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Caused by schistosomes, the human schistosomiasis is a tropical zoonotic parasitic
disease. Pathologically, it occurs most often in the intestines and the liver, the sites of
Schistosoma japonicum egg accumulation. The parasites’ produced eggs cause the main
pathology in patients. Deposited parasite eggs in the liver induce the production of
multiple cytokines that mediate the immune response, which in turn leads to
granulomatous responses and liver fibrosis. These impact the hosts’ quality of life and
health status, resulting in severe morbidity and even mortality. In this study, differentially
expressed genes (DEGs) between ordinary samples and three 6- week infected mice
were mined from microarray analysis based on the limma package. In total, we excavated
the differential expression LCN2 was exhibited high expressions profile in GSE59276,
GSE61376 demonstrated the result. Furthermore, CIBERSORT suggested detailed
analysis of the immune subtype distribution pattern. In vivo experiments like real-time
quantitative PCR, immunohistochemical (IHC) staining, and immunofluorescence (IF)
demonstrated the expressions of LCN2 was significantly upregulated in S. japonicum–

infected mice liver tissues and located in macrophages. Previous studies have shown that
macrophages act as the first line of defense during schistosome infection and are an
important part of liver granuloma. We used S. japonicum soluble worm antigens (SWA) to
induce RAW264.7 cells to construct an in vitro inflammatory model. The current study
aimed to investigate whether the NF-kB signaling network is involved in LCN2
upregulation induced by SWA and whether LCN2 can promote M1 polarization of
macrophages under SWA treatment. Our research work suggests that LCN2 is
significant in the development of early infection caused by S. japonicum and is of great
value for further exploration. Collectively, the findings indicated that SWA promoted the
expression of LCN2 and promoted M1 polarization of macrophages via the upregulation
of NF-kB signaling pathway. Our findings demonstrate that NF-kB/LCN2 is necessary for
migration and phagocytosis of M1 macrophages in response to SWA infection. Our study
highlights the essential role of NF-kB/LCN2 in early innate immune response to infection.
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INTRODUCTION

A kind of digenetic trematode, schistosomes are zoonotic
parasites that cause human schistosomiasis. On a global scale,
approximately more than 240 million individuals from 76
nations have been afflicted with schistosomiasis (Lo et al.,
2018). While several schistosoma species do exist, the primary
pathogens against humans include Schistosoma mansoni (S.
mansoni), Schistosoma haematobium (S. haematobium), and
Schistosoma japonicum (S. japonicum) (Ross et al., 2013).
Schistosoma japonicum is deemed the most dangerous among
the three pathogens because of its greatest egg yield from female
worms, as well as the potentially greatest life expectancy for adult
worms (Chen, 2014). After infection, within three (3) weeks the
schistosomes present inside the host body are depicted as the
primary target of the immune defense. Around 2 weeks
afterward, they start to emit eggs, which are then attached onto
the host’s tissues to induce granulomatous reactions. By the 8th

week after infection, these reactions are at the highest point,
consequently bringing severe symptoms to the host. By the 11th

to 13th week, also known as the chronic infection stage, hepatic
stellate cell (HSC) activation occurs, which in turn leads to the
growing deposition of collagen in the liver of the host, resulting
in the development of fibrosis (Pearce and MacDonald, 2002;
Burke et al., 2009; Burke et al., 2011). The quality of health and
life of the host is seriously impacted, resulting in acute morbidity
and mortality also.

The macrophages are most essential innate cells that play
various roles in host immune regulation and protection,
schistosome-induced inflammation, and fibrosis. Previous
studies have shown that in the acute stage of infection, Th1
cells play a pro-inflammatory role and can activate M1
macrophages, which elicit a microbicidal response that causes
responses of anti-infection, pro-inflammation, and cell killing.
The excessive polarization of M1 macrophages will aggravate
tissue damage, but this pathological damage will be inhibited by
IL-4 and IL-10 cytokines (Zheng et al., 2020). Th2 cells can
induce M2 macrophage polarization during infection and play
an anti-inflammatory, tissue repair, and fibrotic role. Its secreted
IL-4 and IL-10 cytokines can aggravate the process of granuloma
and the development of fibrosis. It will be significantly improved
after treatment with anti-IL-4 neutralizing antibody (Fallon et al.,
2000). During the process of S. japonicum infection, a large
number of macrophages gather around the liver tissue during the
acute granulomatous inflammation and hepatic fibrosis.
Therefore, it is important to understand the molecular
mechanism behind the macrophage polarization process
underlying the S. japonicum infection processes (Burke
et al., 2010).

Of late, high-throughput sequencing and in-silico
development have paved the way for molecular innovation,
bringing forth effective means to decode vital genetic or
epigenetic changes for several aspects of medicine. From these
innovative developments, molecular arrangements and systems
and efficient biomarkers to address more illnesses have been
determined. For instance, DNA microarrays, better known as
gene chips, have rendered extensive and effectual realization
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toward profiling diverse diseases gene expressions. As a result, an
all-encompassing and widespread public repository database
known as Gene Expression Omnibus (GEO) has been
promoted by the National Center for Biotechnology
Information (NCBI). Furthermore, to settle any irregularity
caused by heterogeneous trials or distinct detection policies,
integrated bioinformatics analyses have been generally applied.

The 24p3, a secreted glycoprotein having a molecular weight
of 25 kilodaltons (kDa), and Lipocalin 2 (LCN2) are also known
as neutrophil gelatinase‐associated lipocalin (NGAL). LCN2 is
expressed in cells such as neutrophils, macrophages, epithelial
cells, adipocytes (Xiao et al., 2017). LCN2 is primally believed as
a chief regulator of immune response. To efficiently diagnose
inflammatory stimuli and induce successful cytokine responses,
LCN2 was reported to be increased in macrophages. LCN2
potentiates the M1 phenotype of microglia, which is a
chemokine inducer in the CNS (Jang et al., 2013). Previous
studies have shown that the deficiency of LCN2 might hinder the
usual expression of inflammatory factors secreted by
macrophages after stimulation of E. coli O157:H7 (Wang et al.,
2019). SWA is one of the major schistosome antigen mixtures
and participates in the primary soluble proteins associated with
the S. japonicum infection-induced adaptive immune response
(Yang et al., 2017). SWA exclusively persuades the macrophages
to M1 type cells. In spite of these recent studies, the
understanding of LCN2 expression with its relationship to
molecular mechanism in an early stage of schistosome
infection remains largely unclear.

For this research, microarray analysis was conducted on the
analysis of differentially expressed genes (DEGs) between
ordinary samples and those obtained from three distinct mice
for a 6-week group. The GSE61376 database was further used for
validation on human chronic hepatic S. japonicum, and
quantitative real‐time PCR (qRT-PCR) assay and IHC were
further utilized to verify the distinctions in mice liver tissues
following infection. Eventually, LCN2 was discovered, which can
further determine the manifestation and development of
S. japonicum, as well as the dysregulated pathways that may be
engaged toward developed liver injury risk because of
S. japonicum infection. Furthermore, we constructed the
inflammation model to explore the molecular mechanism, and
we found that SWA promoted the initiation of the NF-kB signaling
pathway and induced the increase of LCN2 expression, which
makes macrophage M1 phenotype. Workflow of this work has
been submitted in Supplementary Figure 1.
MATERIALS AND METHODS

Dataset Source and Preprocessing
To investigate the differential gene expression between S.
japonicum infection samples and normal samples, the gene
expression profiles of GSE61376 and GSE59276 were acquired
and then assessed from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/), an open database
that documents high-throughput microarray empirical data
September 2021 | Volume 11 | Article 747135

http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Shen et al. LCN2 Regulates Macrophage Polarization
(Edgar et al., 2002). These RNA profiles were provided on
GPL6885 (Illumina MouseRef-8 v2.0 expression beadchip) and
GPL6947 (Illumina HumanHT-12 V3.0 expression beadchip).
GSE59276_RAW. tar and Series Matrix File were downloaded
and classified S. japonicum infection groups and normal groups,
and GSE61376 was downloaded to validate the hub genes.

Identification of DEGs
Differential expression analyses are controlled by the limma
package to conduct microarray and RNA-sequencing
experiments. Excluding the genes with very low expression, in
order to identify the DEGs between the normal and the S.
japonicum infection groups (Ritchie et al., 2015), the
significance analysis of the limma package was applied. P-value
<0.01 and |logFC| > 2 were used as the cut-off criteria to select the
significant DEGs. The genes with logFC > 2 were thought to be
upregulated genes, and those with logFC < −2 were regarded as
downregulated genes. Then we validated differences between
human liver LCN2 expression for chronic patients with S.
japonicum infections and people without history or indicators
of schistosomiasis via the GSE61376 dataset.

Analysis of Immune-Infiltrating cells
The evaluation of the qualified sizes of the 22 kinds of infiltrating
immune cells was done through the CIBERSORT deconvolution,
which included the Neutrophils and Eosinophils, Mast cells
activated, Mast cell resting, Dendritic cells activated, Dendritic
cells resting, Macrophages M0, Macrophages M1, Monocytes,
NK cells resting, NK cell activated, T cells CD8, T cells gamma
delta, T cells regulatory (Tregs), T cells follicular helper (Tfhs), T
cells CD4 memory activated and resting, T cells CD4 naive, and
B cells memory, and naive gene expression matrix was utilized
(Newman et al., 2015). For establishing the gene expression
datasets, the standard annotation files and the default signature
matrix at 1,000 permutations were used.

Animal Models
Six-week-old wild C57BL/6 mice subjects, with weights ranging
between 18 and 22 g, were produced from Nantong University’s
Laboratory Animal Center. Snails Oncomelania hupensis infected
by nature were the sources of S. japonicum cercariae and were
acquired from the Jiangsu Institute of Parasitic Disease in Wuxi,
China. Similarly, to generate the models that were infested by S.
japonicum, the subjects were infected through their skins with 15 ±
2 S. japonicum cercariae; afterward, at 0, 3, 6, 12 weeks, they were
euthanized (n = 3 for each group, and every experiment was
performed three times with similar results). Four groups were
created after dividing the subjects, whilst the mice (C57BL/6) were
casually separated into infected and normal groups. Animal
precautions and experimental processes were sanctioned by
Nantong University’s Animal Ethics Committee.

Immunofluorescence
Paraffin was used for embedding the liver specimens, which were
then sliced into 3 um thickness of tissue sections.
Correspondingly, antibodies of F4/80+ and LCN2 macrophages
were diluted by 200-fold. For 30 min tissues were blocked with
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5% BSA, and then overnight the primary antibodies were
incubated at 4°C. PBS was used for washing tissue sections
three times followed by incubation with secondary Alexa
Fluor® 555 conjugate antibody (Invitrogen, USA) and Alexa
Fluor® 488 conjugate antibody (Jackson Immuno Research
Laboratory, USA) for 1 h at 37°C. Once again the washing
process was repeated with PBS for three times, nuclei were
stained using DAPI, and fluorescence analysis was performed
via a confocal laser scanning microscope.

Immunohistochemical Staining
The liver tissues of the mice were cut into sections (4 µm thick) after
embedding them with paraffin. For granuloma analysis, liver
sections were stained and dewaxed with hematoxylin and eosin
(H&E). Using a graded ethanol series, the sections were rehydrated
after their dewaxing in xylene. Overnight, with the help of primary
antibody, the sections were incubated at 4°C, after being washed
with PBS. After being washed with PBS three times, and using HRP-
conjugated goat anti-human Fab antibody, the sections were
incubated at room temperature for 30 min and washed with PBS
three times. The color was developed with diaminobenzene (DAB)
solution. Finally, to counterstain the sections, hematoxylin was used.
Under the microscope, the slides were examined after normal
washing, dehydration, and lucidification. The positively stained
cells were identified as the cells stained brown.

Cell Culture and Treatment
Mouse monocyte/macrophage RAW264.7 cells (Cell bank of
Chinese Academy of Sciences, Shanghai, China) were cultured
in DMEM that contained 10% fetal bovine serum (FBS) and put
within a humidified incubator with 5% CO2 at 37°C. SWA and
SEA were obtained from the Jiangsu Institute of Parasitic
Diseases. In the present study, RAW264.7 cells at a density of
1 × 106 cells/well were plated in six-well plates and cultured for
12 h. Then SWA was added at various concentrations for 24 h.

Small Interfering RNA Transfection
For the transfection of small interfering RNA (siRNA),
RAW264.7 cells were plated to a six‐well plate at a density of
2 × 105 cells per well. Similarly, the transfection of LCN2, siRNA,
and scrambled‐siRNA (GenePharma, Shanghai, China) was
performed by INTERFERin® transfection reagent (Polyplus-
transfection, Illkirch, France) following the manufacturer’s
protocol. Furthermore, Scrambled‐siRNA was used as a control
for non-sequence‐specific effects. Temporarily, INTERFERin®

transfection reagent (10 ml) was combined with 5 ml siRNA in
a total of 400 ml DMEM. The whole medium was added to each
well after 6 h of incubation. RAW264.7 cells were additionally
incubated for 24–48 h.

RNA Extraction, Reverse Transcription,
and qRT-PCR
Using the RevertAid First-Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, USA), the reverse-transcribed to cDNA, and the
Trizol RNA isolation reagent (Invitrogen, USA), the total RNA was
extracted from the liver of the mouse. Using the SYBR Premix Ex
Taq Kit (Takara, Japan) with specific primers for target genes on a
September 2021 | Volume 11 | Article 747135
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StepOnePlus Real-Time PCR System (Applied Biosystems, USA),
the qRT-PCR was performed. In the same samples, the levels of
expression of all the transcripts were normalized to GAPDH. Lastly,
the cycling parameters were as follows: 40 cycles of 95°C for 5 s and
62°C for 30 s, and 72°C for 30 s. Using the comparative CT method
(2−DDCt), relative expression levels were calculated. Gene-specific
primer sequences were as follows: GAPDH, forward (5′-
TGGAAAGCTGTGGCGTGAT -3 ′) and reverse (5 ′-
TGCTTCACCACCTTCTTGAT-3′); LCN2, forward (5′-ACC
ACG GAC TAC AAC CAG TTC GCC-3′) and reverse (5′-ACT
TGG CAA AGC GGG TGA AAC G-3′); INOS, forward (5′-
GTTCTCAGCCCAACAATACAAGA-3′) and reverse (5′-
GTGGACGGGTCGATGTCAC -3′) (Kong et al., 2018); IL-6,
forward (5′- GAGGATACCACTCCCAACAGACC -3′) and
reverse (5′- AAGTGCATCATCGTTGTTCATACA -3′); ARG1,
forward (5′- CTCCAAGCCAAAGTCCTTAGAG -3′) and reverse
(5′- AGGAGCTGTCATTAGGGACATC -3′); IL-4, forward (5′-
ATGGGTCTCACCTCCCAACTG -3′) and reverse (5′-
TCAGCTCGAACACTTTGAATAT -3′) (Bai et al., 2020).

Western Blotting
RAW264.7 cells pretreated with or without SWA for 24 h were
harvested and resuspended in protein lysis buffer to extract
protein. Then, SDS-polyacrylamide gels of 10% were used for
loading the lysates and were transferred to a polyvinylidene
difluoride (PVDF) membrane. Then, it was incubated with
primary antibodies for LCN2 (1:1,000, Abcam, Cambridge,
MA, USA); NF-kBp65 (1:500, Santa Cruz Biotechnology, Santa
Cruz, CA, USA); phospho-NF-kBp65, IkBa, phospho- IkBa
(1:1,000, Cell Signaling Technology, Danvers, MA, USA)
overnight. We detected the primary antibodies with HRP‐
conjugated secondary antibody at room temperature for 2 h.
Following the manufacturer’s instructions, we visualized the
proteins by enhanced chemiluminescence kit (Merck). Finally,
the protein bands were normalized to GAPDH (1:1,000,
Beyotime, China), and expression of the protein was quantified
by Image J (National Institutes of Health, MD, USA).

Statistical Analysis
R software and Perl language were utilized to perform
bioinformatics analysis based on GEO datasets. To conduct
difference comparisons of two groups, Student’s t-test was
used, and to conduct difference comparisons of more than two
groups, one‐way ANOVA was used. The GraphPad Prism 8
software (GraphPad, CA, USA) was used for analyzing the
statistical significance of differences in experimental groups.
We set our statistical significance for differences with p-value
<0.05 (*p<0.05, **p<0.01, ***p<0.001).
RESULTS

Gene Expression Profiles in S.
japonicum Infection
After gene expression, profile data processing, and standardization,
we integrated bioinformatics analysis for screening DEGs in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
GSE59276 dataset. Analyzed with the limma package, we
classified a total of 222 overlap DEGs between normal and S.
japonicum extracted from the GSE59276 datasets.We identified 222
DEGs via the limma package, with p < 0.01 and |logFC| > 2 cutoff
criteria, and 141 of these DEGs showed significant upregulated, and
the remaining 81 presented downregulated (Supplementary
Table 1). One of the top genes presenting upregulated expression
in the S. japonicum infected group was LCN2 (Figures 1A, B). Then
we validated differences between human liver hub gene expressions
for chronic patients with S. japonicum infections and people
without history or indicators of schistosomiasis via GSE61376
dataset (Figure 1C). In the current study, we focused on the
LCN2 gene and explored the possible mechanisms because it
upregulated in patients with S. japonicum infections.

Analysis of Immune-Infiltrating Cells
CIBERSORT algorithm was used to analyze the difference of
immune-infiltrating cell components in the mice liver infected
with S. japonicum. Figure 1D and Supplementary Table 2
showed relative proportion of 22 types of infiltrated immune
cells in normal and infection groups. We found that
macrophages increased significantly in schistosomiasis group
and accounted for the main components. Due to the limited
number of samples, the infiltration of immune cells in the liver
after schistosome infection is not fully revealed. The outcomes of
the study suggested that macrophages in the early stage of S.
japonicum infection have an important role.

S. japonicum Infection Increases the LCN2
Expression Secreted by Macrophages in
Mice Liver
Next, we constructed a model of Schistosomiasis japonica
infection by infecting cercariae. Liver sections were embedded
in paraffin and then stained using hematoxylin and eosin (H&E),
original magnification: ×200 (Figure 2A). Then, to examine
whether the expression of LCN2 in liver tissues is upregulated
during infection, we evaluated the protein level of LCN2, which
was performed in infected tissue samples and normal tissue
samples from mice with S. japonicum. We found on the staining
area and intensity revealing that LCN2 expression was increased
in S. japonicum–induced inflammatory cell area of the necrotic-
exudative granulomas (Figure 2B). As a consequence, LCN2
proteins were upregulated and investigated by IHC staining
showing dark brown. In order to explore whether LCN2 is
expressed in macrophages, we used immunofluorescence
staining with F4/80 +, a marker of macrophage cells. The
LCN2 signal was co-localized with macrophages demonstrated
clearly from the immunofluorescence data (Figure 2C). The
relative mRNA expression trend of macrophage genes and Lcn2
using the qRT-PCR assay in the infected mice with S. japonicum
was detected to explore the LCN2 response to radiation and to
verify the accuracy of the microarray data analysis. As expected,
the results showed that the average Lcn2 mRNA expression level
was significantly higher after infected 6 weeks in mice liver
tissues compared with non-infected liver tissues, which were
consistent with the results of the data analysis (Figure 3A). We
September 2021 | Volume 11 | Article 747135
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also detected the changes of confirmatory factors in mice and
drew a line diagram to observe the inflammatory molecules in
mice (Figures 3B, C).

SWA-Promoted LCN2 and Inflammatory
Production in RAW264.7 Macrophages
Previous studies have shown that mice infected with S. japonicum
had the percentage of M1 macrophages significantly increased,
and at the acute stage of S. japonicum infection, macrophages are
typically skewed from the M1 phenotype toward the M2
phenotype (Zhu et al., 2014). Soluble egg antigen (SEA) and
adult worm antigen (SWA) are the main soluble proteins that
are targeted by the adaptive immune response induced by S.
japonicum infection. We used these two antigens to stimulate
RAW264.7 cells in vitro and found that LCN2 increased most
significantly under the induction of SWA (Supplementary
Figure 2). SWA stimulation significantly increased the
percentage of M1 but not M2 macrophages. We next further
explored the relationship between LCN2 and SWA in RAW264.7
macrophages. We treated RAW264.7 cells with SWA, at various
times (0, 6, 12, 24, 48 h) and concentrations (0, 5, 10, 20, 40 mg/ml)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
(Figures 4A, B). The addition of SWA markedly increased Lcn2
expression and secretion in a dose-dependent manner, and after
24 h of SWA treatment, the expression of Lcn2 increased most
significantly. Since the concentration of SWA in S. japonicum was
less than 40 mg/ml, we treated macrophages with 20 mg/ml SWA
for 24 h (Figure 4C). Figure 4D clearly shows that SWA
treatment significantly increased the percentage of M1 but not
M2 macrophages compared to control group. SWA treatment
specially improved the expression of the M1 macrophage marker
IL6 and main enzyme of arginine metabolism iNOS. By contrast,
SWA upregulated the M2 macrophage marker IL-4 and the main
enzyme of arginine metabolism arg1.

LCN2 Deficiency Attenuates M1
Macrophages Polarization Under
SWA Treatment
The increased LCN2 may further regulate M1 macrophage
polarization under SWA treatment. By knockdown of LCN2 in
RAW264.7 cells (Figures 5A, B), we further verified the
relationship between LCN2 and M1 macrophage. Transfection
of LCN2 siRNA into RAW264.7 cells caused the obvious decrease
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in inflammatory cytokines (IL-6 and iNOS) as evaluated by
quantitative real‐time PCR analysis (Figures 5C, D). Consistent
with expectations, the knockdown of LCN2 inhibited the
upregulation of IL-6 and iNOS induced by SWA. Meanwhile,
the knockdown of LCN2 did not significantly affect M2 gene
expression (Figure 5E). It indicated that SWA promotes M1
phenotype through upregulating LCN2 expression. Hence, our
results showed that LCN2 played a vital role in macrophage
stimulation by SWA and maintained their balances.

NF-kB Signaling Pathway Is Necessary for
SWA-Induced LCN2 Gene Expression
We explored how SWA induces LCN2 gene expression in the
RAW264.7 cells. Previous study demonstrated TNFa requires
NF-kB to induce LCN2 expression (Zhao et al., 2014). In other
infections, such as mycoplasma infection, the expression of
LCN2 in HC11 cells needs to be regulated by NF-kB (Zhao
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
et al., 2020). Here, we explore whether SWA can induce
LCN2 gene expression through NF-kB signaling pathway and
whether SWA can affect macrophage polarization through NF-
kB signaling pathway. Firstly, we found after SWA induction
for 24 h, western blotting data demonstrated that Ikba was
significantly degraded and NF-kBp65 was phosphorylated,
and NF-kB signaling pathway was active (Figure 6A). While
discovering the potential anti-inflammation impact of NF-kB
inhibitors in SWA treatment, RAW264.7 cell was treated
with a panel of NF-kB inhibitors, Bay 11-7082. After 6 h
of pretreatment and continue to culture for 24 h, bay 11-7082
effectively inhibited the increased expression of LCN2 caused
by SWA and inhibited the activity of NF-kB pathway
mediated by SWA (Figure 6B). After treatment with NF-kB
inhibitor for 6 h, the expression of LCN2 decreased and the degree
of M1 macrophage polarization downregulated after SWA
stimulation. Therefore, we found that SWA could promote LCN2
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expression and M1 polarization by activating NF-kB pathway
(Figures 6C, D).
DISCUSSION

Schistosomiasis has an extreme effect on human health; in
particular, S. japonicum serves as one of the primary pathogens of
the said disease. Following the infection, eggs from the parasite are
attached to the host liver tissues to provoke liver fibrosis and
inflammation, resulting in irreparable liver damage and even
death of the afflicted. Alongside a recently swift progress of
microarray and high-throughput sequencing innovations,
integrated bioinformatics procedures have been considerably
operated to determine biomarkers that are associated with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
identification, projection, and medication of several kinds of
ailments. Here, we have found that LCN2 increased significantly
in the early stage of schistosomiasis through preliminary biological
information, then we explored the possible mechanism of increased
LCN2 expression. From this research, the GSE59276 microarray
datasets were designated to examine and compare DEGs between
ordinary and S. japonicum–infected mice tissues. This research
intended to identify what role LCN2 plays in schistosome infection.
Through the above analysis, the integrated results were revealed.We
used CIBERSORT deconvolution algorithm to find that
macrophages increased significantly after S. japonicum infection.

Lipocalin 2 (LCN2), referred to as NGAL, is a twenty-five (25)
kDa extensively analyzed secreted lipocalin protein that has the
capability to transfer tiny lipophilic ligands. It is generated by
several types of cells such as neutrophils, macrophages, adipocytes,
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and lymphocytes (Meheus et al., 1993; Flo et al., 2004; Wang et al.,
2019).Over time, the LCN2has been renowned as a promising entity
in various pathological and physiological procedures, such as
inflammation, iron homeostasis, organogenesis, microbial
infection, tumorigenesis, and neurodegeneration (Liu et al., 2013;
Buonafine et al., 2018). Previous studies demonstrated the expression
ofLCN2canbe inducedbyproinflammatorycytokines likeLPS, IL-6,
IL-17, IFN-g, and it plays an important role in the pro-inflammatory
reaction. Previous studies reported that in different inflammatory
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
stimulation models, LCN2 can play different roles. Substantial
increase in the expression of the pro-inflammatory factors was
observed to be caused by the lipopolysaccharide (LPS) due to
LCN2 deficiency in the murine inflammation model (Kang et al.,
2018). Nonetheless, the absence of LCN2 may result in the high
vulnerability of mice to E. coliO157:H7 infection while in decreased
production of inflammatory cytokineswhen the bacteriaE. coli 0157:
H7was encountered (Kang et al., 2018;Wang et al., 2019).During the
current study, we examined the expression of LCN2was significantly
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upregulated and that they could play a significant role in liver
pathological changes caused by S. japonicum, such as acute liver
granuloma and liver fibrosis, andwe validated the difference between
normal groups and schistosomiasis groups, then we investigated
three pairs of infected subject liver tissues and the respective non-
infectedones.Through theqPCRanalysis and IHCstaining, the same
gene expression tendency was established as with the prementioned
expression, hence validating the correctness of the research results.

In the current study, it was found that the expression of LCN2
increased in the liver of mice infected for 6 weeks, and LCN2 was
secreted on macrophages. Macrophage is one of the main immune
cells in the early stage of schistosome infection,whichnot only acts as
innate immune cells to remove pathogens or apoptotic cells through
phagocytosis but is also involved in the direct process of precise
immune responses as antigen-presenting cells (Mosser andEdwards,
2008). Currently, it has been identified that macrophages maintain
immune homeostasis significantly by changing the polarization of
M1 subtypemacrophages (Wynn et al., 2013). TheM1macrophages
secrete pro-inflammatory cytokines and chemokines to stimulate
inflammation in order to help in clearing the invaded pathogens. In
the process of S. japonicum infection, M1 macrophages are the
consequence of continuous response to injury (Barron and Wynn,
2011; Koyama and Brenner, 2017). Some literature has shown that
the percentage of M1 macrophages in abdominal cavity after
S. japonicum infection began to rise at 3 weeks after infection and
began to decline at 8 weeks after infection. M2 macrophages were
activated throughm1-to-m2phenotype transformation andbegan to
rise from 8 weeks, but with different tissues, there may be differences
in activated macrophages, which mainly depends on the changes of
cytokines (Zhu et al., 2014; Song et al., 2020).

Hence, we constructed an in vitro model. S. japonicum worm
antigens and egg antigens are the two main antigens secreted by S.
japonicum, and the study showed thatmacrophages RAW264.7 cells
were activated by SWAstimulation, resulting inM1polarization.We
found that SWA promoted macrophages to secrete LCN2, and the
expression of LCN2 was upregulated in a concentration-dependent
manner. The deficiency of LCN2 expression could induce
macrophages to secrete inflammatory factors and inhibit
macrophage M1 polarization. Then we explored the latent
mechanism of SWA-induced increase of LCN2. Previous literature
showed that the NF-KB pathway could activate macrophages to
produce M1 polarization under LPS induction. NF-kB is the
predominant transcription factor that activates inflammatory
mediatory proteins such as cytokines, chemokines, and inducible
enzymes (Liu et al., 2017). Literature has reported that NF-kB
regulates LCN2 by binding to specific promoter sites during
inflammatory stress. NF-kb can regulate the upregulation of LCN2
expression and stimulate inflammatory response in age-related
macular degeneration (AMD)–induced inflammation (Zhao and
Stephens, 2013; Ghosh et al., 2017). This may be one of the reasons
for the increase of LCN2 expression in early infection,whichdepends
on the activation of the NF-KB pathway. Our experiment confirmed
that NF-KB can upregulate the expression of LCN2 and affect the
polarization of M1 macrophages in the process of infection.

In conclusion, we found that LCN2 may play a vital role in
schistosomiasis infection and revealed the possible molecular
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
mechanism of LCN2. Fundamentally, an assembly of inflammatory
cells suchasmacrophages, lymphocytes, neutrophils, and eosinophils
was the most predominant cell type in the granulomas in
S. japonicum. We found that LCN2 may be a positive regulator of
macrophage M1 polarization and is closely related to cytokines.
MacrophageM1 polarizationmay reduce liver fibrosis induced by S.
japonicum (Souza et al., 2020). Our data revealed that the elevated
LCN2 expression in S. japonicum infectionmight be a positive factor
against it by upregulating INOS-mediated activation of macrophage
M1.Our study found that SWAcan promote the regulation of LCN2
and induce M1 polarization of macrophages. LCN2 is necessary in
the process of macrophage polarization. The upregulation of LCN2
can bemediated byNF-kB signaling pathway.We hypothesized that
LCN2 secretionmay impact liver fibrosis. This needs to be proved by
subsequent experiments. We will construct LCN2 knockout mice to
observe the effect of LCN2 on liver damage, granulomas, and fibrosis
induced by schistosomiasis infection.
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