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Listeria monocytogenes is more heat-resistant than most other non-spore-forming
foodborne pathogens, posing a severe threat to food safety and human health,
particularly during chilled food processing. The DegU orphan response regulator is
known to control heat resistance in L. monocytogenes; however, the underlying
regulatory mechanism is poorly understood. Here, we show that DegU contributes to
L. monocytogenes exponential growth under mild heat-shock stress. We further
demonstrate that DegU directly senses heat stress through autoregulation and
upregulates the hrcA-grpE-dnaK-dnaJ operon, leading to increased production of heat-
shock proteins. We also show that DegU can directly regulate the expression of the hrcA-
grpE-dnaK-dnaJ operon. In conclusion, our results shed light on the regulatory
mechanisms underlying how DegU directly activates the hrcA-grpE-dnaK-dnaJ operon,
thereby regulating heat resistance in L. monocytogenes.
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INTRODUCTION

Listeria monocytogenes is a facultative intracellular Gram-positive bacterium that causes listeriosis,
which is associated with a mortality rate of 20%-30% in immunocompromised individuals
(de Noordhout et al., 2014; Pasechnek et al., 2020). This bacterial pathogen is widespread in the
environment and can survive under a wide range of stress conditions, such as low and high
temperatures, dryness, low pH, and high salinity, which allow it to persist in food manufacturing
sites for several years (Ming and Daeschel, 1993; Keto-Timonen et al., 2007; Camargo et al., 2017).
L.monocytogenes can reportedly grow under temperatures as high as 45°C and is more heat resistant
than many other non-spore-forming foodborne pathogens (Lin et al., 2012; Pontinen et al., 2017;
Ballom et al., 2020). Although the general heat stress properties of L. monocytogenes have been
described (Nair et al., 2000; van der Veen et al., 2007; Soni et al., 2011), further investigations are
required to reveal the response mechanisms triggered by heat stress in the pathogen.
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Pathogenic bacteria rely on two-component systems (TCSs) to
sense chemical and physical changes in the environment and
respond accordingly (Lemmer et al., 2020; Salvail and Groisman,
2020). Canonical TCSs comprise a signal-sensing histidine kinase
and a cytoplasmic response regulator. In these systems, the histidine
kinase undergoes autophosphorylation under certain stimuli and
activates a cognate response regulator via the transfer of the
phosphoryl group (Murret-Labarthe et al., 2020; Rapun-Araiz
et al., 2020; Tiwari et al., 2020). Genome-wide analysis has
revealed that L. monocytogenes encodes 15 paired two-component
systems and one orphan response regulator (Williams et al., 2005).

The DegS/DegU two-component system of B. subtilis was one
of the first described in Gram-positive bacteria (Tokunaga et al.,
1994; Mader et al., 2002; Cairns et al., 2015); however, unlike B.
subtilis, L. monocytogenes expresses only DegU, the cognate
response regulator, and not DegS, the sensor histidine kinase.
Hence, DegU is considered an orphan response regulator in this
bacterium (Mauder et al., 2008). Previous studies have shown
that DegU is a pleiotropic regulator in L. monocytogenes, and is
required for biofilm formation, chemotaxis, motility, and growth
at high temperatures (Gueriri et al., 2008a; Gueriri et al., 2008b;
Mauder et al., 2008). Although DegU has been reported to play a
crucial role in resistance to heat stress in L. monocytogenes, how
DegU allows it to respond rapidly to rising temperatures is
unknown. Here, the principal objective of this study was to
investigate the mechanism underlying the DegU-mediated heat-
stress tolerance in this bacterium.
MATERIALS AND METHODS

Bacterial Strains and Primers
L. monocytogenes strain EGD-e was used as the reference strain.
All Escherichia coli strains were grown at 37°C in LB medium
(Oxoid Ltd, Basingstoke, United Kingdom), and all L.
monocytogenes strains were grown at 37°C in BHI broth
(Oxoid Ltd). E. coli DH5a was used for transformation, and E.
coli BL21 was used for protein expression. When needed, the
following antibiotics were added to E. coli or L. monocytogenes
cultures: 100 µg/mL ampicillin, 10 µg/mL chloramphenicol, or
50 µg/mL kanamycin. Primers were purchased from Tsingke
(Tsingke Biotechnology Co., Ltd, Hangzhou, China), and the
sequences are shown in Table S1.

Construction of Mutant and
Complementary Strains
The DdegU mutant was constructed by a two-step allelic
exchange procedure using the pKSV7 shuttle plasmid as
previously described (Cheng et al., 2021). The degU
complementation strains were generated using the integrative
plasmid pIMK2 as previously described (Zhang et al., 2020). The
targeted degU gene was cloned into pIMK2 via a one-step
cloning method and then electroporated into competent
L. monocytogenes cells. The mutant and complement strains
were verified by PCR and DNA sequencing.
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b-Galactosidase Assay
A degU-lacZ fusions containing the promoter region of degU and
the lacZ gene, was cloned into the Sac I and BamH I sites of the
plasmid pIMK2. Then, the recombinant plasmid was introduced
into the wild-type EGD-e and the DdegU mutant strain. All
strains were grown overnight in BHI broth at 37°C, diluted
1:1,000 in fresh BHI broth, and grown at 43°C to an OD600 of
0.6. The collected culture was assayed for b-Galactosidase
activity using a b-galactosidase (b-GAL) Activity Assay
Kit(Micromethod; Sangon Biotech) according to the
manufacturer’s specification.

Real-Time Quantitative Reverse
Transcription-PCR (RT-qPCR)
The wild-type, DdegUmutant, and complement strains were grown
in BHI broth overnight, diluted 1:1,000 in fresh BHI broth, and
incubated at 43°C to an OD600 of 0.6. Total bacterial RNA was
extracted using the Bacteria Total RNA Isolation Kit (Sangon
Biotech, China) and reverse-transcribed into cDNA using reverse
transcriptase from TOYOBO. According to the manufacturer’s
specifications, real-time qPCR was performed using an Mx3000P
qPCR system (Stratagene-Agilent) and SYBR qPCR Mix
(TOYOBO). All expression results were normalized relative to
the housekeeping gene rpoB. Relative transcription levels were
determined using the 2−DDCt method. RT-PCR was performed as
previously described (Liu et al., 2018). The PCR products were
electrophoresed on a 1% agarose gel and photographed using a
SmartView Pro 2400 system (Major Science, USA).

Expression and Purification of
Recombinant Proteins
The degU gene was amplified from genomic DNA of L.
monocytogenes EGD-e with the primer pair PdegU-F and
PdegU-R and cloned into the Nde I and Xho I sites of the
expression vector pET30a. Then, the recombinant plasmid
pET30a-degU was transformed into E. coli BL21 to express
His6-DegU protein. The expression was induced by isopropyl-
b-D-thiogalactopyranoside (0.5 mM) at 16°C for 5 h and
purified by Ni-nitrilotriacetic acid (Ni-NTA) resin affinity
chromatography. The purified proteins were confirmed by
running the SDS-PAGE and stored at -80°C until use.

Electrophoretic Mobility Shift
Assay (EMSA)
The recombinant protein DegU was obtained and
phosphorylated according to previously described procedures
(Goodman et al., 2020). DNA probes were purified with a Gel
Extraction Kit (TIANGEN, China) and were labeled using the
Biotin Labeling Kit for the EMSA (Beyotime, China). EMSA was
performed with the Chemiluminescent EMSA Kit (Beyotime).
Samples were analyzed by 4% non-denaturing polyacrylamide gel
electrophoresis in 0.5 × TBE buffer. The gel was then transferred
to a nylon membrane (Beyotime) followed by UV crosslinking.
The bands were detected using the Chemiluminescent EMSA
Kit (Beyotime).
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DNase I Footprinting Assay
DNase I footprinting experiments were carried out as previously
described (Li et al., 2018). To prepare the fluorescent FAM-labeled
probes, the promoter region of hrcAwas PCR amplified using a 2×
KOD One PCRMaster Mix (TOYOBO) from the plasmid T-hcrA
using primers containing 6-FAM at the 5′ end. The labeled probes
(300 ng) were then mixed with purified DegU in a 40-µL reaction
volume at 25°C for 30 min. Subsequently, 0.015 units of DNase I
(Promega) and the reaction buffer were added, followed by
incubation for 1 min at 37°C. The reaction was terminated by
adding 140 µL of DNase I stop solution. Digested DNA samples
were extracted with phenol-chloroform, and pellets containing
DNA were resuspended in 30 µL of water. The results were
analyzed using Peak Scanner software v1.0 (Applied Biosystems).

Statistical Analysis
Data were analyzed using GraphPad Prism version 5.0
(GraphPad Software, La Jolla, CA, USA) using two-tailed
Student’s t-tests and are presented as means ± SD.

RESULTS

The Role of the Orphan Response
Regulator DegU in Heat Resistance
To verify whether DegU plays an important role in the heat
tolerance of L. monocytogenes, we generated the in-frame deletion
mutant strainDdegU and the complemented strain CDdegU.When
exposed to heat stress (43°C), the mutant strain DdegU showed a
significant growth defect on BHI agar plates compared with the
wild-type EGD-e and CDdegU strains (Figure 1A). The promoter
activity of PdegU-lacZ in theWT and DdegU strains had no obvious
change under heat stress (Figure S3), which indicated that DegU
protein level was not elevated under heat stress. Previous studies
have demonstrated that the Pta-AckApathway plays a role inDegU
protein phosphorylation (Gueriri et al., 2008a). The RT-qPCR
results showed that the mRNA level of the pta and ackA genes,
which are responsible for DegU activation, were significantly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
elevated under heat stress in the WT strain (Figure 1B).
Collectively, these results strongly indicated that DegU
contributes to the heat resistance of L. monocytogenes.

DegU Transcriptionally Regulates the
Expression of the hrcA-grpE-dnaK-dnaJ
Operon Under Heat Stress
Many heat-shock-related genes have been previously identified,
including hrcA, grpE, dnaK dnaJ, htpX, and groEL (Diamant and
Goloubinoff, 1998; Arsene et al., 2000; van der Veen and Abee,
2010). In this study, we examined the link between DegU and the
transcript levels of these genes using RT-qPCR. Under heat stress,
the transcript levels of the hrcA, grpE, dnaK, and dnaJ genes were
significantly lower in theDdegUmutant strain than in thewild-type
EGD-e and complemented strains (Figure 2A), and the htpX and
groEL geneswere not changed (datanot show).These four genes are
adjacent to the L. monocytogenes chromosome (Figure 2B). To
verify if they are co-transcribedas apolycistronicmRNAunderheat
stress, we performed RT-PCR across the hrcA-grpE, grpE-dnaK,
and dnaK-dnaJ junctions. The results confirmed that the hrcA,
grpE, dnaK, and dnaJ genes comprise an operon (Figure 2B).
However, it should be recognized that RT-PCR is not sufficient to
conclude that these genes constitute a complete operon, whichmay
be short overlapping transcripts generated from internal promoters
and terminators. These findings indicated thatDegU is essential for
the transcriptional regulation of the hrcA-grpE-dnaK-dnaJ operon.

DegU Binds Specifically to the hrcA
Promoter Region
To further investigate the mechanism involved in the DegU-
mediated regulation of the hrcA-grpE-dnaK-dnaJ operon, we
determined the binding site for DegU in the promoter regions of
hrcA and dnaJ using EMSA, with the degU and groES promoters
respectively serving as a positive or negative control for DegU
binding. Marked band shifts were observed with the hrcA
promoter region but not with that of dnaJ (Figure 3A). These
EMSA data showed that DegU bound to the promoter region of
A B

FIGURE 1 | DegU modulates Listeria monocytogenes responses to heat stress. (A) Bacterial growth under heat stress. The wild-type (WT) EGD-e and the DdegUmutant L.
monocytogeneswere spotted on BHI agar plates using 10-fold serial dilutions and incubated at 37°C and 43°C. (B) The relative expression levels of the pta and ackA genes in
response to heat stress. WT L. monocytogenes EGD-e cells were grown at 43°C. Data are presented as the means ± S.D. of three independent experiments. *p < 0.05.
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hrcA but not to that of dnaJ. To map the precise binding
sequence of DegU, a DNase I footprinting assay was
performed using FAM-labeled probes. As shown in Figure 3B,
a 56-bp sequence (3′-AACCGCACTATTTGACCTATTTTG
ACCAAACAATCCTACTTTAGTCTGAAATCGAG-5′)
appeared to be protected from DNase I digestion by DegU
binding. To identify the minimum sequence required for DegU
binding, the fragment of the hrcA promoter region used for
EMSA was divided into segments so that the specific binding site
was confined within the remaining 50 bp (Figure 3C).

The Characteristic of the DegU Binding Site
According to previous studies, the TSS (designated as +1) of hrcA
was found to be located 45 bp upstream of its start codon and
designated as C (Figure 4) (Wurtzel et al., 2012). In addition,
analysis of the hrcA promoter region revealed a putative −10
AATTTACCA box and a putative −35 AGTCAA box respectively
located at 8 bp and 31 bp downstream of the TSS (Figure 4).
Furthermore, the specific DegU binding sequence was mapped
from 52 to 101 bp upstream from the hrcA TSS (Figure 4).
DISCUSSION

The DegS/DegU system is a pleiotropic TCS of B. subtilis involved
in controlling many biological processes, such as chemotaxis,
motility, and degradative enzyme production (Gupta and Rao,
2014). In L. monocytogenes, DegU is considered an orphan
response regulator as this bacterium lacks DegS, the sensor
histidine kinase (Gueriri et al., 2008a). Studies have previously
shown that DegU is required for L. monocytogenes to grow in
RPMI 1640 synthetic medium and BHI broth at 44°C (Gueriri
et al., 2008b). In our study, experimental mutation of the degU
gene in this pathogen inhibited its growth on BHI agar at 43°C,
suggesting that DegU plays a crucial role in heat resistance in
L. monocytogenes.
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In L. monocytogenes LM1009, the deletion of the pta and ackA
genes completely blocked acetyl phosphate synthesis, suggesting
that Pta and AckA are essential for the synthesis of acetyl
phosphate which plays an important role in modulating DegU
activity in L. monocytogenes (Gueriri et al., 2008a). So, the mRNA
level of the pta and ackA genes elevated under heat stress could
enhance DegU activity. That the degUmutant could not respond
to heat stress suggested that DegU is essential for inducing the
transcription of heat-shock proteins in L. monocytogenes. To
elucidate the underlying regulatory mechanisms, several
differentially expressed heat-shock-related genes were selected
for RT-qPCR analysis of the transcriptional changes induced by
heat stress (Kornitzer et al., 1991; Hanawa et al., 2000; Cardoso
et al., 2010; Somolinos et al., 2010). The results suggested that
heat-shock-related genes such as hrcA, grpE, dnaK, and dnaJ,
well-known to play important roles in response to heat shock,
were under the control of DegU in L. monocytogenes.

As the fact is that the class I heat-shock response is activated
under heat shock and is essential for prokaryotic cells surviving
in environmental stresses. Previous studies have shown that
HrcA is a transcription repressor for the class I heat-shock
response; GrpE, DnaJ, and DnaK are the class I heat-shock
response chaperone proteins (van der Veen and Abee, 2010).
DnaK can bind denatured proteins and assists the refolding of
denatured polypeptides into active proteins (Hartl, 1996;
Pierpaoli et al., 1997). DnaJ and GrpE can increase the rate of
protein folding and release from DnaK through the transfer of
non-native proteins to DnaK (Liberek et al., 1991).

As previously reported, the hrcA-grpE-dnaK-dnaJ operon can
be transcribed from various sites (Hanawa et al., 2000). Sequence
analysis led to the identification of the promoter sequence and
two transcriptional initiation sites, one upstream of hrcA and the
other upstream of dnaJ, which corresponded to the independent
expression of the dnaJ gene (Hanawa et al., 2000). Interestingly,
RT-PCR analysis showed that hrcA, grpE, dnaK, and dnaJ were
co-transcribed as a single transcript from the transcriptional
A

B

FIGURE 2 | hrcA-dnaJ transcription is activated by DegU. (A) The relative mRNA levels of hrcA, grpE, dnaK, and dnaJ as determined by RT-qPCR in WT, DdegU,
and CDdegU strains at 43°C. (B) Schematic diagram showing the gene order. Co-expression results confirmed that the hrcA, grpE, dnaK, and dnaJ genes form an
operon under heat-stress conditions. Lane 1, cDNA; lane 2, total RNA; lane 3, genomic DNA; and lane 4, no-template control. Data are presented as the means ±
S.D. of three independent experiments. **p < 0.01.
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A

B

C

FIGURE 3 | Identification of DegU binding sites in the hrcA promoter. (A) Electrophoretic mobility shift assay (EMSA) analysis of the direct binding of DegU-P to the
hrcA, dnaJ, degU (positive control), and groES (negative control) promoter regions. (B) DNase I footprinting assay analysis of DegU-P binding to the hrcA promoter.
FAM-labeled hrcA probes (300 ng) were used for the binding reactions in the absence (upper panel) or presence of 5 µg (lower panel) of DegU. The nucleotide
sequences protected by DegU binding are shown below the electropherogram. (C) Electrophoretic mobility shift assay (EMSA) analysis of the binding of DegU-P to
various truncated forms of the hrcA promoter. A total of six probes (left panel) were used to identify the DegU binding site in the hrcA promoter region by EMSA
(right panel). Each experiment was performed three times, and the representative results were shown.
FIGURE 4 | Characterizing the DegU Binding Site. DNA sequences of the hrcA promoter region. The DegU-binding site is shown in blue nucleotides boxed in black.
The -35 and -10 regions are underlined and shown in purple. The TSS is denoted by +1 (bent arrow). The start codon of hrcA is shown in red. In panels A,
experiment was performed at least three times and representative result is shown.
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initiation site of the hrcA gene under heat stress conditions.
EMSA and DNase I footprinting indicated that DegU directly
interacted with a 50-bp sequence in the hrcA promoter region
but did not bind to the dnaJ promoter.

In conclusion, for the first time, we have revealed the
regulatory mechanisms associated with the orphan response
regulator DegU in the heat resistance of L. monocytogenes. The
findings indicated that DegU contributes to regulating the
expression of heat-shock-related genes via a complicated
regulatory network involving the hrcA-grpE-dnaK-dnaJ operon
(Figure 5). Many stress proteins are known to be essential for the
survival of L. monocytogenes, both in the external environment
and inside the host (Hu et al., 2007; Seifart Gomes et al., 2011;
Zhang et al., 2013; Curtis et al., 2017). However, further research
is needed to better understand the mechanisms underlying the
signal transduction pathways employed by L. monocytogenes
during environmental adaptation and host infection.
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