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People with diabetes mellitus are susceptible to both cardiovascular disease and severe
influenza A virus infection. We hypothesized that diabetes also increases risks of influenza-
associated cardiac complications. A murine type 1 (streptozotocin-induced) diabetes
model was employed to investigate influenza-induced cardiac distress. Lung
histopathology and viral titres revealed no difference in respiratory severity between
infected control and diabetic mice. However, compared with infected control mice,
infected diabetic mice had increased serum cardiac troponin I and creatine-kinase MB,
left ventricular structural changes and right ventricular functional alterations, providing the
first experimental evidence of type I diabetes increasing risks of influenza-induced
cardiovascular complications.
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BACKGROUND

Influenza A virus (IAV) infection is associated with increased risk of cardiovascular disease (CVD)
and heart attack, with acute myocardial infarction (MI) hospital admissions increasing six-fold in
patients diagnosed with IAV in the preceding week (Kwong et al., 2018). The cause of IAV-
associated CVD remains unclear. Direct IAV infection in the heart has been reported in both
humans and mice (Davoudi et al., 2012). Alternatively, CVD and myocarditis may be an indirect
outcome stimulated by circulating pro-inflammatory mediators, which also increase the risk of
plaque rupture via local inflammation (Bazaz et al., 2013). Further contributing to intravascular
complications, acute respiratory infections may trigger pro-coagulant and hemodynamic events and
predispose the patient to secondary, perhaps intracoronary, thrombosis and ischemic cardiac
disease, with enhanced leukocyte extravasation initiating atheroma formation (Bazaz et al., 2013).

Although the cardiac complications of IAV infection are now well established, the role of specific
host co-morbidities in their development is unknown. Given the association of diabetes mellitus
(DM) with both CVD (Giacco and Brownlee, 2010) and severe IAV (Reading et al., 1998), we
hypothesised that DM is an important risk factor for cardiac complications from IAV infection.
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While clinical studies have recently been conducted on this topic,
none differentiated between types 1 and 2 DM (T1- and T2DM),
nor controlled for obesity (Samson et al., 2019; Chow et al., 2020;
Modin et al., 2020), which we have shown to independently
increase IAV-induced cardiac complications (Siegers et al.,
2020). Here, we assessed whether DM contributes to increased
IAV-associated cardiac impairment in T1DM IAV-
infected mice.
METHODS

Virus
A/Puerto Rico/8/1934(H1N1) stocks were prepared in
embryonated chicken eggs and titers determined by Madin-
Darby canine kidney (MDCK) cell plaque assay as previously
described (Short et al., 2011; Brauer and Chen, 2015).

Mice
All work was performed with ethical approval fromThe University
of Queensland Office of Research Ethics (SBMS/071/17). Male
C57BL/6 mice acquired from the Animal Resource Centre,
Australia, were housed in individually ventilated cages under
alternating 12-hour light/dark periods with food and water
ad libitum. T1DM was induced using streptozotocin (STZ) (King,
2012); ten-week-old mice were fasted for four hours and
intraperitoneally injected with 50mg/kg/day STZ (Sigma-Aldrich,
Germany) or phosphate-buffered saline (PBS; control mice) daily
forfivedays (King, 2012). STZ-treatedmicewere suppliedwith10%
sucrosewater during, and until three days after, the injection period
to prevent sudden hypoglycemia. DM was considered successfully
established when non-fasting blood glucose concentrations
(glucometer) were >16.7 mmol/L at one and two weeks post-
injection (Zhu et al., 2005). All treated mice converted
successfully. Both T1DM and control mice were randomized to
intranasal inoculation with 1000 plaque-forming units (PFU) of A/
Puerto Rico/8/1934(H1N1) IAV in 50µL, or PBS. Body weight was
monitored daily and blood oxygen saturationwasmeasured using a
collar sensor and Mouseox Plus pulse oximeter (Starr, Oakmont,
PA, USA).

Echocardiography
Cardiac function was assessed at six days post-infection (d.p.i.) in
all mice using the Vevo 3100 Imaging Platform (Fujifilm, Japan)
with a 25-55 MHz transducer (MX550D). All measurements and
analyses were conducted in a blinded manner. Mice were
anesthetized with 2.5% isoflurane and general anesthesia
maintained with 1% isoflurane during echocardiography. Mice
in supine position were placed on a heating pad and heart rate
and electrocardiography recorded. Body temperature was
control led and monitored for the duration of the
echocardiography to maintain 37.0±0.5°C. Two-dimensional B-
mode images were recorded in parasternal long axis view to
determine ejection fraction (EF), stroke volume (SV), and
cardiac output; and short-axis view to determine right
ventricular (RV) fractional areas change (FAC). M-mode
images were recorded in short-axis view to determine left
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ventricular (LV) end systolic and diastolic volumes, anterior
wall thickness during systole and diastole (LVAW;s and LVAW;
d), posterior wall thickness during systole and diastole (LVPW;s
and LVPW;d), and mass, as well as RV free wall thickness
(RVFWT); and in four-chamber view to determine tricuspid
annular plane systolic excursion (TAPSE). Pulse-wave Doppler
with color images were recorded in short-axis view to determine
pulmonary acceleration time (PAT). Pulse-wave tissue Doppler
images were recorded in four-chamber view to determine
tricuspid and mitral early diastolic myocardial relaxation
velocity (E’). CO, SV, and LV mass and volume during end
systole and diastole were normalized to body weight [cardiac
index, stroke volume index, LV mass index, LVESVI and
LVEDVI, respectively]. While it was considered that
normalizing to body weight when significant weight was lost
over the course of infection might lead to overestimation of
values indicating hypertrophy, as there was no significant
difference between the final body weights of the infected
diabetic and control group it was decided that this was
acceptable. Recorded images were analyzed using Vevo LAB
3.1.1 software (VisualSonics, Toronto, Canada). Photographs
exemplifying the analysis methods for different echocardiogram
parameters are shown in Supplementary Figure 1. Parameters
were measured three times per mouse in at least six mice and
averages presented. Due to biosafety control measures, we were
unable to measure and thus normalize to pre-infection baseline
levels for each treatment group.

Creatine-Kinase MB (CK-MB) and Cardiac
Troponin I (CTNI) ELISAs
Serum levels of high sensitivity CTNI (Life Diagnostics, Inc., U.S.A.)
and CK-MB isoenzyme (MyBioSource, U.S.A.) at six d.p.i. were
determined according to the manufacturers’ instructions.

Measuring Viral Titers In Vivo
Organs were harvested six d.p.i., homogenized via Qiagen
Tissuelyser II (Qiagen, The Netherlands) and the supernatant
isolated. RNA was extracted using NucleoZOL (BIOKÉ, The
Netherlands) and viral cDNA synthesized using Oligo (dT)18
primers (Sigma-Aldrich, Germany). Viral copy number was
determined by qPCR using IAV strain A/Puerto Rico/8/1934
(H1N1) virus matrix (M) gene cloned into pHW2000 plasmid as
described (Short et al., 2013). Viral titers were measured by
MDCK cell plaque assay as described (Short et al., 2011).

Histology
The left lung lobe was fixed in 10% neutral-buffered formalin,
routine processed and embedded in paraffin, sectioned at 5mm
and stained with hematoxylin and eosin. Sections were assessed
for vascular changes, bronchitis, interstitial inflammation,
alveolar inflammation, pneumocyte hypertrophy, and pleuritis
by a veterinary pathologist blinded to the study design.

Statistical Analysis
Data are pooled from two experiments, the initial containing six
mice per group and the repeat containing 3 mice per group.
Outliers were removed by ROUTS test (Q=1%). Normalcy was
September 2021 | Volume 11 | Article 714440
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determined by D’Agostino-Pearson omnibus test or Shapiro-
Wilk test. Body weight data were analysed using repeated
measures three-way ANOVA, and other data were analysed
using two-way ANOVA with P<0.05 indicating statistical
significance. Where data was not normally distributed,
statistics were performed on log-transformed data if this
attained closer-to-normal distribution or untransformed data if
transforming did not achieve closer-to-normal distribution, and
presented as median ± IQR. Normally distributed data were
presented as mean ± SEM.
RESULTS

Pulmonary Severity of IAV Is Not
Increased in Mice With T1DM
As obesity worsens the cardiac complications of IAV infection
(Siegers et al., 2020), we used a well-established non-obese
T1DM model to eliminate this confounding effect. Following
IAV infection, there was significant weight loss in both control
and diabetic mice but no significant difference was detected in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
weight loss between diabetic and control mice (Figure 1A).
Similarly, IAV induced significant reductions in arterial oxygen
saturation but there was no difference between diabetic and control
infected groups (Figure 1B). At six d.p.i. no infectious virus was
detected in the lung via plaque assay (data not shown due to lack of
any plaques present) and the degree of pulmonary viral RNA was
similar between diabetic and control groups (Figure 1C).

For all investigated lung histology parameters except
pneumocyte hypertrophy/hyperplasia, IAV-infection increased
pulmonary damage compared to mock-infection (Supplementary
Figure 2). Diabetic mice had increased interstitial inflammation in
comparison to control mice, with variance attributable to an
interaction between IAV and DM (Supplementary Figure 2).
However, total scoring found no significant difference in IAV-
induced lung pathology between T1DM and control
mice (Figure 1D).

Markers of Cardiac Damage Are Elevated
in IAV-Infected T1DM Mice
We next sought to assess whether there was evidence of increased
CVD in T1DM mice with IAV, despite the absence of increased
A B

C D

FIGURE 1 | The pulmonary severity of IAV is not increased in T1DM versus control male C57BL/6J mice at six days post-infection. (A) Percentage of original body
weight over infection course in IAV- or mock-infected mice with and without T1DM. (B) Arterial oxygen saturation percentage in IAV- or mock-infected mice with and
without T1DM. (C) Lung IAV viral copy number in IAV- or mock-infected mice with and without T1DM. (D) Total lung histopathology scores in IAV- or mock-infected
mice with and without T1DM. Data are pooled from two experiments, the initial containing six mice per group and the repeat containing 3 mice per group. Statistical
outliers were removed by ROUTS test (Q=1%). For graph (A), each data point represents the mean ± SEM of at least n=9 mice per group, for graphs (B, C), each
data point represents one mouse with median ± IQR of at least n=5 per group, and for graph (D), each data point represents one mouse with mean ± SEM of at
least n=9 mice per group. Statistical analysis was performed as described in “Methods”, being performed on untransformed data for graphs (B, C) as transforming
did not achieve closer-to-normal distribution.
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respiratory disease. IAV infection significantly increased serum
CTNI and CK-MB in T1DM, but not in control, mice
(Figures 2A, B).

Toassesswhether thesedata reflectedvirus replication in theheart
of T1DM mice, viral titres in the heart were assessed. No infectious
virus was detected in the hearts of any of the treatment groups (data
not shown).Whilst low levels of viralRNAweredetected in thehearts
of infected mice, this was not significantly different between IAV-
infected T1DM and control mice (Figure 2C).

IAV Alters Cardiac Structure and Function
in T1DM Mice
To investigate whether IAV infection and DM had detrimental
effects on cardiac function, echocardiograms were performed. At
six d.p.i. we observed changes in cardiac structure and function
(Table 1). Functionally, IAV decreased cardiac index within the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
LV. In the RV, IAV decreased PAT, the magnitude of tricuspid E’
and TAPSE. Structurally, IAV increased LVPW;s. DM increased
LV stroke volume index and cardiac index. IAV and DM
interactions were attributable for a significant increase in LV
mass index in T1DMmice only upon IAV infection (Figure 2D).
DISCUSSION

IAV infection has been linked with cardiac complications,
however the mechanisms by which this occurs and whether
this is more pronounced in patients with DM remains unclear.
This is vital information for both patient management as well as
future pandemic preparedness.

No significant difference in IAV severity was observed
between control and T1DM mice. While this was unexpected,
A B

C D

FIGURE 2 | Increased markers of cardiac damage, and changes in left ventricular structure in IAV-infected T1DM versus control male C57BL/6J mice at six days
post-infection. (A) Serum cardiac troponin I (CTNI) (ng/ml) in IAV- or mock-infected mice with and without T1DM. (B) Serum creatine kinase MB (CK-MB) (ng/ml)
in IAV- or mock-infected mice with and without T1DM. (C) IAV viral copy number present in hearts of IAV- or mock-infected mice with and without T1DM.
(D) Echocardiogram-derived left ventricular mass index in IAV-infected mice with and without T1DM. Data are pooled from two experiments, the initial containing six
mice per group and the repeat containing 3 mice per group. Statistical outliers were removed by ROUTS test (Q=1%). Each data point represents one mouse with at
least n=6 per group and mean ± SEM for graphs (A, B), and median ± IQR for graphs (C, D). Statistics were performed on log-transformed data for LV mass index
as these showed the closest to normal distribution, but on untransformed data for graph (C) as transformation did not achieve closer-to-normal distribution.
Statistical analysis was performed as described in “Methods” with *P<0.05; **P<0.01.
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a prior study has reported that T1DM mice infected with either
A/Phil/82(H3N2) or A/HKx31(H3N2) IAV had increased viral
titers compared to non-DMmice. In contrast, no difference in A/
PR/8/34 was observed, attributed to the collectin resistance and
poor glycosylation of A/PR/8/34 (Reading et al., 1998).

Despite no significant difference in respiratory disease, we
observed clear elevations in serum cardiac damage biomarkers in
IAV-infected T1DM mice compared to the IAV-infected control
group which, coupled with the observed difference in stroke volume,
suggest type II ischemia. Furthermore, echocardiography revealed
numerous differences in cardiac function and structure attributable
to IAV or the interaction of IAV with T1DM. Preserved EF, mitral
E’, LVESVI and LVEDVI indicate no obvious LV dysfunction.
However, increased wall thickness and mass index suggest that
hypertrophy is more severe in infected T1DMmice than in infected
controls. Within the RV, IAV infection induced decreases in
TAPSE, PAT and the magnitude of tricuspid E’ indicative of both
systolic and diastolic dysfunction, however FAC was preserved in
both control and T1DM mice. Taken together, these data indicate
that IAV infection induces mild systolic and diastolic RV
dysfunction in both control and T1DM mice equally, but that LV
hypertrophy is more severe in T1DM mice despite preservation of
function. This early development of compensative hypertrophymay
be attributable for the observed increase in serum CTNI levels in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
IAV-infected T1DM mice and could go on to cause maladaptive
remodeling (Schiattarella and Hill, 2015).

At present, the reasons for the observed increase in IAV-
induced cardiac complications in T1DM are unclear. As the
respiratory infection did not increase in severity with the
addition of T1DM, the observed cardiac complications are
unlikely to be an indirect effect of hypoxia accompanying
pulmonary distress, although pulmonary embolism or micro
emboli cannot be ruled out as potential contributing factors to
the observed RV dysfunction upon IAV infection. Previous
studies in both human patients and mice have reported a
possible direct effect of IAV or viral antigens in the heart
(Davoudi et al., 2012). We observed very low viral titers within
the cardiac homogenate of both T1DM and control mice,
suggesting this is unlikely to be the predominant driver of the
observed cardiac injury in these mice, although this effect cannot
be ruled out. It is important to note that the primary feature of
the T1DM model is hyperglycaemia. It is therefore tempting to
speculate that we are witnessing the synergistic effect of a
hyperglycaemia-induced higher baseline level of inflammation
within the T1DM mice even before the infection with IAV. This
already-elevated inflammation may then be tipped over a
‘breaking point’ by the infection, inducing a cytokinemia that
provokes microcirculation disorders and myocardial injury
TABLE 1 | Echocardiogram parameters assessing cardiac function in mice.

Control Type 1 DM Findings

Mock (n=9) IAV (n=9) Mock (n=9) IAV (n=9) DM IAV Interaction

Global Parameters
Heart rate (bpm) 478.5 ± 18.74 384.9 ± 19.04 460.9 ± 20.71 351.6 ± 12.82 p=0.1684 p<0.0001 p=0.6643

Functional status
Left ventricle
Cardiac index (mL/min/g) 0.455 ± 0.057 0.285 ± 0.040 0.536 ± 0.056 0.464 ± 0.058 p=0.0198 p=0.0290 p=0.3643
EF (%) 61.562 ± 4.120 61.324 ± 3.472 67.027 ± 3.958 67.656 ± 3.472 p=0.1272 p=0.9590 p=0.9092
Stroke volume index (uL/g) 0.941 ± 0.094 0.800 ± 0.123 1.145 ± 0.085 1.352 ± 0.165 p=0.0038 p=0.7898 p=0.1597
Mitral E’ (mm/s) -14.896 ± 2.460 -16.687 ± 1.490 -16.759 ± 2.186 -15.710 ± 0.709 p=0.8165 p=0.8457 p=0.4586

Right ventricle
FAC (%)a 47.94 ± 13.11 63.15 ± 14.66 65.96 ± 11.3 59.08 ± 30.65 p=0.1721 p=0.3672 p=0.1465
PAT (ms) 15.555 ± 1.021 10.092 ± 0.728 14.443 ± 0.972 12.686 ± 1.018 p=0.4375 p=0.0006 p=0.0580
TAPSE (mm) 0.482 ± 0.056 0.357 ± 0.033 0.522 ± 0.078 0.365 ± 0.036 p=0.6621 p=0.0135 p=0.7607
Tricuspid E’ (mm/s) -14.395 ± 1.823 -6.687 ± 0.843 -14.180 ± 2.202 -8.737 ± 1.263 p=0.5837 p=0.0004 p=0.4994

Structural status
Left ventricle
LVAW;s (mm)b 1.542 ± 0.274 1.461 ± 0.260 1.376 ± 0.433 1.573 ± 0.448 p=0.8284 p=0.8260 p=0.6660
LVAW;d (mm) 1.00 ± 0.065 0.836 ± 0.062 0.793 ± 0.054 0.862 ± 0.071 p=0.1413 p=0.4188 p=0.0651
LVPW;s (mm) 1.07 ± 0.061 1.267 ± 0.092 1.178 ± 0.041 1.492 ± 0.136 p=0.0787 p=0.0090 p=0.5241
LVPW;d (mm) 0.766 ± 0.055 0.820 ± 0.029 0.801 ± 0.035 1.096 ± 0.177 p=0.1331 p=0.0935 p=0.2387
LV mass index (mg/g)b 5.066 ± 1.697 3.859 ± 0.928 3.611 ± 0.623 5.027 ± 1.643* p=0.9519 p=0.2710 p=0.0018
LVESVI (uL/g) 0.743 ± 0.105 0.476 ± 0.065 0.576 ± 0.066 0.595 ± 0.076 p=0.7605 p=0.1276 p=0.0811
LVEDVI (uL/g)b 1.959 ± 1.006 1.481 ± 0.318 1.786 ± 0.608 2.061 ± 1.005 p=0.4593 p=0.3953 p=0.1978

Right ventricle
RVFWT (mm) 0.402 ± 0.040 0.463 ± 0.038 0.532 ± 0.062 0.515 ± 0.039 p=0.0613 p=0.6439 p=0.4112
Sep
tember 2021 |
 Volume 11 | Ar
EF, ejection fraction; E’, early diastolic myocardial relaxation velocity; FAC, fractional area change; PAT, pulmonary acceleration time; TAPSE, tricuspid annular plane systolic excursion;
LVAW; s, left ventricular anterior wall thickness during systole; LVAW; d, left ventricular anterior wall thickness during diastole; LVPW; s, left ventricular posterior wall thickness during
systole; LVPW; d, left ventricular posterior wall thickness during diastole; LVESVI, left ventricular end systolic volume index; LVEDVI, left ventricular end diastolic volume index; RVFWT, right
ventricular free wall thickness. Data were analysed using two-way ANOVA with P<0.05 indicating statistical significance. Parameters were superscripted (b) if log-transforming the data
shifted distribution closer to normal, enough to be preferable to perform statistics on, but not enough to achieve normalcy, with statistics presented as median ± IQR. Parameters were
superscripted (a) if log-transforming the data did not help achieve normal distribution, in which case data were left untransformed and statistics were presented as median ± IQR. Normally
distributed data were presented as mean ± SEM. *P<0.05 versus T1DM Mock.
Bold values are statistically significant (p<0.05).
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(Giacco and Brownlee, 2010). These cardiac complications may,
alternatively, be attributable to a multitude of other effects
induced by abnormal circulating substrates, and the co-
existence and complex interactions with other, even
subclinical, conditions in this treatment group. Importantly, in
a clinical setting the contribution of underlying DM to the risk of
viral cardiac complications likely depends on the duration of pre-
existing disease (Giacco and Brownlee, 2010).

Together, our data aid in understanding the role of DM in
virus-induced cardiac complications and may help guide clinical
management of at-risk patients, while also suggesting that
reducing the burden of DM in the community is not only of
benefit in and of itself but it may also play an important role in
reducing the extra-respiratory complications of influenza virus.
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