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Background: Periodontal pathogen and gut microbiota are closely associated with the
pathogenesis of Alzheimer’s disease (AD). Porphyromonas gingivalis (Pg), the keystone
periodontal pathogen, can induce cognitive impairment. The gut has a connection and
communication with the brain, which is an important aspect of the gut–brain axis (GBA). In
the present study, we investigate whether Pg induces cognitive impairment through
disturbing the GBA.

Methods: In this study, Pg was orally administered to mice, three times a week for 1
month. The effects of Pg administration on the gut and brain were evaluated through
behaviors, gut microbiota, immune cells, glymphatic pathway clearance, and
neuroinflammation.

Results: Pg induced cognitive impairment and dysbiosis of gut microbiota. The a-
diversity parameters did not show significant change after Pg administration. The b-
diversity demonstrated that the gut microbiota compositions were different between the
Pg-administered and control groups. At the species level, the Pg group displayed a lower
abundance of Parabacteroides gordonii and Ruminococcus callidus than the control
group, but a higher abundance of Mucispirillum schaedleri. The proportions of
lymphocytes in the periphery and myeloid cells infiltrating the brain were increased in
Pg-treated animals. In addition, the solute clearance efficiency of the glymphatic system
decreased. Neurons in the hippocampus and cortex regions were reduced in mice treated
with Pg. Microglia, astrocytes, and apoptotic cells were increased. Furthermore, amyloid
plaque appeared in the hippocampus and cortex regions in Pg-treated mice.
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Conclusions: These findings indicate that Pg may play an important role in gut dysbiosis,
neuroinflammation, and glymphatic system impairment, which may in turn lead to
cognitive impairment.
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INTRODUCTION

Porphyromonas gingivalis (Pg) is a keystone pathogen in
periodontitis (Yang et al., 2019). In addition to its oral effect,
Pg is closely related with the occurrence and development of
numerous systemic diseases, such as atherosclerosis (Xie et al.,
2020), diabetes (Tian et al., 2020), and Alzheimer’s disease (AD)
(Diaz-Zuniga et al., 2020). Cognitive impairment is an early
gy | www.frontiersin.org 2
symptom of AD and Pg was found to be closely related to
cognitive impairment (Noble et al., 2009; Zhang et al., 2018).
Amyloid plaques are aggregation of beta-amyloid peptides (Ab)
that accumulate in the brain, damaging and destroying neurons
and resulting in progressive cognitive impairment. It is reported
that Pg can not only promote the Ab deposit in the central
system (Dominy et al., 2019), but also induce macrophages to
produce Ab, which may contribute to the central deposition
GRAPHICAL ABSTRACT | The periodontal pathogen P. gingivalis induces cognitive impairment by disturbing gut-brain axis.
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(Nie et al., 2019). Virulence factors of Pg such as LPS and gingipain
can induce inflammatory responses. Pg-LPS can induce neuronal
inflammation through the TLR4/NF-kB pathway (Zhang et al.,
2018). Gingipain induces the migration of microglia to the site of
infection and leads to neuroinflammation (Nonaka and Nakanishi,
2020). Inhibitors of Pg virulent factors could ameliorate infection
and reduce amyloid plaque production and neuroinflammation
(Dominy et al., 2019).

Pg of oral origin can induce the dysbiosis of gut microbiota
(Kato et al., 2018; Ohtsu et al., 2019). The oral–gut connection of
Pg occurs during common activities such as chewing and
swallowing. Gut microbiota composition plays a part in the
regulation of brain functions, including social behavior, motor
dysfunction, and cognitive functions via the gut–brain axis
(GBA) (Erny et al., 2015; Rogers et al., 2016; Sampson et al.,
2016; Cryan et al., 2020). The GBA is regarded as a bidirectional
connection between the central nervous system (CNS) and the
gastrointestinal tract of the body. It contains various direct and
indirect pathways between the cognitive center in the brain and
peripheral intestinal function. Regulation of the GBA is critical
for maintaining homeostasis, including that of the CNS. The
regulatory effects of gut microbiota on the brain can be mediated
by the immune aspect of the GBA (van Sadelhoff et al., 2019).
Peripheral immune cells in brain parenchyma are maintained at
a low level under normal condition. In the state of disease,
infiltrated lymphocytes and myeloid cells often turn to damage
CNS tissue (Gate et al., 2020; Dressman and Elyaman, 2021;
Savinetti et al., 2021).

Neuroinflammation is a general characteristic of the CNS in
neurological disorders and is considered as a potential factor of
cognitive impairment (Gilhus and Deuschl, 2019). The
neuroinflammatory responses, such as activation of gliocytes
and expression of proinflammatory cytokines, could exacerbate
the CNS microenvironment in diseases and may make a
contribution to acceleration of cognitive impairment.
Deposition of Ab is considered as one of the pathological
features of AD. In normal physiological conditions, Ab
production and clearance are maintained at a balanced level.
In the past, the CNS is believed to be immune privileged, lacking
a classic drainage of the lymphatic system. But now, as is known
to all, the CNS goes through continuous immune surveillance
(Louveau et al., 2015). The glymphatic system has a significant
effect on the clearance of brain metabolic wastes (Abbott et al.,
2018). The clearing efficiency of the glymphatic pathway can be
influenced by sleep deprivation (Nedergaard and Goldman,
2020), some drugs, and neuroinflammation (Sundaram et al.,
2019). The glymphatic pathway includes the perivascular space
(PVS) influx of cerebrospinal fluid (CSF) into the brain
interstitial fluid (ISF), followed by the clearance of ISF along
draining veins (Iliff et al., 2012). The continuous movement of
fluid through the interchange between the CSF and ISF is critical
to clear interstitial solutes. Dysfunction of the glymphatic
pathway leads to metabolic waste accumulation, such as Ab,
which is considered to contribute to AD (Arbel-Ornath et al.,
2013; Plog and Nedergaard, 2018).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Therefore, we hypothesized that Pg might induce cognitive
impairment through regulating the GBA in middle-aged mice.
METHOD

Animals
All experiments were approved by the Institutional Animal Care
and Use Committee, Sun Yat-Sen University (Guangzhou,
China; approval no. 000439). In this study, 9- to 10-month-old
male C57BL/6J mice were acquired from Vital River (Beijing,
China). All animals were raised in a specific pathogen-free
facility of Sun Yat-Sen University, with ad libitum food and
water. All animals were randomly assigned to two groups:
control and Pg group (n = 15).

Oral Administration of Pg
Mice were given by oral gavage 109 colony-forming units (CFU)
of Pg in total, and the Pg was resuspended in 0.1 ml phosphate
buffered saline (PBS) with a concentration of 2% carboxymethyl
cellulose (CMC) (Sigma Aldrich, St. Louis, MO, USA). This
suspension was given three times a week for 4 weeks. The control
group was given a suspension without Pg.

Morris Water Maze Test
The Morris water maze (MWM) test was conducted, based on
the protocol previously described (Akers et al., 2014). The maze
consisted of a round pool with a platform, and the platform was
placed 1 cm under the water surface. The test contained two
parts: the first one was place navigation trainings (5 days) and the
other was spatial probe tests. Briefly, mice were put in the water
from four quadrants of the maze every day, lasting for 5 days.
The aim was to train the mice to locate the platform. When the
mice failed to locate the platform in 60 s, they were guided to
swim to the platform and remained there for 10 s of each trial.
On the last day, the platform was taken out. Mice were put into
the maze at the place opposite to the original location of the
platform and were taken out after 60 s. The test parameters were
recorded with an automated equipment (San Diego Instruments,
San Diego, CA, USA).

Rotarod Test
Briefly, mice ran on the accelerated rod three times a day, lasting
for 3 days, with 2 days of training. The rod accelerated from 4 to
40 rpm in 300 s (Xin Ruan, Shanghai, China). Each mouse was
allowed to rest for 30 min between experiments. The time of mice
falling from the rod was recorded and the average was taken of
the three tests.

Open Field Test
In this experiment, the open field consisted of a white plastic box
(45 × 45 × 45 cm). Locomotor activity was captured by a fixed
camera and processed by a software (Xin Ruan, Shanghai,
China). The animals were subjected to the open field test
(OFT) for 5 min. The box was cleaned after each trial.
December 2021 | Volume 11 | Article 755925
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Fecal Microbiota Analysis via 16S
rRNA Sequencing
DNA of the fecal samples was extracted. Amplification of the V3
and V4 regions of the 16S rRNA gene was performed. Paired-end
reads were generated on an Illumina MiSeq platform by
following standard instructions. The tags consisted of high-
quality paired-end reads and were clustered to operational
taxonomic unit (OTU) at the level of 97% sequence similarity
using the software USEARCH v7.0.1090. OTU taxonomy was
divided on the basis of comparison with the Greengenes database
(Fadrosh et al., 2014). According to the OTU abundance, Venn
diagram was acquired by VennDiagram of software R (v3.1.1).
The ACE, Chao1, Simpson, and Shannon parameters of a-
diversity were analyzed. b-Diversity analysis was performed by
partial least squares discriminant analysis (PLS-DA).

Flow Cytometry
Periphery blood, spleens, and brains of mice treated with or
without Pg were collected. Tissues of spleens and brains were
ground and filtered through sterile cell filters. For blood and
spleens, erythrocytes were lysed using RBC lysis buffer (CWBIO,
Beijing, China) according to the instructions of the manufacturer
and were then washed twice with PBS. A single-cell suspension of
tissue was prepared. Anti-mouse CD16/32 monoclonal antibody
(BioLegend) was used for blockage of Fc receptors. Dead cells
were labeled with Zombie NIR Fixable Viability Kit (BioLegend).
Cells were stimulated with Cell Activation Cocktail (BioLegend)
and fixation/permeabilization was applied before intracellular
staining. The antibodies were utilized for flow cytometry as
follows: anti-mouse CD45 (clone 30-F11), anti-mouse CD11b
(clone M1/70), anti-mouse CD3 (clone 145-2C11), anti-mouse
CD4 (clone 145-2C11), anti-mouse CD8 (clone 53-6.7), and
anti-mouse IFNg (clone XMG1.2). All data were collected on a
CytoFLEX (Beckman Coulter, USA) and analyzed with FlowJo
software (version X, USA).

Function Assessment of the
Glymphatic Pathway
An in vivo two-photon microscope was used to assess the
clearance function of the glymphatic pathway. The mice were
anesthetized with pentobarbital (1%, 50 mg/kg). A slender
cranial window was created about 3 mm in diameter using a
stereotaxic device (RWD, Shenzhen, China). The view of the
glymphatic pathway was observed by the two-photon
microscope (Leica, Germany). Ten microliters of cerebrospinal
fluid (CSF) tracer (FITC, Sigma-Aldrich, Germany) was injected
into the cisterna magna with a duration of 10 min at a
concentration of 1%. In order to make the blood vessels
visible, rhodamine B dextran (Sigma, USA) was given by
intravenous injection at a dosage of 0.2 ml per mouse. The
operation was repeated at 5, 10, 15, 20, 25, 30, 45, and 60 min
after the injection of the tracer. We analyzed the three-
dimensional (3D) vectorized reconstruction of the distribution
of the FITC tracer to observe its movement. For interstitial
clearance, mean pixel intensities were also measured. All data
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
acquisition was obtained by the Leica Lite software. The mean
pixel intensities were measured in regions of interest throughout
the time course and were normalized at the time of 5 min.

TUNEL Staining
The TUNEL staining kit (Roche, USA) was utilized to assess the
apoptotic neurocytes in the hippocampus and cortex. The
procedures were conducted based on the instructions of the
manufacturer. The number of TUNEL-positive nuclei was
measured with ImageJ software. As a control, sections of brain
tissue were operated by the same procedures in the absence of
TdT enzyme.

Immunofluorescence Staining
Sections of the brain were incubated with the following primary
antibodies, including anti-IBA1 antibody (catalog number 019-
19741, Wako, Japan), anti-Ab1–42 (catalog number SIG-39142,
BioLegend), and anti-GFAP (catalog number nG3893, Sigma-
Aldrich), overnight at 4°C. The next day, the sections were
incubated with secondary antibodies (catalog number 4408,
4413, Cell Signaling Technology) at room temperature for 1 h.
The number of cells was calculated by two individuals using
ImageJ software (version 1.46r, MD, USA).

Data and Statistical Analyses
Two-way repeated measures ANOVA was used for the MWM
measurements and the glymphatic system results, with Sidak’s
test for multiple comparisons conducted. The difference between
the two groups was evaluated by performing a t-test for normally
distributed data and a non-parametric Mann–Whitney test for
non-normal distribution. Data were expressed as means ± SEM,
and p-value <0.05 was judged as significant difference (SPSS 19.0
software, USA; Prism 6, GraphPad, USA).
RESULTS

Porphyromonas gingivalis Caused
Behavioral Changes in Mice
Pg administration had no negative effect on body weight (Figure
S1). The MWM test was used to examine the learning and spatial
memory of mice. The results of the 5-day training are shown in
Figure 1. Pg-administered mice presented a longer escape
latency on day 2 to day 5 (Figure 1A). Although the difference
of latency was not significant, the longer latency during the
training day somewhat reflected a slowed rate of spatial learning
after Pg administration. Moreover, the distance that the Pg group
traveled to locate the platform was significantly increased
compared with the control group on day 5 (Figure 1B). The
probe trial confirmed the presence of a spatial memory
impairment in Pg-administered mice. The number of times
crossing the target area was significantly decreased in the Pg
group (3.22 ± 0.32) than that in the control group (5.67 ± 0.78,
p < 0.05; Figure 1C). The time mice spent in the target quadrant
December 2021 | Volume 11 | Article 755925
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was also significantly decreased in the Pg group (17.85 ± 2.18 s)
than that in the control group (25.99 ± 2.63 s, p < 0.05;
Figure 1D). Pg-treated mice did not recall the location of the
platform and explored other quadrants (Figure 1F). There was
no significant difference of the swimming speeds between the
two groups (Figure 1E). Taken together, our results
demonstrated that Pg worsens the function of spatial cognition
of mice.

To evaluate the general locomotor activity of the mice and their
willingness to explore, the OFT was carried out. Indeed, Pg-
administered mice spent less time in the central region of the box
and showed little interest in exploring when compared with the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
control mice (Figure 1J). Moreover, Pg-treated mice showed a
significant reduction in the central distance traveled (1.42 ± 0.21 m),
when compared with the control group (2.63 ± 0.49 m, p < 0.05;
Figure 1H). There was no significant difference in total moving
distance between the control and Pg group (Figure 1G). The
representative trajectories of both groups are shown in Figure 1I.

To assess motor function and fatigue level, performance on
the accelerating rotarod was recorded. The latency of falling from
the rotarod of both groups was 272.30 ± 9.57 s (control) and
191.00 ± 7.26 s (Pg). Administration with Pg significantly
decreased the riding time by 29.9% compared with that of the
control group (p < 0.001; Figure 1K).
A B

D E
F

G IH

J K

C

FIGURE 1 | The effects of Porphyromonas gingivalis (Pg) on behavioral changes of mice. (A) Escape latencies in spatial acquisition trial of the Morris water maze
(MWM). (B) The distance of mice to locate the platform on day 5. (C) The number of times the platform was crossed in the probe trial of the MWM. (D) Target
quadrant movement time in the probe trial of the MWM. (E) Mean velocity of mice in the probe trial of the MWM. (F) Representative trajectories of each group in the
MWM. (G) Total moving distance in the open field test (OFT); (H) distance in the central region of the OFT. (I) Representative trajectories of each group in the OFT.
(J) Time spent in the central region of the OFT. (K) Latency to fall in the rotarod test. Each dot represents data from a mouse. Data were shown as means ± SEM.
*p ≤ 0.05; ***p ≤ 0.001.
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Oral Administration of Pg Altered Gut
Microbiota Composition
To evaluate the influence of Pg gavage on gut microbiota, feces
were analyzed for their microbiota composition. The composition
ratio of the gut microbiota changed (Figure 2A and Figures S2A, B).
The number of shared OTUs in both groups was 334 as shown in
the Venn diagrams, and the unique OTUs of the two groups were
60 in the control group and 52 in the Pg group, respectively
(Figure S2C). The a-diversity parameters, including ACE, Chao1,
Shannon, and Simpson, were analyzed. None of the parameters
showed a significant change by repeated administration of Pg
(Figure 2B). The result of PLS-DA analysis displayed that the
samples could be divided into two parts. This demonstrated that
the gut microbiota compositions were different between the Pg-
administered and control groups (Figure 2B). At the phylum level,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
the proportion of Tenericutes was significantly increased in Pg-
treated mice than in control ones, and the proportion of
Actinobacteria was slightly decreased (Figure S2D). At the class
level, the proportion of Coriobacteriia was significantly decreased
in the Pg group than in the control group, while the proportion of
Mollicutes was significantly increased (Figure S2D). At the order
level, the proportion of Coriobacteriales was significantly
decreased in Pg-treated mice than in control ones (Figure S2D).
At the family level, the proportions of Clostridiaceae,
Coriobacteriaceae, and Prevotellaceae were significantly
decreased in the Pg group, and that of S24-7 was slightly
decreased. At the genus level, the proportion of Prevotella was
significantly decreased in the Pg group than in the control group
(Figure S2D). At the species level, the proportions of
Parabacteroides gordonii and Ruminococcus callidus were
A B

C

FIGURE 2 | Influence of oral gavage with Pg on the composition of gut microbiota. Mice were subjected to oral gavage with either 109 CFU of Pg or CMC three
times a week for 4 weeks. Stool samples were used for 16S rRNA sequencing. (A) At the phyla level, the relative abundance of bacteria in the Pg-administered and
control groups. (B) Alpha- and beta-diversity of the gut microbiota in the Pg-administered and control groups. (C) The significant differences in relative abundance of
species between the two groups. n = 3, data were shown as means ± SEM. *p ≤ 0.05; **p ≤ 0.01.
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significantly decreased in Pg-treated mice than in control ones,
whereas the proportion of Mucispirillum schaedleri was
significantly increased (Figure 2C). Besides, the ileum of the Pg
group showed partial intestinal gland destruction and
inflammatory cell infiltration. These results demonstrated that
gut microbiota dysbiosis caused by Pg administration can induce
intestinal inflammatory response. However, there was no
histopathologic change in the colon (Figure S3).

Pg Changed the Immune Environment
After Gut Microbiota Dysbiosis
To address whether Pg contributed to brain disorders by
affecting the immune pathway of the GBA, we detected
immune cells from the blood, spleen, and brain of mice. The
proportions of CD4+IFNg+ T cells and CD8+IFNg+ T cells were
increased in the blood and spleen of mice with Pg gavage
compared with those of the control mice (Figures 3A, B). The
proportion of CD8+ T cells of the spleen was significantly
increased in the Pg group, while that of the brain was slightly
increased. However, the proportion of CD45+CD11b+ myeloid
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
cells was significantly increased in the brain of the Pg
group (Figure 3C).

Dysfunction of the Glymphatic System
The clearance function of the glymphatic system was measured
in mice. The CSF tracer was given to the cisterna magna by
infusion and the blood was visualized by intravenous injection of
rhodamine B dextran (Figure 4A). The CSF tracer ran to the
cortex along the permeating arterioles and went into ISF of the
parenchyma through PVS. The CSF tracer in the PVS of
the permeating arteries was analyzed 100 mm under the surface
of the cortex (Figure 4B). In control mice, the measurement of
the CSF tracer in pixel intensity at 5 min was set as a baseline.
The relative pixel intensity along the PVS in control mice was
gradually decreased over time. In contrast, the CSF tracer was
accumulated along the PVS in Pg-treated mice, and the relative
pixel intensity was significantly increased at 25, 30, 45, and 60
min (Figure 4C). These results indicated that oral gavage with Pg
decreased the CSF–ISF exchange of the brain. We also analyzed
the pixel intensity of the CSF tracer in brain parenchyma. In
A

B

C

FIGURE 3 | Pg-administered mice show changes in proportions of periphery lymphocytes and brain-infiltrating immune cell subsets. (A) Flow cytometry is used to
analyze the composition of blood cells in the control and Pg-administered group. Numbers represent the percentage of the target cell group in blood cells. (B) Flow
cytometry is used to analyze the composition of spleen cells. (C) Flow cytometry is used to analyze the composition of brain-infiltrating immune cells. Each dot
represents data from a mouse. Data were shown as means ± SEM. *p ≤ 0.05; **p ≤ 0.01.
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control mice, the relative pixel intensity stayed nearly at the same
level during the testing time. However, in the Pg group, the
relative pixel intensity was significantly increased at 45 and 60
min (Figure 4D). It indicated that Pg of oral origin impaired the
ISF drainage of the brain.

Pg Aggravated Neuroinflammation
in the Brain
Overactivation of neuroinflammation is reported to be associated
with neurodegeneration in AD (Heneka et al., 2015). We
conducted immunofluorescence staining to explore the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
histopathologic changes induced by Pg. We gauged and
compared the positive cells of TUNEL, neurons (NeuN),
microglia (Iba-1), and astrocytes (GFAP) in the cortex and
hippocampus regions of mice in different groups. The dysbiosis
of gut microbiota and infiltration of immune cells can promote
inflammatory activation of glial cells. Pg increased over 16.35%
of the number of microglia and 39.12% of the number of
astrocytes in the hippocampus region than those in the control
group (Figures 5B, F). Neuroinflammation may induce
apoptosis of neurocytes. Pg increased the number of TUNEL-
positive cells in the hippocampus and cortex regions than those
A

B

DC

FIGURE 4 | Clearance function of the glymphatic system, including inflow of the cerebrospinal fluid (CSF) through PVS–ISF exchange and the outflow of ISF
drainage. (A) Diagram representing the two-photon microscopic image of the CSF tracer into the cisterna magna. (B) Three-dimensional images of the distribution of
the CSF tracer in the Pg and control groups. Representative picture of the CSF tracer entering the brain parenchyma along the PVS. (C) Comparison of the relative
fluorescence intensity in the PVS. (D) Comparison of the relative fluorescence intensity in the ISF between the control and Pg group. n = 4, data were shown as
means ± SEM, *p ≤ 0.05; ***p ≤ 0.001. Scale bar, 50 mm.
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in control mice (Figures 5A, E). Moreover, the number of
neurons in the hippocampus and cortex regions was
significantly decreased in Pg-administered mice (Figures 5D, G).
In addition, amyloid plaque appeared in those two brain regions of
the Pg group (Figure 5C).
DISCUSSION

In this study, Pg of oral origin induced dysbiosis of gut microbiota.
Microbiota was a potent regulator of host immune responses, and
the T lymphocytes and myeloid cells were increased in the
peripheral and CNS, respectively. Changes of the CNS immune
microenvironment exacerbated the neuroinflammation.
Furthermore, the solute clearance function of the glymphatic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
system was reduced. Ab plaques were shown in the brain and
cognitive function was prominently impaired in mice that were
subjected to oral gavage with Pg. Hence, this study provides
further evidence for Pg exacerbating neuroinflammation,
impairing glymphatic function, and ultimately leading to a
decline in cognitive function by disturbing the GBA.

In order to mimic clinical conditions, the dose of Pg given to
mice was calculated according to the quantity of microbial load
and saliva swallowed by a patient with periodontitis. The time of
Pg administration was based on how long periodontitis can be
induced by bacteria in mice (Boyer et al., 2020). Pg can act either
directly or indirectly on the brain. On the one hand, Pg is detected
in the brain of AD patients. Pg in the brain may induce
neuroinflammation by secreting gingipain and results in the
deposition of amyloid protein (Dominy et al., 2019). In addition
A B

D

E F G

C

FIGURE 5 | Immunohistochemical staining of the hippocampus and cortex. (A) Representative image presenting TUNEL-positive cells in the hippocampus and
cortex. (B) Representative image presenting Iba-1 and GFAP-immunopositive cells in the hippocampus. (C) Representative section showing amyloid plaque in the
hippocampus and cortex. (D) Representative image presenting NeuN-positive cells in the hippocampus and cortex. (E) Comparison of the difference in the number
of TUNEL-positive cells. (F) Comparison of the difference in the number of GFAP and Iba-1-positive cells in the hippocampus. (G) Comparison of the difference in the
number of NeuN-positive cells in the hippocampus and cortex. n = 6, data were shown as means ± SEM. *p ≤ 0.05; **p ≤ 0.01. Scale bar, 10 mm.
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to the direct action, Pg can act indirectly on neuroinflammation
through gut dysbiosis. Gut dysbiosis causes an increase in
inflammatory T and B lymphocytes and a subsequent systemic
inflammation, thereby inducing neuroinflammation (Suganya and
Koo, 2020; Carlessi et al., 2021). Second, gut dysbiosis decreases
the production of short-chain fatty acids (SCFAs), which is related
to inflammatory responses (Lach et al., 2018; Gudi et al., 2020).
Third, gut dysbiosis exacerbates neuroinflammation by
transmitting gut-derived Ab to the brain through the vagus
nerve (Chen et al., 2021).

The oral cavity–gut–multiorgan axis has been recently
proposed to link periodontitis to systemic diseases (Kato et al.,
2018). Indeed, Pg can be detected in the fecal collections from
patients with colorectal cancers (Wang et al., 2021). It is reported
that during periodontal diseases, extension of the oral microbiota
can promote inflammatory bowel disease by ectopic gut
colonization (Kitamoto et al., 2020). An outgrowth of
potentially pathogenic bacteria and a decrease of beneficial
bacteria may result in pathological changes of gut tissue. In the
present study, we found inflammatory cells infiltrated in the
ileum tissue and some destruction of the intestinal glands.
Besides, at the species level, the proportions of M. schaedleri,
P. gordonii, and R. callidus were changed in the Pg group.
Mucispirillum schaedleri is detected in a variety of mammals,
and it is known to have low relative abundance of the intestinal
microbiota in murine feces (Herp et al., 2021). An increasing
number of certain bacterial species have been associated with
inflammatory conditions in the gut (Selmin et al., 2021).
Parabacteroides gordonii is one of the several gut bacteria with
anti-inflammatory attributes (Abais-Battad et al., 2021).
Ruminococcus callidus which produces SCFAs is considered as
a biomarker for improving health (Sanchez-Tapia et al., 2020).
Moreover, the relative abundances of both bacteria were
decreased in the Pg group. The changes of the above three
bacterial species were associated with inflammatory pathology
of the ileum. In addition, Pg administration has been
documented to modulate gut microbiota and gut immune
system. Pg could shift the proportion of T lymphocytes to
inflammatory T cells in mesenteric lymph node by disturbing
the gut microbiota, and the level of proinflammatory cytokine in
sera is also increased. Besides, oral gavage with Pg can impair the
barrier function of intestinal epithelium and decrease the
expression of tight junction protein ZO-1 (Kato et al., 2018;
Feng Y. K. et al., 2020; Tsuzuno et al., 2021). Further studies are
urgently needed to clarify the pathway how Pg causes pathologic
and microbiological changes of the gut.

In accordance with a previous study, gut microbiota played an
important role in behavior (Oh et al., 2015), and animals in the
Pg group were more prone to fatigue in the rotarod test. In
addition, Pg-treated mice showed little interest in exploration,
indicating anxiety-like behavior. These results indicated that
dysbiosis of gut microbiota caused by Pg administration could
disturb the brain function. The gut microbiota is critical for the
maturation and proper function of microglia, while dysbiosis of
gut microbiota induces neuroinflammation (Erny et al., 2015).
AD mice exhibit altered gut microbiota compositions, which is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
positively correlated with enhanced astrogliosis and microgliosis
in the brain (Shukla et al., 2021). Conversely, rescuing the
dysbiosis of gut microbiota can suppress the microglia activation
and downregulate the production of proinflammatory cytokines
(Shen et al., 2020). Consistently, we found that Pg of oral origin
could induce astrogliosis and microgliosis in the brain. Dysbiosis
of gut microbiota has been strongly involved in the development
of neurodegenerative disorders through modulating the GBA
(Stefano et al., 2018; Cryan et al., 2020; Zhu et al., 2020). The
gut microbiota can modify immune cells and promote the
production of proinflammatory cytokines (Hegazy et al., 2017;
McCoy et al., 2017; Zhao and Elson, 2018). Thereafter, immune
cells along with inflammatory mediators may infiltrate the brain
(Campos-Acuna et al., 2019). In this study, the proportions of
CD4+IFNg+ T lymphocytes and CD8+IFNg+ T cells were increased
in the blood and spleen of Pg-treated mice, and the peripheral Th1
(CD4+IFNg+) cells are associated with M1 microglia activation
and contribute to neuroinflammation (Wang et al., 2019). A study
limitation is that we did not examine the levels of IFNg in the sera,
gut, and brain. Furthermore, we observed that Pg promoted the
infiltration of myeloid cells (CD45+CD11b+) in the brain. The
mechanisms by which myeloid cells activate neuroinflammation
are still under examination. Further studies are needed to clarify
whether removing Pg can rescue the damage of the brain.

In addition, the gut microbiome imbalance and associated
neuroinflammation may disrupt CNS fluid flow, which leads to
the breakdown of the glymphatic system (Rustenhoven et al.,
2021). The recently discovered glymphatic system in brain
parenchyma and the meningeal lymphatics are recognized as
vital pathways for clearance of toxic solutes from the brain (Da
Mesquita et al., 2021). The dysfunction of the glymphatic CSF–
ISF exchange has been implicated in the initiation and
progression of AD and Parkinson’s disease (Wood, 2021). In
our study, the clearance rate of both the PVS and ISF bulk flow in
the Pg group was much slower than that in the control group.
This accelerated the accumulation of interstitial waste from the
brain parenchyma. In correspondence, the deposition of Ab
plaque in the brain was observed in the Pg group. The
bidirectional interaction between Ab deposition and
neuroinflammation resulted in the apoptosis of neurocytes and
then impaired cognitive function in the Pg group. It is reported
that inhibition of Pg-induced neuroinflammation can decrease
the deposition of Ab (Dominy et al., 2019; Liu et al., 2020).

The glymphatic system mainly consists of astrocytes where
aquaporin-4 (AQP4) water channels locate (Mestre et al., 2018).
Astrocytes are a group of glial cells in abundance in the CNS that
have significant homeostatic maintenance and disease-promoting
function. Immune cells that are licensed by the gut microbiota can
modulate the function of astrocytes (Sanmarco et al., 2021).
Moreover, in this study, reactive proliferation of astrocytes was
observed in the Pg group, which is related with the dysfunction of
the glymphatic system. Furthermore, the localization of AQP4 is
highly polarized to perivascular endfeet of astrocytes that facilitate
the periarterial CSF influx and the perivenous ISF clearance
pathways (Feng W. et al., 2020; Hablitz et al., 2020).
Dysfunction of astrocytes, including reactive astrogliosis, causes
December 2021 | Volume 11 | Article 755925
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abnormal production and position of AQP4, which disturbs the
clearance function of adverse solutes in the brain in turn. Future
work will address whether Pg can modify the polarization of
AQP4 water channel by interacting with the GBA.
CONCLUSIONS

Our results indicate that periodontal pathogen Pg induces
cognitive decline, accompanied by gut microbiota dysbiosis,
neuroinflammation, and glymphatic system impairment. In
conclusion, the present study suggests a potential role of Pg-
induced dysfunction of the GBA in the pathophysiology of
cognitive impairment.
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