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Irritable bowel syndrome (IBS) is the most common functional bowel disorder worldwide
and is associated with visceral hypersensitivity, gut motility, immunomodulation, gut
microbiota alterations, and dysfunction of the brain-gut axis; however, its
pathophysiology remains poorly understood. Gut microbiota and its metabolites are
proposed as possible etiological factors of IBS. The aim of our study was to investigate
specific types of microbiota-derived metabolites, especially bile acids, short-chain fatty
acids, vitamins, amino acids, serotonin and hypoxanthine, which are all implicated in the
pathogenesis of IBS. Metabolites-focused research has identified multiple microbial
targets relevant to IBS patients, important roles of microbiota-derived metabolites in the
development of IBS symptoms have been established. Thus, we provide an overview of
gut microbiota and their metabolites on the different subtypes of IBS (constipation-
predominant IBS-C, diarrhea-predominant IBS-D) and present controversial views
regarding the role of microbiota in IBS.
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INTRODUCTION

Irritable bowel syndrome (IBS) is a common gastrointestinal bowel disorder, characterized by
recurrent abdominal pain and discomfort or alterations in bowel habits. Interestingly, women are
more susceptible (1.67 times) than men (Study Group of Functional Gastrointestinal Disorders et
al., 2020) to suffer from IBS. Based on different geographical regions and diagnostic criteria, the
global prevalence of IBS is approximately 10–15% and is 1.4–11.5% in China. However, the
proportion of IBS patients seeking clinical service in clinics is below 25% in China (Study Group of
Functional Gastrointestinal Disorders et al., 2020). Based on the predominant symptoms and bowel
habits, IBS patients are divided into four subtypes: constipation-predominant IBS (IBS-C), diarrhea-
predominant IBS (IBS-D), mixed IBS (IBS-M), and unclassified IBS patients. The pathogenesis of
IBS is associated with disordered gastrointestinal motility, abnormal intestinal secretion, visceral
hypersensitivity, altered gut-brain axis, and intestinal permeability, all of which can be affected by
the gut microbial community (Jeffery et al., 2020). Pittayanon et al. (2019) reported that although
the role of gut microbiota in IBS pathogenesis has been gradually elucidated, it remains unclear
whether microbiota dysbiosis is a cause of IBS. Investigations into gut microbial interactions
between host and microbial metabolites may advance our understanding on IBS development.
Owing to the heterogeneous characterization, IBS poses a significant medical burden, and
considerably impact patient quality of life of patients with IBS (Enck et al., 2016; Sperber
et al., 2017).
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Recent studies have demonstrated that IBS symptoms are
influenced by environmental factors, diet, the enteric microbial
community, and host genetics and psychology (Black and Ford,
2020). However, deciphering the relevant specific signaling
pathways between the gut microbiota and host remains
challenging, owing to the limitations of current proposed
animal models. Moreover, differences in species and host
physiology have been a barrier to investigating the involvement
of microbiota-derived metabolites in IBS.

Many metabolites are likely to serve as signaling molecules
that influence biological functions. Alterations in metabolite
production in the gut, from either host or microbiota or their
interaction, may be related to the manifestation of IBS
symptoms. There are mounting reports on the effects of
intestinal microbial metabolites on human health. While the
relationship between microbial metabolites and the development
of IBS symptoms has not been clearly elucidated. Based on the
extensive interaction of the co-metabolism of gut flora and the
host, metabolites might provide a new approach for studying the
host-microbiota system. Hence, the gut microbial metabolome
may reflect the metabolic variables and clinical phenotypes,
which may predict the subtypes and severity of IBS (James
et al., 2020). According to the recent progress in research on
the mechanism of intestinal microbial-derived IBS metabolites,
further investigation into the production of gut microbiota-
derived metabolites, which may in part underlie the
pathophysiology of IBS, are urgently needed. Alterations and
fluctuations in gut microbiota and its metabolites appear to
promote development and maintenance of IBS symptoms.
ALTERATIONS OF GUT
MICROBIOTA IN IBS

Human microbiota comprises trillions of microorganisms, most
of which coexist in the gastrointestinal tract (Krautkramer et al.,
2021). In the human gut, the vast and complex microbial
community is composed of approximately 100 trillion
organisms of more than 1000 different species (Tierney et al.,
2019). The total number of microorganisms in the human gut is
higher (100 times) than the total number of human cells. Most
intestinal bacteria belong to the phyla Bacteroidetes, Firmicutes,
Actinobacteria, and Proteobacteria (Lagier et al., 2015). The
highest microbial biomass is found in the host cecum and
proximal colon with the small intestine having a similar
number of microbes as the large intestine (Krautkramer et al.,
2021). Physiologically, the mucus epithelium barrier provides a
foundation for commensal-microbe persistent colonization and
symbiotic functions. Once the integrity of the barrier is
compromised by harmful endogenous or exogenous factors,
the protective effect is lost, provoking an inflammatory
response and altering the gut microbial composition. A series
of reports have elucidated that the loss of microbial diversity and
richness is engaged in IBS pathogenesis (Jeffery et al., 2020).

Diversity (a-diversity and b-diversity) of microbes is
associated with gut disorders. In a previous study, gut
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
microbial diversity in IBS patients was significantly higher than
that in the healthy control group. Several significant metabolite-
microbe relationships were also revealed, including the glycine
strong positive association with Clostridium (Zhuang et al., 2018)
and homocysteine positive correlation with Lachnospira,
Clostridium, and Haemophilus and its negative correlation with
Corynebacterium and Lachnospiraceae (Zhuang et al., 2018).
Previous research has shown that, among gut bacteria, the
abundance of Lachnospira and Clostridium were significantly
high in IBS patients (Zhuang et al., 2018), and Clostridium
difficile has been shown to increase the risk of post-infectious
IBS (Piche et al., 2007; Wadhwa et al., 2016). Moreover, a
significant decrease in Firmicutes and an increase in Bacteroidetes
were observed in IBS-D patients. The composition and activity of
Bifidobacterium was low in IBS-patient stool and mucosal samples.
The number of Bacteroides was high in IBS patients. Potential
pathogen overgrowth, such as that of Escherichia coli and
Enterobacterium, was also verified. However, there was no
significant difference in the numbers of Bacteroides and
Enterococcus between IBS patients and healthy control individuals
(Zhuang et al., 2017). Many isolated archaea species were
methanogens and halophiles. Moreover, patients with IBS exhibited
an enrichment of bacterial taxa, such as Enterobacteriaceae,
Streptococcus, Fusobacteria, Gemella, and Rothia, as well as
depletion of health-promoting bacterial genera, such as Roseburia
and Faecalibacterium (Sciavilla et al., 2021).

Recently, mucosal biofilms were identified as an endoscopic
feature in subgroups of IBS and ulcerative colitis. The formation
of mucosal biofilms is a unique growth mode of microorganisms,
serving as a protective shield for bacteria. As such, biofilms can
protect the bacteria against external interference and promote
gene information and nutrient exchange. In fact, biofilms were
detected in 57% of IBS patients, compared to controls
(Baumgartner et al., 2021). Bacterial biofilms are associated
with gut microbiol dysbiosis and increased levels of intestinal
bile acids (Baumgartner et al., 2021). Although existing methods
on fecal microbial profile or single genus were difficult to
distinguish IBS patients from healthy individuals, which
indicates that changes in the gut microbiota of IBS are likely to
be a heterogeneous and individualized process. The presence of
mucosal biofilms may contribute to the pathophysiology of IBS.
Biofilms could be disrupted to alleviate functional IBS symptoms,
which might offer a novel diagnosis as well as targets
for treatment.
METABOLITES OF MICROBIOTA-MOST
INTERACTION IN IBS

Bile Acids
Bile acids (BAs), as the hub of central signals, integrate
microbiota-derived signals into enterohepatic signaling and
active the signaling pathways through farsenoid X receptor and
G protein–coupled BA receptor 1 (GPBAR1, also called Takeda
G-coupled receptor 5) (Camilleri and Vijayvargiya, 2020).
September 2021 | Volume 11 | Article 729346
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BA metabolism is affected by dietary intake, environmental
factors, and resident microbiota, and may be correlated with
IBS (Nightingale and Lennard-Jones, 1993; Camilleri et al., 2014;
Camilleri et al., 2016; Camilleri et al., 2017; Long et al., 2017).
It has been verified that the levels of BAs may be associated
with visceral pain and colonic transit (Dior et al., 2016). BAs
in hepatocytes are generated from cholesterol by special
rate-limiting enzymes. There are two pathways that regulate
the expression of BAs in the liver. Approximately 75% of
total BAs are produced by the classic pathway with cholesterol
7a-hydroxylase (CYP7A1), whereas the alternative BA pathway
is regulated by sterol-27-hydroxylase (CYP27A1). The activity
of the two rate-limiting enzymes, CYP7A1 and CYP27A1, is
affected by the gut microbiota (Sayin et al., 2013). Approximately
95% of BAs are recycled via the hepatic circulation, controlled by
fibroblast growth factor 15 and farnesoid X receptor (FXR)
(Figure 1) (Shin et al., 2013). The second natural BA receptor
is Takeda G-coupled receptor 5 (TGR5) which mediates effects
of BAs on mobility and acts on enteric neurons to release
serotonin. The specific relationship between the fluctuation of
BAs levels and the destruction of fibroblast growth factor 15, ileal
epithelial transporter, or microbial modification of the relevant
metabolites remains unclear.

Primary BAs are essential for lipid/vitamin digestion and
absorption (Joyce and Gahan, 2016; Zheng et al., 2017). The
primary BAs chenodeoxycholic acid (CDCA) and cholic acid
(CA) are synthesized in the liver from cholesterol via enzyme
CYP7A1. The synthesis of CDCA may be facilitated by the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
activation of intracellular secretory channels, increase in
mucosal permeability, or reduction of fluid absorption
(Makishima et al., 2002). CDCA and CA are transformed into
secondary BAs and deconjugated by gut microbiota and can
either be passively reabsorbed and reenter the circulating BA
pool or excreted in feces (Thomas et al., 2008). Unlike CDCA
and CA, which are predominantly recycled, the secondary BA
lithocholic acid is infrequently reabsorbed; however, it suffers
further modifications by bacteria in the colon and then, is
excreted (Odunsi-Shiyanbade et al., 2010). Another secondary
BA, deoxycholate (DCA), is positively correlated with serotonin
(5-HT) production, which is mainly regulated by Clostridia
species (Yano et al., 2015). The decrease of total and primary
BAs and the increase of fecal lithocholic acid are significant
predictors of stool weight, frequency, and consistency. Fecal BA
is a cost-effective, accurate biomarker, and it is associated with
obvious bowel dysfunction in IBS-D and IBS-C patients.

In patients with chronic diarrhea or IBS-D, BA malabsorption
(BAM) is positively associated with accelerated colonic transit
time and influenced by gut microbiota composition (Sadik et al.,
2004). In fact, a study reported that 16.9-35.3% of IBS-D patients
had been diagnosed with BAM (Slattery et al., 2015). Abnormal
intestinal motility results from a series of processes. First, BAs are
passively absorbed by interacting with and activating TGR5
receptors on enteric neurons. Secondly, the effect of BA-
induced colonic dysfunction may result from microbiota
dysbiosis. In this regard, fecal BAs were related to stool
characteristics and colonic transit time, and IBS-D patient’s
A B

FIGURE 1 | Host-microbiota interactions during bile-acid metabolism. In homeostasis, primary bile acids are converted into secondary bile acids with the assistance
of intestinal flora and Takeda-G-protein-receptor-5 (TGR5) (see the figure, part A). Gut microbiota alterations induce an impairment in the ileal absorption of BAs,
which occurs normally via the apical-sodium BA transporter (ASBT). This induces a decrease in the expression of nuclear Farnesoid-X receptor (FXR) and fibroblast
growth factor 19 (FGF19) in intestinal epithelial cells and the abundance of colonic primary conjugated BAs. Gut microbiota dysfunction leads to a decreased
transformation of primary conjugated BAs to secondary BAs in the colon, leading to defective activation of (TGR5). TGR5 of glucagon-like peptide 1 (GLP-1)
activation effect was thus inhibited (see the figure, part B).
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feces with increased fecal BAs were also positively associated
with Clostridia bacteria (Shin et al., 2013). BAM is also associated
with diarrhea, caused by an increase in colonic BA
concentrations due to BA insufficient recycl ing or
overproduction (Sadik et al., 2004; Wong et al., 2012).

There are significant differences in the concentration of BAs
in feces and serum between IBS-C and IBS-D patients (Wong
et al., 2012). Although primary BAs are elevated in the stool of
both IBS-C and IBS-D patients (Mars et al., 2020), secondary
BAs are reduced in the latter group (Dior et al., 2016). A small
number of BAs ultimately excreted in stool daily can be
replenished through BAs de novo synthesis (Mars et al., 2020).
C4 (7-a-hydroxy-4-cholesten-3-one) is positively associated
with FGF19 and total BAs in IBS-D individuals, which
indicates that the loss of BAs in feces leads to an increase in
BA production. Moreover, patients with IBS-D have a higher
proportion of Escherichia coli and decreased Clostridium leptum
and Bifidobacterium (Table 1) (Duboc et al., 2012; Dior et al.,
2016; Wei et al., 2020). However, a recent study showed that
24.5% IBS-D patients presented with a higher level of total BAs
and Clostridia bacteria (Zhao et al., 2020). Additionally, fecal
BAs and serum C4 levels are positively associated with Clostridia
bacteria, which is negatively correlated with serum FGF19 (Zhao
et al., 2020). Clostridia-rich microbiota may enhance BA
synthesis and excretion in IBS-D patients by reducing
gastrointestinal transit time and increasing fecal water content.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
These finding suggest that Clostridia bacteria have potential as a
biomarker for bile acid diarrhea or IBS-D and as a target
for therapy.

BA content in stool samples is significantly high in animal-
based diets compared with plant-based diets, owing to the
difference in cholesterol (David et al., 2014). The concentration
of BAs is highly correlated with dietary patterns, genes of
microbial enzymes, and metabolites. Thus, BAs fluctuations
could offer a possible approach to understand the mechanisms
of the production and development of IBS.
SHORT-CHAIN FATTY ACIDS

Short-chain fatty acids (SCFAs) are critical fermentation
products of the gut microbiota and related to the pathogenesis
of various gastrointestinal disorders such as IBS. Approximately
95% of SCFAs are acetate, propionate, and butyrate (at a molar
ratio of 3:1:1) that are produced from carbohydrates in the colon
and are correlated with the gut microbiota. SCFAs can affect the
integrity of the intestinal mucosa, glucose and lipid metabolism,
immune system, and inflammatory responses. The specific effects
of SCFAs are mediated by several mechanisms, including
selective activation of the G-protein-coupled receptors family
(GPCR), free fatty-acid receptors (FFARs), or epigenetic effects.
TABLE 1 | Gut microbiota-derived metabolites and associated genera or species in IBS.

Metabolites Pathogenesis Species Reference

Bile acids GI mobility and gut
permeability

Bifidobacterium and Clostridium
Escherichia coli

Duboc et al., 2012; Dior et al., 2016; Wei et al., 2020

SCFAs visceral hypersensitivity
and inflammation

Veillonella, Lactobacillus, Lachnospira, Clostridium spp.,
Bifidobacterium spp., Veillonella spp., Clostridia,
Bifdobacteria, Ruminococccaceae and
Erysipelotrichaceae

Louis et al., 2010; Canani et al., 2011; Ringel-Kulka
et al., 2015; Barbara et al., 2016; Rajilić-Stojanović et al.,
2015; Farup et al., 2016; Morrison and Preston, 2016

Acetate Bacteroides spp. and Veillonella spp. Barbara et al., 2016
Propionate Fecalibacterium prausnitzii, Roseburia spp., Eubacterium

rectale, Eubacterium hallii, and Coprococcus comes
Macfarlane and Macfarlane, 2003; Louis et al., 2010; Vital
et al., 2017

Butyrate
Tryptophan gut permeability Lactobacillus Vujkovic-Cvijin et al., 2013; Agus et al., 2018; Sun et al.,

2019
Neurotransmitters

GABA Visceral pain, inflammation,
and visceral
hypersensitivity

Lactobacillus brevis and Bifidobacterium dentium Mazzoli and Pessione, 2016

Dopamine Inflammation, visceral pain,
GI mobility, and
psychological factors

Escherichia coli, Klebsiella pneumoniae, Pseudomonas
aeruginosa, Shigella sonnei and Staphylococcus aureus

Strandwitz, 2018

5-HT Changes in ENS and gut–
brain axis, visceral pain,
and visceral
hypersensitivity

Corynebacterium spp., Streptococcus spp. and
Enterococcus spp.

Walther et al., 2003

Vitamins
Vitamin D Inflammation and gut

permeability
Salmonella typhimurium Wu et al., 2010

Vitamin B6 Inflammation Actinobacteria, Bacteroidetes, and Proteobacteria phyla Lagier et al., 2015
Hypoxanthine Lachnospiracea strains, Barnesiella and Prevotella Zhao et al., 2013; Mars et al., 2020
SCFAs, short-chain fatty acids; GABA, g-aminobutyric acid; 5-HT, serotonin; GI mobility, gastrointestinal mobility; ENS, enteric nervous system.
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Altered fecal SCFAs are associated with relative abundance of
bacteria, including Clostridia, Bifdobacteria, Ruminococccaceae
and Erysipelotrichaceae (Rajilić-Stojanović et al., 2015).

Butyrate is synthesized by Faecalibacterium prausnitzii,
Roseburia spp., Eubacterium rectale, and Eubacterium hallii
through alternate pathways using exogenous acetate (Louis et al.,
2010; Vital et al., 2017). Butyrate is also produced via classical
pathways utilizing acetate, sugars, and amino acids by other
bacteria, such as Coprococcus comes (Macfarlane and Macfarlane,
2003). There are three pathways to produce propionate, including
the acrylate, succinate, and the propanediol pathways. The most
common is the succinate pathway, adopted by Bacteroides spp. and
Veillonella spp. (Barbara et al., 2016). The production pathways of
acetate are the pyruvate decarboxylation to acetyl-CoA and Wood-
Ljungdahl pathways. It was reported that several strains of
Lachnospira produce lactate and acetate, causing constipation
symptoms linked to mucin secretion (Canani et al., 2011). Some
of the most predominant microbiota producing acetate include
Clostridium spp. and Bifidobacterium spp. (Louis et al., 2010;
Barbara et al., 2016; Morrison and Preston, 2016); Clostridiales sp.
exhibit different distributions in patients with IBS-C and IBS-D
(Gargari et al., 2018). SCFAs are utilized to provide energy to
different organs, such as butyrate in the colon and propionate in the
liver, by gluconeogenesis. Acetate and propionate are associated
with fatty acid and energy regulation in the liver (Morrison and
Preston, 2016). Therefore, the relative and proper proportions of
specific SCFAs may be important for maintaining homeostasis. The
alterations of SCFA composition and concentration are apparent in
IBS patients (Tana et al., 2010; Farup et al., 2016). Reduction of the
butyrate concentration in IBS patients may cause energy salvage in
the colon and IBS symptoms (Farup et al., 2016). However, no
difference was found in fecal propionate, butyrate, and lactate levels
between control and IBS patients, and the levels of propionic and
butyric acid in serum of IBS-D patients was high. A different study
showed that the concentration of SCFAs and the relative abundance
of Veillonella and Lactobacillus in fecal samples of IBS participants
was high (Ringel-Kulka et al., 2015; Farup et al., 2016). Lactobacillus
can prominently produce lactic and acetic acids, whereas Veillonella
can convert lactic acid into acetic acid and propionic acid (Tana
et al., 2010). In this context, there is a positive correlation between
fecal SCFA concentration and IBS-symptom severity, indicating
that theremay be an association betweenmetabolite production and
gut microbiota (Tana et al., 2010).

Although the association between SCFAs and IBS patients is
controversial in the literature, as a series of studies report both
high and low SCFA concentrations (Treem et al., 1996; Tana
et al., 2010), the specific SCFA profiles differed between IBS
subtypes resulting in an accelerated transit rate in IBS-D patients
with hypermotility with stimulatory and inhibitory effects.
AMINO ACIDS

Proteins are mainly metabolized in the small intestine, and
approximately 5 to 10% of dietary proteins (as proteins and
peptides) is absorbed (Mahé et al., 1992; Evenepoel et al., 1999).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Proteins are catabolized into amino acids, which can enter the
portal circulation as vital intermediates of the host–microbe
complex interaction. The gut microbial assimilation process of
amino acids is largely regulated by carbohydrate substrates and
luminal contents (Smith and Macfarlane, 1996; Ratzke and Gore,
2018). In addition, it is clear that the gut microbiota, involved in
the energy metabolism of host proteins and peptides, will
produce various bioactive compounds, including tryptophan,
SCFAs, branched-chain fatty acids, ammonia, phenols, indoles,
and amines (Ratzke and Gore, 2018). Therefore, the remainder of
this paper focuses on a list of vital bioactive amino acid
derivatives with known effects and potential mechanisms in
IBS patients.
TRYPTOPHAN

Tryptophan is a vital aromatic amino acid that can be obtained
from dietary intake. Tryptophan is a free and the most
chemically complex amino acid, making it an optimal molecule
for extensive transformations. As for its role in protein synthesis,
tryptophan is a precursor of crucial metabolites, such as 5-HT,
which plays an essential role in functional gastrointestinal
diseases (Berstad et al., 2014). The two main pathways in the
host to metabolize tryptophan obtained from dietary intake are
the kynurenine and 5-HT routes, which metabolize tryptophan
to the vitamin niacinamide, 5-HT, or melatonin (Berstad et al.,
2014; Heitkemper et al., 2016). Thus, tryptophan may be
important to regulate the balance between the vitamin
niacinamide, 5-HT, and melatonin because the functions of
these metabolites are different (Clarke et al., 2009; Clarke et al.,
2012; Berstad et al., 2014; Heitkemper et al., 2016).

The gut microbes in the third pathway can metabolize
tryptophan into several molecules, such as indole and other
derivatives compounds, with some of them acting as ligands to
bind the aryl hydrocarbon receptor (AhR) (Williams et al., 2014;
Agus et al., 2018). A recent study reported that the symptoms of a
metabolic disorder were associated with a reduced microbial
capacity to transform tryptophan into AhR agonists (Liu et al.,
2021). The AhR pathway is accompanied by a decrease in
glucagon-like peptide-1 (GLP-1) and Interleukin-22 (IL-22),
resulting in changes in the intestinal permeability and
lipopolysaccharide in functional gastrointestinal diseases. In
addition, AhR agonists or Lactobacillus regulation can be an
available treatment to reverse metabolic disorders (Vujkovic-
Cvijin et al., 2013; Agus et al., 2018; Sun et al., 2019).

The concentration of histidine, lysine, glutamine, proline, and
glutamic acid are different between patients with IBS and
inflammatory bowel disease. Ornithine, as the only amino acid
in low levels in IBS patients, is essential for the urea cycle
(Keshteli et al., 2019). Glutamine is associated with energy
supply of intestinal epithelial cells; owing to its low levels, it
may play a key role in IBS symptoms. Existing data also suggest
the remarkable potential of tryptophan-derived aryl
hydrocarbon receptor agonists, indole derivatives on lumen
equilibrium (Zhang et al., 2021). Specifically, microbiota
September 2021 | Volume 11 | Article 729346
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derived-tryptophan as therapeutic interventions have potential
to promote proinflammatory or anti-inflammatory responses in
the gut (Zhou et al., 2019). Therefore, further research is needed
to investigate the potential role and clinical relevance of amino
acid metabolism in IBS.
NEUROTRANSMITTERS

Serotonin (5-HT), as a key transmitter in neuronal signaling,
provides insights into the complex interactions of the gut-brain-
microbiota axis (Cremon et al., 2011). Meanwhile, an increased
abundance of 5-HT has been reported in the blood of IBS
patients (Luo et al., 2021). 5-HT is produced from tryptophan
via the two-step pathway. Tryptophan hydroxylase (TPH) is a
rate-limiting enzyme with two isoforms (Tph1 and Tph2).
Studies have also shown that the gut microbiota could induce
the transcription of Tph1 and Tph2 and subsequent 5-HT
production (Yano et al., 2015). By using a metabolites-based
framework, approximately 20% of the microbial genome has the
potential for 5-HT synthesis (Valles-Colomer et al., 2019). Tph1
is mainly expressed in enterochromaffin cells of the gut
epithelium, whereas Tph2 is mainly produced in serotonergic
neurons of the central and enteric nervous systems (Walther
et al., 2003). The intestinal resident microorganisms, including
Corynebacterium spp., Streptococcus spp., and Enterococcus spp.,
can also trigger IBS symptoms (Walther et al., 2003). Enteric
5-HT is vital to regulate gut peristalsis and secretion, inflammation
and development of neurons and interstitial cells of Cajal. It is
assumed to be related to pain, sensitivity, and reflexes via the
activation of enterochromaffin and enteroendocrine cells
(Walther et al., 2003; Mawe and Hoffman, 2013). A study has
shown that decreased uptake of 5-HT was linked to the deletion
of a base fragment, especially in IBS-D patients (Pata et al., 2002;
Atkinson et al., 2006). Enterochromaffin cells, mast cells in
mucosal layers, and 5-HT level were significantly up-regulated
in IBS patients compared with healthy individuals (Cremon
et al., 2011). The degree of visceral pain and hypersensitivity in
patients with IBS is related to the release of 5-HT (Cremon et al.,
2011). The up-regulated 5-HT level leads to increased
hypersensitivity in IBS patients associated with nerve-sensing
mechanisms. 5-HT reuptake transporter (SERT), as the recycling
mechanism for 5-HT, may affect the metabolism in IBS
individuals because of its polymorphisms, although there are
controversies about the potential relationship between 5-HT, the
SERT gene, and IBS (Gershon and Tack, 2007; Cremon et al.,
2011; Makker et al., 2015).

Dopamine (DA), a precursor for adrenaline and noradrenaline,
is decreased in individuals with IBS (Dunlop and Nemeroff,
2007). It has been proven that DA can control chronic pain
(Mitsi and Zachariou, 2016) and psychological disorders, and
it can regulate intestinal inflammation by inhibiting the
NLRP3 inflammasome (Yan et al., 2015; Li et al., 2020). The
dopamine D2 receptor antagonist has been applied to treat IBS
patients to improve gastrointestinal motility (Tack et al., 2006).
The dopamine D5 receptor may play an important role in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
increasing the permeability of duodenal epithelial cells and
protecting the colonic mucosa (Li et al., 2019). Moreover,
several bacterial strains are highly correlated with alterations of
dopaminergic pathways for growth and metabolism, including
E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Shigella
sonnei, and Staphylococcus aureus (Strandwitz, 2018). In
conclusion, the dysfunction of the dopaminergic signaling
pathway may underline the pathogenesis of IBS.

Compared with healthy controls, the level of g-aminobutyric
acid (GABA), as an inhibitory transmitter that regulates peripheral
afferent nerve visceral pain, is reduced in IBS-D individuals
(Ligaarden and Farup, 2011). Glutamate decarboxylase, a rate-
limiting enzyme, can metabolize glutamate to GABA. Mazzoli
and Pessione (2016) reported several strains that regulate the
hypersensitivity of the intestinal viscera of IBS rats, such as
Lactobacillus brevis and Bifidobacterium dentate, can also produce
GABA (g-aminobutyric acid). Reduced GABA levels can lead to
depression and anxiety disorders in the pathology of IBS-D through
low-grade inflammation (Potts et al., 2016). It has been reported
that the lack of glutamic acid decarboxylase (GAD), which controls
GABA synthesis, can cause neurological diseases. Enhancing GABA
inhibition could alleviate depression, anxiety, and chronic pain in
patients with IBS (Adeghate and Ponery, 2002; Aggarwal et al.,
2018). Accordingly, gut microbiome-mediated GABA may be
correlated with the pathogenesis of IBS.
VITAMINS

The intestinal microbiota actively affects the one-carbon
metabolism and the utilization of vitamins, especially vitamin
D and B6 (pyridoxine), in IBS patients (Ligaarden and Farup,
2011). Vitamins are directly obtained from dietary intake or
biosynthesized in the host. However, vitamins produced only by
the host may not meet the effective function of cellular processes.
As compared to healthy individuals, Firmicutes are often
increased in IBS patients; Firmicutes is the only phylum
analyzed that presents eight key-vitamin synthesis pathways
(Krogius-Kurikka et al., 2009; Jeffery et al., 2012; Magnúsdóttir
et al., 2015).

Vitamin D plays a vital role in maintaining enteric homeostasis.
However, the level of vitamin D in the serum of IBS patients is
reduced (Miura et al., 2021). Lack of vitamin D and/or its receptor
(VDR) can lead to a series of proinflammatory cytokines, such as
TNF-a and IFN-g, which can weaken the mucosal barrier
function, increasing permeability (Bruewer et al., 2006; Reich
et al., 2014). The expression of VDR in the duodenum of patients
with IBS is increased (Wu et al., 2010). VDR is associated with the
intestinal barrier function, immune responses, and colitis, and it is
also vital for the activation of NFkB and the expression of tight
junction proteins in the intestinal flora (Ilmer et al., 2014; Chen
et al., 2015). Additionally, 1a,25-dihydroxyvitamin D3[1,25
(OH)2D3], an active form of vitamin D, can directly interact with
the intestinal flora and resist the lipopolysaccharides or TNF-a
(Ilmer et al., 2014; Chen et al., 2015). The level of vitamin D is
positively correlated with the level of 1,25(OH)2D3 in the serum,
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but VDR expression can be down-regulated by pathogenic species
such as Salmonella typhimurium in the intestine (Wu et al., 2010).
Vitamin D affects enteric cells through aberrant signaling pathways
and interactions with its cellar receptor (VDR), contributing to
its antimicrobial functions with several antimicrobial peptides such
as lysozyme and b-defensin-2 (Hewison, 2011). Thus, vitamin D
and/or VDR deficiency might play an important role in the
pathogenicity of IBS owing to their role in intestinal barrier
functions and low-grade mucosal inflammations. However, in a
recent study, no benefit was reported following vitamin D
supplementation on IBS symptoms nor on quality of life
(Williams et al., 2021). Thus, no evidence exists to support the
application of vitamin D supplementation for IBS treatment as no
clear relationship between vitamin D levels and symptomology has
been demonstrated.

Vitamin B6, a water-soluble vitamin (Rosenberg et al., 2017),
may play a vital role in IBS and participate in inflammatory
conditions (Ligaarden and Farup, 2011). Pyridoxal 5-phosphate
is a bioactive form of vitamin B6 that is characterized by a series
of coenzymes that may be involved in cellular metabolism,
including amino acid, BA and lipid functions (Cellini et al.,
2020). Vitamin B6 might be involved in the inflammation-
mediated pathogenesis of IBS. The levels of vitamin B6 are
linked to a high IBS-symptom score, and the symptoms can be
alleviated by increased vitamin B6 intake. The synthesis of
vitamin B6 is influenced by a variety of bacterial species
(Huang et al., 2010; Rosenberg et al., 2017), including
Actinobacteria, Bacteroidetes, and Proteobacteria. Interestingly,
Firmicutes was found to have a low ability to synthesize vitamin
B6 (LeBlanc et al., 2013).

Differences in vitamin-synthesizing ability of different
microbial species might identify the potential mechanism for
vitamin variation between healthy individuals and IBS patients.
Hence, it is interesting to investigate microbiota-mediated
changes in vitamin D and B6 for effective diagnosis and
management of IBS patients.
HYPOXANTHINE

The purine nucleobase hypoxanthine, as an available substrate
for efficient purine nucleotide biogenesis, is a significant host-
microbial co-metabolite (Mars et al., 2020). It has been reported
that the fecal hypoxanthine abundance in mice is strongly
associated with the genus Barnesiella and Prevotella (Zhao
et al., 2013). Moreover, hypoxanthine is associated with energy
metabolites and DNA replication and serves as a source of energy
for intestinal epithelial cells and enhance the ability of intestinal
cellular barrier recovery by decreasing oxygen consumption (Lee
et al., 2018; Lee et al., 2020). Additionally, the metabolism of
hypoxanthine plays an important role in regulating the
production of H2O2 and superoxide anions in IBS (Mete et al.,
2013). The de novo synthesis of purines in intestinal epithelial
cells is limited, requiring five ATP molecules for production of
one purine molecule. Thus, purine metabolism primarily
depends on the salvage pathway, as a resource-conserving
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
alternative (Biaggioni et al., 2015). The purine salvage pathway
represents the complement of nucleotide metabolism and is vital
for the biosynthesis of hypoxanthine. Dehydrogenase/oxidase
(XO) and hypoxanthine phosphoribosyl transferase (XPRT) are
important enzymes in hypoxanthine metabolism. Hypoxanthine
phosphoribosyl transferase (HPRT) transforms xanthosine into
xanthine through the purine salvage pathway. XO is a xanthine
and hypoxanthine catalytic enzyme with poor specificity through
the purine de novo pathway.

Recently, reduced amounts of hypoxanthine have been
reported in stool samples of patients with IBS-C and IBS-D
(Mars et al., 2020). Moreover, the levels of XO and XPRT were
elevated in IBS-C relative to healthy controls. Purine nucleoside
phosphorylase (PNP) is significantly increased in IBS-C and IBS-
D patients, however, it is negatively correlated with
hypoxanthine concentration (Mars et al., 2020). In both IBS
subtypes, the expression of the human XO gene is up regulated.
Additionally, gut microbiota reportedly utilize hypoxanthine as a
substrate, making it a cross-feeding substrate. Hence, the
reduction of fecal hypoxanthine could reflect the production of
hypoxanthine by the gut microbiota in IBS patients. That is, the
decreased fecal hypoxanthine abundance in IBS patients may
result from the increased capacity for its utilization and
breakdown, particularly by Lachnospiraceae strains. The
ensuing purine starvation was identified as a potential novel
mechanism underlying IBS (Figure 2) (Mars et al., 2020).

Hypoxanthine is a host-microbial co-metabolite that can be
affected by both microbial and host metabolism. Thus,
microbiota-derived purines (especially hypoxanthine) appear to
represent vital contributors to, and critical substrates for, colonic
barrier function, capacity for mucosal repair, and a healthy
microbiota, warranting further exploration and investigation in
IBS patients.
CONCLUSIONS

The underlying mechanisms regulating the interaction between
the gut microbiota and host still remain unclear in IBS. It is
difficult to achieve consensus on the relationships between
specific microbiota-derived metabolites and subtypes of IBS.
New evidence suggests that research and clinical practices
should move away from relying on symptoms and experiences
as a diagnostic and results-based tool. Understanding variations
and fluctuations in the concentrations of host or microbiota-
derived metabolites that can be used to infer processes
contributing to the symptoms and severity of IBS will provide
important new insights for functional gastrointestinal disorders
(FGDs) research.

In this review article, we indicate the important microbial
metabolites in the context of host physiology in patients with
different IBS subtypes. We found that the abundance of
microorganisms and their corresponding metabolites in IBS-C
and IBS-D differ, thereby providing a new avenue for the
diagnosis and treatment of different IBS subtypes in the future.
These microbiota derived-metabolites, such as BAs, SCFAs,
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vitamins, amino acids, 5-HT, and hypoxanthine, can be
produced directly by bacteria, or from dietary or relevant
substrates. Fluctuations and alterations in the levels of
metabolites produced by the host or microbiota provide
insights into their interations during IBS. Moreover, SCFAs,
dose-dependently, which effects dependent on the specific SCFA,
segment of the colon animal species and experimental models,
may impact IBS-D with increased transit rate. Moreover, low
levels of hypoxanthine may be associated with colonic epithelial
energy and capacity for mucosal repair with hypoxia. Purine
starvation has been identified as a potential novel mechanism
underlying IBS with lower fecal hypoxanthine abundance in IBS-
C and IBS-D. Additionally, mucosal biofilms are an endoscopic
feature of IBS and are associated with bacterial and BA
metabolites dysbiosis.

Microbiota-derived metabolites undoubtedly plays a role in IBS
severity; however, future research must include supplement clinical
studies that aim to determine the underlying mechanisms. For
example, intraluminal butyrate supplementary could increase
colonic transit and apply into the therapy of IBS in animal
models, but its effects on IBS patients are still not clear. And how
we can alleviate the prevalence of IBS worldwide. For advancements
to be made, investigations that undertake special metabolites
interventions should be followed by a thorough analysis of
the gut microbiota. Critically, this will accommodate not just a
better understanding of the epidemiology of IBS but also
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
recommendations for managements of microbiota-derived
metabolites to alleviate IBS symptoms. Recommendations on
metabolites based on studies lacking mechanism evidence may
result in the adoption of metabolites therapy, leading to beneficial
results, but equally may be detrimental after long-term adherence
owing to lack of understanding of other biological mechanisms.
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