; Stauro, staurosporine; Iono, ionomycin; CQ, chloroquine; Art, artemisinin; Febr, febrifugine; Quin, quinine;
ASA-9, 2-aminosuberic acid derivative; CylcoS, cyclosporine A; PMSF, phenylmethylsulfonyl fluoride; TSA, trichostatin A; SAHA; suberoylanilide hydroxamic acid;
DFMO, difluoromethylornithine; TSA1, data from Hu et al. (2009); TSA2, data from Andrews et al. (2012).
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differentiation in MoA and possible off-target effects due the
changes in the core structure of the comounds. This indicates
that the biomarker-based chemo-transcriptomic fingerprints are
sensitive enough to distinguish structural derivatisation from
chemotype cores, whilst at the same time retain grouping within
similar MoAs.

ML-7 and W-7 are both CDPK inhibitors (Hu et al., 2009)
and these two compounds share biomarkers that result in similar
fingerprints, distinct from others (Figure 5). Additionally, the
lipid kinase (phosphatidylinositol 4-kinase, PI4K) inhibitors
MMV’048 and UCT’943 are closely related 2-aminopyridine
and 2-aminopyrazines, respectively (Paquet et al., 2017;
Brunschwig et al., 2018; van der Watt et al., 2018). These two
PI4K inhibitors also share biomarkers with the result that they
have similar fingerprints. However, there is a distinct difference
between the fingerprints for the CDPK and PI4K kinase
inhibitors, implying that the ML model is able to distiguish
different kinase inhibitors and is sensitive enough to stratify
compounds even when they fall into a larger class of proposed
drugs like kinase inhibitors. The model is therefore able to
predict different outcomes on cellular signalling processes
coordinated by different kinases.

Interestingly, 16 of the 50 biomarkers can also be associated
with copy number variations (CNVs, nine biomarkers) or single
nucleotide variations (SNVs, eight biomarkers) that typically
results in resistance phenotypes of P. falciparum (Cowell et al.,
2018). This information is used to predict possible drug targets
or resistance mechanisms (Cowell et al., 2018). One of our
biomarkers, pf3D7_0108700 (encoding a putative secreted
ookinete protein) produced CNVs for four different treatments
(Cowell et al., 2018), hinting at a similar drug target or resistance
mechanisms for these compounds. However, this gene is not part
of the described resistome for the parasite (Cowell et al., 2018).
Since none of the biomarker sets for a particular compound show
major overlap in their entirety with the resistome, it is unclear
whether those that are associated with CNVs or SNVs are
predictive of resistance development or simply as a result of
fitness costs due to other resistance-inducing mutations
co-occurring.

Validation of the Biomarker Selection
We subsequently set out to interrogate the performance of the
biomarker fingerprints to be able to stratify new compounds into
particular MoAs. To do this, we incorporated transcriptome data
fromcompounds thatwerenot included into theoriginalMLmodel
design. Several of the data used to interrogate the biomarkers
showed clear correlation to compounds with defined MoA that
was included to generate the model (Figure 6). However,
compounds such as colchicine, leupeptin and apicidin have low
DE amplitudes (Hu et al., 2009) and indeed does not show
pronounced correlation to any other compounds, except for the
expected overlap between the HDAC inhibitor apicidin and other
HDAC inhibitors. Apicidin, together with the pan-protease
inhibitor leupeptin also show correlation (r2<0.4) with the CDPK
inhibitors and may be as a result of the pleotropic effects of these
compounds that affect the asexual parasite’s transcriptional profile.
Similarly, colchicine, as microtubule formation inhibitor, falls
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
within this group and correlates also with the HDAC inhibitors
(r2 = 0.57, Figure 6).

ACT-213615 was identified as a food vacuole plasmepsin
inhibitor (Brunner et al., 2012) and this compound’s fingerprint
does not correspond to any of the classes of antimalarials
incorporated in the model (Figure 6). With the poor
correlations to the other datasets, it is therefore clear that this
compound has a MoA dissimilar to any of the other control
compounds. This indicates that the MLmodel and fingerprinting
is able to identify compounds that do not overlap in target and
MoA with other compounds and will be able to indicate new
MoAs from this approach.

Lastly, we also asked if our biomarkers are robust enough to
stratify compounds’MoA when other life cycle stages are treated.
We argued that at least some overlap should be visible within
MoA classes particularly between the transcriptomes of asexual
parasites and immature (stage II/III) gametocytes, since stage-
specific transcriptome variation between these stages are not
as pronounced as between asexual parasites and mature
gametocytes (van Biljon et al., 2019). We therefore included
data where immature gametocytes were treated with TSA (Ngwa
et al., 2017), and a positive correlation (r2~0.3) was seen with the
biomarker predictions from the asexual parasite data, resulting in
a similar fingerprint for these compounds, although with a less
pronounced amplitude in the immature gametocyte profiles
(Figure 6B). All of these HDAC inhibitors, irrespective of life
cycle stage, anticorrelated with the profiles of lipid kinase
inhibitors, but did correlate with the colchicine profile, again
confirming distinct changes in the transcriptome of P.
falciparum that is conserved across asexual parasites and
immature gametocytes.

This same grouping of PI4K inhibitors were seen when two
other compounds, similar to MMV’048 and UCT’943,
MMV666810 (MMV’810) and MMV642850 (MMV’850) was
included. MMV’810 is a 2-aminopyridine derivative whereas
MMV’850 falls within the imidazopyridazine class of kinase
inhibitor scaffolds (van der Watt et al., 2018). Transcriptome
profiles of immature gametocytes treated with MMV’810 and
MMV’850 (van Biljon et al., submitted) again displays a distinct
chemo-transcriptomic fingerprints, disconnected from that of
HDAC inhibitors. The additional interrogation of the dynamics
associated with the fingerprints for MMV’810 and ‘850
confirmed a rate of onset > 24 h, that is more pronounced for
MMV’850 (Figure 6B).

The biomarkers are therefore accurate to classify compounds
with unknown MoA into their own classes and robust enough to
be used to evaluate compound fingerprints and MoA across
multiple life cycle stages.
DISCUSSION

Although P. falciparum parasites stringently control their gene
expression profi les during normal development and
differentiation (Bozdech et al., 2003; van Biljon et al., 2019),
several reports indicate that antimalarial compound treatment
results in measurable changes in the transcriptome with an
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appreciable and individualized transcriptional signature (Hu
et al., 2009; Siwo et al., 2015). Here, we report that such
chemically-induced transcriptional responses can be used to
create an informative ML model that is able to stratify
antiplasmodial compounds to their respective MoA with
robust accuracy. The ML model could be defined with a
minimum set of biomarkers and these could ascribe a unique
chemo-transcriptomic fingerprint for each compound.
Moreover, compounds with similar fingerprints (and per
implication MoAs) grouped together.
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This is one of the first reports of the successful use of ML to
stratify compounds based on their MoA using chemically-
induced transcriptional profiles for P. falciparum parasites.
Although GEPs provide a global overview of how the parasite
is affected by a compound, they contain high dimensionality with
irrelevant and/or redundant features that limit the efficiency and
generalization of ML algorithms (Bolón-Canedo et al., 2015). We
overcame this developmental challenge by applying a rational
gene selection approach to reduce the dimensionality in the
training features. This highlights the importance of training data
A

B

FIGURE 6 | Performance of the biomarkers to stratify new compounds to MoA classes. (A) Correlation plots were generated from biomarker expression profiles for
compounds within our database as well as new compounds (TSA, MMV666810 and MMV642850) treated on immature gametocytes (stage II/III) to assess the
usefulness of the biomarkers on different life cycle stages of the parasite. Plots were visualized using corrplot based on Pearson correlations. Similar correlation
patterns, shown in blocks, were observed for compound treatments with similar MoA. Areas of high correlation (positive or negative) are indicated in blocks for
particular compound groups. (B) SOM suprahexagonal chemo-transcriptomic fingerprints for each of the new compounds included in the validation compared to
example compounds within the same MoA class. TSA, Trichostatin A; MMV666810, MMV’810; MMV642850, MMV’850; im Gc, immature stage II/III gametocytes.
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resembling the data it will be tested on such that noisy input data
is limited as this will influence the model’s prediction accuracy
(Sanders and Saxe, 2017; Beam and Kohane, 2018; Pu et al.,
2019). ML algorithms can additionally not necessarily account
for biological significance and may assign significance to
transcripts that are biologically irrelevant to the MoA and cell
processes affected by the compound. Similar to studies in other
systems (Zhao et al., 2010; Crawford and Greene, 2020), we see
that prior biological information can and should therefore be
used for feature selection to ensure the ML algorithms select
features that are the best predictors relevant to the problem.
Whilst the incorporation of networks or pathways describing
relationships between genes are informative when using gene
expression data, such information is often incomplete and
lacking in the malaria field compared to other fields and does
limit the approaches that can be taken. In line with strategies
being applied in other disease areas like cancer (Zhao et al., 2010)
integrating prior biological knowledge and insight about the
disease indeed strenghtened the capabilities of ML algorithms
use here to assign biologically relevant significance.

The limited features available in the transcriptome dataset for
compound-treated P. falciparum parasites, resulted in MLR
performing as the best ML algorithm to stratify the compounds’
MoA. This could be ascribed to MLR’s ability to use logistic
regression and maximum likelihood rather than transforming
data with ML algorithms like SVC and ANN. Interestingly,
algorithms employing ensemble classifiers or deep learning
showed high variability within them compared to MLR despite
such techniques typically displaying good performance for
multiclassification problems utilizing gene expression in other
cancer studies (Khan et al., 2001; Kim et al., 2019). Techniques
such as ANN and ensemble classifiers are more adapted to handle
‘big data’ such as CMap, which contains about 1.5 M expression
profiles of over 5000 compounds treated on different cancer cell
types (Sirci et al., 2016).

The resultant MLRmodel could successfully identify a limited
set of 50 biomarkers that are informative to stratify the different
compounds’ transcriptional response from each other. Although
50 biomarkers for MoA stratification may be considered low, it is
similar to the 70 transcripts that were identified as informative
biomarkers for MoA classification from the Mycobacterium
tuberculosis transcriptome (Murima et al., 2013). The selected
biomarkers are all unique and continually DE throughout a
compound’s treatment. This confirms that the parasite’s
chemically-induced transcriptome response is individualized,
robust and directed, a characteristic not limited to this protist,
but also evidently clear forM. tuberculosis (Murima et al., 2013),
with deregulation of the transcriptome evident over and above
the general, typically tight regulation of transcriptomes (Bozdech
et al., 2003; van Biljon et al., 2019). The two genomes of these
organisms have a similar size, and the biomarker pools therefore
present only ~1% of their transcriptomes, attesting to the power
of ML to identify biomarkers for the most informative,
condensed subset of the transcriptome.

ML modelling and biomarker selection successfully described
chemo-transcriptomic fingerprints for each compound
investigated, and classified compounds together based on similar
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
MoA. Importantly, the clustering was correlated directly with the
specific molecular process or protein targeted and was not
seemingly influenced by differences in chemotype, unless a
derivative of the chemotype resulted in proposed off-target
effects e.g., ASA-9 not clustering with other HDAC inhibitors.
Moreover, compounds with clear molecular targets e.g., PI4K
inhibitors, have more pronounced and specific fingerprints, in
contrast to metabolic profiling where pronounced fingerprints
were only obtained for compounds affecting broader biological
systems (Allman et al., 2016). This reflects increased sensitivity
and specificity of chemo-transcriptomic fingerprint profiling and
indicate that the latter may be a useful tool to completement
metabolic profiling in cases where undefined metabolic
fingerprints are observed. The ability of chemo-transcriptomic
fingerprinting to also distinguish different kinase inhibitors like
PI4K and CDPK inhibitors from each other, attests to its
sensitivity to allow distinction between compounds that target
different signaling pathways in the parasite, although both
ultimately leads to transcriptional deregulation.

The biomarkers displayed robustness regarding differences
due to life cycle stage evaluated and was still able to classify
compounds into the same classes even though a weaker overall
response was observed in immature gametocytes compared to
asexual parasites. Since the majority of biomarkers selected in
the ML models have undescribed functions, it is intriguing that
these are then still informative to chemo-transcriptomic
fingerprinting and implicates their involvement in shared
biological processes or responses across asexual parasites and
immature gametocytes. As more data is generated for
additional life cycle stages like gametocytes, the ML model
can be further optimized and expanded to handle stage-specific
variation in the Plasmodium transcriptome.

The ML model and biomarkers are immediately useful in e.g.
a focused-array format to allow the rapid evaluation of new
antimalarial compounds (and their derivatives) within a H2L or
LO program. This should provide information on new
compounds’ MoA that can either overlap with existing
compounds/drugs or to be unique. Additionally, any deviation
from this due to structural changes of the compounds could be
rapidly detected. The benefit of ML models lie in the fact that
they are dynamic and can be updated as new data is generated
and incorporated. In each such instance, the models become
more powerful in their predictive and classifying nature,
improving on issues such as class-bias. The model could
therefore be extended in the next phase by including data on
pre-clinical and clinical candidates within the MMV pipeline, to
allow comparison with the metabolomic fingerprints for these
frontrunners (Allman et al., 2016).

In summary, our study has identified unique 50 biomarkers
capable of stratifying antimalarial compounds based on their
MoA. This was achieved using a MLR model that is stable,
specific and accurate. With this, we show that chemo-
transcriptomic fingerprints exist for individual compounds and
can classify compounds with similar MoA together. This
provides a new tool in the toolkit to describe antimalarial drug
MoA to accelerate the drug discovery process by rapidly
providing data to guide H2L and LO strategies.
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Response Prediction by Ensemble Learning and Drug-Induced Gene Expression
Signatures. Genomics 111 (5), 1078–1088. doi: 10.1016/j.ygeno.2018.07.002

Tilley, L., Straimer, J., Gnädig, N. F., Ralph, S. A., and Fidock, D. A. (2016).
Artemisinin Action and Resistance in Plasmodium Falciparum. Trends
Parasitol. 32, 682–696. doi: 10.1016/j.pt.2016.05.010

Tulloch, L. B., Menzies, S. K., Coron, R. P., Roberts, M. D., Florence, G. J., and
Smith, T. K. (2018). Direct and Indirect Approaches to Identify Drug Modes of
Action. IUBMB Life 70, 9–22. doi: 10.1002/iub.1697

van Biljon, R., Van Wyk, R., Painter, H. J., Orchard, L., Reader, J., Niemand, J.,
et al. (2019). Hierarchical Transcriptional Control Regulates Plasmodium
Falciparum Sexual Differentiation. BMC Genomics 20, 920. doi: 10.1186/
s12864-019-6322-9

vanBrummelen,A.C.,Olszewski,K.L.,Wilinski,D.,Llinas,M.,Louw,A. I., andBirkholtz,
L. M. (2008). Co-Inhibition of Plasmodium Falciparum S-adenosylmethionine
Decarboxylase/Ornithine Decarboxylase Reveals Perturbation-Specific
Compensatory Mechanisms by Transcriptome, Proteome, and Metabolome
Analyses. J. Biol. Chem. 284, 4635–4646. doi: 10.1074/jbc.M807085200

van der Watt, M. E., Reader, J., Churchyard, A., Nondaba, S. H., Lauterbach, S. B.,
Niemand, J., et al. (2018). Potent Plasmodium Falciparum Gametocytocidal
Compounds Identified by Exploring the Kinase Inhibitor Chemical Space for
Dual Active Antimalarials. J. Antimicrob. Chemother. 73, 1279–1290. doi:
10.1093/jac/dky008

Verlinden, B. K., Louw, A. I., and Birkholtz, L.-M. (2016). Resisting Resistance: Is
There a Solution for Malaria? Expert Opin. Drug Discov. 11 (4), 395–406.
doi: 10.1517/17460441.2016.1154037

Wickham, H. (2016). Ggplot2: Elegant Graphics for Data Analysis. (Springer-
Verlag New York).

Woo, J. H., Shimoni, Y., Yang, W. S., Subramaniam, P., Iyer, A., Nicoletti, P., et al.
(2015). Elucidating Compound Mechanism of Action by Network
Perturbation Analysis. Cell 162, 441–451. doi: 10.1016/j.cell.2015.05.056

World Health Organization (2019). The “World Malaria Report 2019” at a Glance.
(Geneva, Switzerland: World Health Organization).

Xie, L., He, S., Song, X., Bo, X., and Zhang, Z. (2018). Deep Learning-Based
Transcriptome Data Classification for Drug-Target Interaction Prediction.
BMC Genomics 19, 667–667. doi: 10.1186/s12864-018-5031-0

Xie, S. C., Ralph, S. A., and Tilley, L. (2020). K13, the Cytostome, and Artemisinin
Resistance. Trends Parasitol. 36 (6), 533–544. doi: 10.1016/j.pt.2020.03.006
June 2021 | Volume 11 | Article 688256

https://doi.org/10.1146/annurev-micro-090817-062712
https://doi.org/10.3389/fphar.2019.01526
https://doi.org/10.1038/89044
https://doi.org/10.1093/bioinformatics/btz772
https://doi.org/10.1016/j.mib.2013.07.005
https://doi.org/10.1002/bdd.1859
https://doi.org/10.1038/ncomms15160
https://doi.org/10.1038/ncomms15160
https://doi.org/10.1371/journal.pone.0069191
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.3390/ijms20205087
https://doi.org/10.3389/fcimb.2017.00320
https://doi.org/10.1371/journal.pcbi.1006651
https://doi.org/10.1371/journal.pcbi.1006651
https://doi.org/10.1126/scitranslmed.aad9735
https://doi.org/10.1126/scitranslmed.aad9735
https://doi.org/10.1073/pnas.0802982105
https://doi.org/10.1016/j.ijmst.2019.06.009
https://doi.org/10.1002/cmdc.202100041
https://doi.org/10.1038/s41467-020-20629-8
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/s41598-017-18315-9
https://doi.org/10.1038/s41598-017-18315-9
https://doi.org/10.1016/j.ecolmodel.2019.06.002
https://doi.org/10.1016/j.ddmod.2017.04.004
https://doi.org/10.1186/s12864-015-2165-1
https://doi.org/10.1016/j.ygeno.2018.07.002
https://doi.org/10.1016/j.pt.2016.05.010
https://doi.org/10.1002/iub.1697
https://doi.org/10.1186/s12864-019-6322-9
https://doi.org/10.1186/s12864-019-6322-9
https://doi.org/10.1074/jbc.M807085200
https://doi.org/10.1093/jac/dky008
https://doi.org/10.1517/17460441.2016.1154037
https://doi.org/10.1016/j.cell.2015.05.056
https://doi.org/10.1186/s12864-018-5031-0
https://doi.org/10.1016/j.pt.2020.03.006
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


van Heerden et al. Machine Learning for Antimalarial Mode of Action
Yang, T., Ottilie, S., Istvan, E. S., Godinez-Macias, K. P., Lukens, A. K., Baragaña,
B, et al. (2021). Malda, Accelerating Malaria Drug Discovery. Trends Parasitol.
37 (6), 493–507. doi: 10.1016/j.pt.2021.01.009

Zhang, Y., Wong, Y. S., Deng, J., Anton, C., Gabos, S., Zhang, W., et al. (2016).
Machine Learning Algorithms for Mode-of-Action Classification in Toxicity
Assessment. BioData Min. 9, 19. doi: 10.1186/s13040-016-0098-0

Zhao, C., Bittner, M. L., Chapkin, R. S., and Dougherty, E. R. (2010).
Characterization of the Effectiveness of Reporting Lists of Small Feature Sets
Relative to the Accuracy of the Prior Biological Knowledge. Cancer Inf. 9,
CIN.S4020. doi: 10.4137/CIN.S4020
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 17
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 van Heerden, vanWyk and Birkholtz. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
June 2021 | Volume 11 | Article 688256

https://doi.org/10.1016/j.pt.2021.01.009
https://doi.org/10.1186/s13040-016-0098-0
https://doi.org/10.4137/CIN.S4020
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action
	Introduction
	Materials and Methods
	Data Acquisition, Quality Control Filtering, and Pre-Processing of GEP Datasets
	Feature Selection
	Supervised ML Models
	Assessing Different ML Algorithms to Stratify Antiplasmodial Compounds With Similar MoA
	Comparison of the Rational Selection and ML-Inferred Selection Strategies
	Validation of the ML Model on New Compounds and Chemo-Transcriptomic Fingerprinting

	Results
	Database Generation and Model Building
	Evaluating Different ML Algorithms on the Inclusive Database
	Evaluating Different ML Algorithms on the Rational Selection Database
	Validation of Rational Gene Selection
	50 Biomarkers as Indicators of MoA
	Biomarker Fingerprints Stratify Compounds Based on MoA
	Validation of the Biomarker Selection

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


