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Engineered 5-HT producing
gut probiotic improves
gastrointestinal motility
and behavior disorder

Bei Li1,2, Min Li1,2, Yanan Luo1,2, Rong Li1,2,
Wei Li1,2* and Zhi Liu1,2*

1Department of Biotechnology, College of Life Science and Technology, Huazhong University of
Science and Technology, Wuhan, China, 2Key Laboratory of Molecular Biophysics, Ministry of
Education, Wuhan, China
Slow transit constipation is an intractable constipation with unknown aetiology

and uncertain pathogenesis. The gut microbiota maintains a symbiotic

relationship with the host and has an impact on host metabolism. Previous

studies have reported that some gut microbes have the ability to produce 5-

hydroxytryptamine (5-HT), an important neurotransmitter. However, there are

scarce data exploiting the effects of gut microbiota-derived 5-HT in

constipation-related disease. We genetically engineered the probiotic

Escherichia coli Nissle 1917 (EcN-5-HT) for synthesizing 5-HT in situ. The

ability of EcN-5-HT to secrete 5-HT in vitro and in vivo was confirmed. Then,

we examined the effects of EcN-5-HT on intestinal motility in a loperamide-

induced constipation mousemodel. After two weeks of EcN-5-HT oral gavage,

the constipation-related symptoms were relieved and gastrointestinal motility

were enhanced. Meanwhile, administration of EcN-5-HT alleviated the

constipation related depressive-like behaviors. We also observed improved

microbiota composition during EcN-5-HT treatment. This work suggests that

gut microbiota-derived 5-HT might promise a potential therapeutic strategy

for constipation and related behavioral disorders.

KEYWORDS
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Introduction

Chronic constipation (CC) is a common functional gastrointestinal (GI) disorder

with a 15% global prevalence (Bharucha and Lacy, 2020). Slow transit constipation

(STC), a most common type of chronic constipation in clinical practice, is characterized

by markedly increased total bowel transit time (Jamshed et al., 2011). STC can cause

abdominal distention, pain, nausea, vomiting, perianal illness, and even colon cancer
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(Stern and Davis, 2016). The persistent occurrence of STC

symptoms cause great distress to the patients and impairs

their quality of life. Medical managements for STC include

laxatives, motilin receptor agonist, prokinetic and other agents

(Tillou and Poylin, 2017). However, the associated side effects,

tolerance and dependencies of these drugs highlight the need for

novel therapeutics (Ramkumar and Rao, 2005).

5-hydroxytryptamine (serotonin, 5-HT) is an important

neurotransmitter and plays crucial roles in regulating host

mood, memory, appetite, intestinal homeostasis and

metabolism (Berger et al., 2009). The majority of 5-HT (up to

95%) is produced by enterochromaffin (EC) cells in the gut,

despite its key roles in the central nervous system. (Gershon and

Tack, 2007). Previous studies had proposed that endogenous 5-

HT was an important enteric neurotransmitter. However, recent

studies have shown that 5-HT antagonists still have the same or

greater inhibitory effect on GI-motility and transit, even when all

endogenous 5-HT has been genetically (Spencer et al., 2013) or

pharmacologically (Yadav et al., 2010) ablated from the gut.

However, exogenous 5-HT potently increases GI transit in many

species tested (Spencer and Keating, 2022).

When 5-HT released by EC cells binds to different subtypes

of 5-HT receptors (5-HTRs) in the intestinal lumen and lamina

propria, a variety of important physiological activities are

manipulated. The G-protein-coupled receptor (GPCR) 5-

HTR4, which is present in the epithelium of the entire colon,

is the most exposed 5-HTR to the lumen (Hoffman et al., 2012a).

With its role in promoting motility and intestinal secretion

control, 5-HTR4 has been targeted in diseases associated with

slow GI transit, such as IBS-C (Cole and Rabasseda, 2004).

Prucalopride, a very highly selective 5-HTR4 agonist, is

developed as an orally administered, first-in-class drug for

treatment of severe chronic constipation (Jiang et al., 2015).

Over recent decades, there has been a growing appreciation

of the role of gut microbiota in the maintenance of human

health. Recently, several studies have also shed light on the effect

of microbiota in gut motility (Chandrasekharan et al., 2019;

Obata et al., 2020; Wang et al., 2020). As probiotics can be

delivered orally, enhance targeting drug efficacy and minimize

systemic side effects, engineering them as therapeutics has

garnered increasing interests. Since its discovery in 1917,

Escherichia coli strain Nissle 1917 (EcN), a commensal

bacterium in human gastrointestinal tract, has been

successfully used in clinical applications to treat a variety of GI

disorders (Henker et al., 2007; Schultz, 2008; Wassenaar, 2016).

Owing to its excellent safety profile and genetic tractability, EcN

has been modified as a versatile probiotic strain and proven to be

effective for treating numerous diseases, including antitumor

drug carriers, pathogens resistance, immunotherapy and

metabolic abnormalities improvement (Hwang et al., 2017; Ho

et al., 2018; Praveschotinunt et al., 2019).
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In this study, we genetically inserted the rice (Oryza sativa)

tryptophan decarboxylase gene tdc(R) into the chromosome of

EcN (EcN-5-HT) to produce 5-HT. Then, we tested this system

in vivo using a murine model of constipation. The oral delivered

engineered probiotic showed therapeutic activities that

efficiently alleviated constipation symptoms and related

behaviour disorders. Furthermore, 5-HTR activation and

microbiota regulation involved in the underline mechanisms

were discussed.
Materials and methods

Strains and media

All bacterial strains and plasmid used in this study are listed

in Supplementary Table 1 and Supplementary Table 2. EcN

(non-pathogenic probiotic isolate, serotype O6: K5: H1) was

kindly provided as a gift from Jun Zhu’s lab (University

of Pennsylvania).

Luria-Bertani (LB) medium with appropriate antibiotic

selection (100 mg ml−1 ampicillin,100 mg ml−1 kanamycin) was

used for cell cultivation. Cell growth was monitored by OD600

measurements. Modified M9 medium (M9Y) with 10 mM

tryptophan, 1 mM BH4, 0.1% Casein Hydrolysate, 50 µg/mL

FeCl3 and 0.2% ZYT (1.6% tryptone, 1% yeast extract, 0.5%

NaCl) was used for production of 5-HT in shake flasks. EcN-5-

HT was incubated in LB at 37°C overnight. Then, the medium

was centrifuged at 8,000×g for 10 min to obtain the supernatant.

The production of 5-HT in fermentation supernatant was

measured by UPLC-MS/MS.

Full-length of tryptophan decarboxylase (TDC) cDNAs

from Catharanthus roseus (GenBank accession no.

MG748691.1), Oryza sativa Japonica Group (GenBank

accession no. AK069031) and Bacillus atrophaeus strain C89

(GenBank accession no. JQ400024.1) were codon optimized

and synthesized by Genewiz (Suzhou, China). Then, flanking

gene fragments were cloned into pACYC-araBAD plasmid

backbone using NEBuilder HiFi DNA Assembly (NEB,

Ipswich, USA) to create pACYC-araBAD-TDCs. Next,

pACYC-araBAD-TDC expression systems were transferred to

EcN-5-HTP strain using a MicroPulser electroporator (Bio-

Rad, CA, USA) following the manufacturer’s instructions.

Clones were cultivated on LB agar supplemented with

kanamycin (100 mg ml−1) at 37°C. Modifications were

verified by PCR and gene sequencing (Tsingke, Beijing,

China) (Supplementary Figure 1).

For genome integration of TDC (R), a l-Red recombination

system was employed (Datsenko and Wanner, 2000). All

primers for the integration used in this study are given in

Supplementary Table 3.
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Animal model

Specific pathogen-free (SPF) C57BL/6J mice (6 weeks old,

male) were purchased from the Hubei Province Center for

Disease Control and Prevention (Wuhan, China). The mice

were housed (no more than four per cage) under humidity-

and temperature-controlled conditions and a 12-hour light/dark

cycle with free access to food and water. All animal procedures

strictly conformed to the Guide for the Care and Use of

Laboratory Animals published by the United States National

Institutes of Health.

After a week of adaptive feeding, mice were randomly

divided into five groups (n=8): a normal group, a model

group, a EcN WT group, a EcN-5-HT group and a

prucalopride group. The loperamide-induced constipation

model was established by 7 days of twice-daily (9:00 and

18:00) intraperitoneal administration (i.p.) of loperamide

hydrochloride (8 mg/kg body weight, 200 mL) suspended in

physiological saline in all the groups except the normal group.

After that, EcN WT/EcN-5-HT (1×109 CFU suspended in 100

mL of saline) was given through gavage every two days to the

mice for 14 days. For the prucalopride group, 2 mg/kg body

weight prucalopride was oral administered daily to the mice

through gavage (Zhang et al., 2018), while mice from the normal

group were treated with saline. Mice were sacrificed and samples

were collected at the end of the treatment period.
GI motility

Stool water content was calculated as [(initial stool weight −

dry stool weight)/initial stool weight] × 100%. Stool frequency

was measured as the number of stool pellets extruded from each

mice per hour. For defecation time measurement, mice were oral

administrated of 10% activated carbon, and were given free

access to food and water, the time between the gavage and the

appearance of their first darkened feces was recorded (Liu et al.,

2020). At the end of the experiment, each mouse was gavaged

with 0.2 ml of activated carbon solution and sacrificed after 30

minutes. The GI transit time was determined by recording the

length of the small intestine and the distance traveled by the

activated carbon in the intestine.
UPLC–MS/MS

Bacterial supernatant or tissue homogenate was extracted

with 70% methanol, vortexed and centrifuged at 14000×g for

15 min at 4°C. 5-HT was separated and detected on an AB Sciex

4500 UPLC-MS/MS system (AB Sciex, USA). Samples were

injected (2 ml) and separated on a Waters BEH C18 column

(Water, USA) (100mm×2.1mm×1.7mm). The mobile phase

consisted of solution A (5mM ammonium formate, 0.1%
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at 0.3 ml min−1 at 40°C. The gradient elution was programed as

follows: 0-1 min, 95% A; 1-2 min, 95-10% A; 2-4.5 min; 10% A;

4.5-4.6 min; 10-95% A and 4.6-7 min, 95% A. 5-HT was detected

using selected reaction monitoring of compound-specific mass

transitions in positive electrospray ionization mode: m/z 177 >

160 for the qualitative ion pair of 5-HT; m/z 177 > 132.1, 177 >

115.1 for the quantitative ion pair of 5-HT. Data acquisition and

processing were performed with the analyst software

MultiQuant 2.1.1.
Histological analysis

For immunofluorescence staining of 5-HT and CgA, frozen

slices of the dissected colon tissues from different groups were

blocked with 5% BSA in PBS for 60 min. Heat mediated antigen

retrieval was performed in 0.01M citrate-buffer (pH 6.0). The

slices were then incubated with a 1:500 dilution of anti-serotonin

antibody (ab6336, Abcam, USA) and anti-Chromogranin A

antibody (ab283265, Abcam, USA) rocked on an orbital

shaker (Mini Roller, NEST Biotechnology, China) at 4°C in

the dark overnight. Afterwards the slices were treated with HRP-

conjugated secondary antibody, in PBS at room temperature in

the dark for 60 min. Cell nuclei were stained with DAPI (Sigma,

USA). Stained cells were then visualized by fluorescence

microscopy (Nikon Eclipse CI, Japan).
Gene expression

RNA from harvested colonic tissues was extracted with

TRIzol reagent (Invitrogen, USA). To generate cDNA, we used

the HiScript II 1st Strand cDNA Synthesis Kit (Vazyme, China)

with 2 mg of RNA for each sample. mRNA relative expression

was measured using a CFX Connect Real-Time PCR Detection

System (Bio-Rad). PCR was carried out with 10 mL of SYBR

Green Master Mix (Yeasen, Shanghai, China), 2 mL of

complementary DNA (cDNA), 0.4 mL of forward primer, 0.4

mL of reverse primer, and 7.2 mL of nuclease-free water. The

samples were subjected to 40 cycles of amplification.

Preincubation was for 30 seconds at 95°C, followed by

denaturation at 95°C for 10 seconds, annealing at 58°C for 20

seconds, and extension at 72°C for 30 seconds. The primers used

in the present study are listed in Supplementary Table 4.
Behavior test

Open field test (OFT): Briefly, mice were gently placed in an

open field, a white plastic box (46×46×40 cm). The center was

located in 3/5 places of length and width. Mice were placed in the

center of the arena tracked for 10 min. Elevated plus maze test
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(EPMT): Mice were placed in the center part of the maze facing

one of the two open arms. Mice behavior was tracked for 10 min.

Forced swim test (FST): Mice were gently placed in transparent

cylindrical tanks (30 cm height×20 cm diameters) containing

water (23°C ± 2°C) with 15 cm in depth from the bottom. After 2

minutes for acclimation, the immobility time was recorded for 6

minutes. Tail suspension test (TST): Mice were suspended

upside down by tails 40 cm above the floor by adhesive tape

placed 1 cm from the tail tip and tracked for 6 minutes.

Before the behavioral tests, all mice were allowed to

acclimate to the test room for at least 2 hours prior to starting

the test. Movements of the subject mice were recorded and

analyzed by SMART 3.0 video tracking software (Panlab

Harvard, MA, USA).
Microbial DNA extraction and
sequencing

At the end point of treatment, mice fecal samples were collected

and frozen at -80°C immediately after collection. Total genomic

DNA from approximately 200 mg of stool was extracted by a

QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA) according to

the manufacturer’s instructions. The V3-V4 region of the bacterial

16S ribosomal RNA (rRNA) genes was amplified by PCR with

universal primers (338F, ACTCCTACGGGAGGCAGCAG; 806R,

GGACTACHVGGGTWTCTAAT) and FastPfu Polymerase.

Amplicons were then purified by gel extraction (AxyPrep DNA

Gel Extraction Kit, Axygen Biosciences, USA) and quantified using

QuantiFluor-ST (Promega, USA). The purified amplicons were

pooled in equimolar concentrations, and paired-end sequencing

was performed using an Illumina MiSeq platform (Illumina, San

Diego, USA).
Statistical analysis

Statistical analysis was performed with GraphPad Prism 8

statistical software. Comparisons between two groups were

performed using unpaired two-tailed Student’s t-test. One-way

analysis of variance was used for comparisons of more than two

groups. The results are presented as the mean ± SD. Differences

were considered significant at *P < 0.05, **P < 0.01, ***P < 0.001,

and ****P < 0.0001.
Results

Construction of 5-HT biosynthetic
pathway in EcN

5-HT is natively produced from 5-HTP by tryptophan

decarboxylase in animals and plants. The 5-HT biosynthetic
Frontiers in Cellular and Infection Microbiology 04
pathway was introduced into a 5-HTP-producing EcN

(Figure 1A, Supplementary Figure 2). To verify the

decarboxylase activities and obtain desired products, we tested

three tryptophan decarboxylases (TDCs) from Catharanthus

roseus, Oryza sativa Japonica Group, and Bacillus atrophaeus

strain C89. EcN was transformed with the protein expression

plasmid pACYC-araBAD containing the genes encoding TDC

under the inducible promoter (PBAD). We first confirmed that

the introduction of each tdc gene didn’t influence the growth of

EcN, comparing with the empty plasmid control (Figure 1B).

Among them, EcN with pACYC-araBAD-tdc(R) showed the

highest TDC protein yield (Supplementary Figure 3). The cell-

free supernatants of the three transformed strains were collected

separately and detected by UPLC-MS/MS. Results showed that

all the supernatants contain 5-HT (Figure 1C). As expected, EcN

with pACYC-araBAD-tdc(R) yield the highest 5-HT level

(Figure 1B). Then, pACYC-araBAD-tdc(R) fragment was

integrated into malEK, the intergenic region between malE

and malK genes (Kurtz et al., 2019), of EcN using the l-Red
recombination system to ensure the stable expression in vivo.

The recombinant strain (EcN-5-HT) generated higher

production than the control strain (80.6 mg/L vs. 5.6 mg/L,

Figure 1D), and performed a similar growth pattern as the

wildtype strain (Figure 1E). These results together indicated

that EcN-5-HT strain could efficiently secrete 5-HT to the

extracellular culture without affecting its growth.
Gastrointestinal motility enhancement
from engineered EcN

The roles of EcN-derived 5-HT in the gut were further

evaluated in a constipation animal model. Constipation was

induced by loperamide in six-week-old male C57BL/6 mice.

Then, the mice were orally gavaged with the strain EcN-5-HT

for two weeks (Figure 2A). The level of EcN in the fecal of treated

mice were significantly increased at the endpoint of the

experiment (Supplementary Figure 4). We observed that mice

receiving EcN-5-HT exhibited improved gastrointestinal

motility, as evident from an increase in stool water relative

content (Figure 2B) and frequency of fecal defecations

(Figure 2C). Notably, EcN-5-HT administration showed a

more potent effect on increasing stool water content than

prucalopride (Figure 2B). Time of the first black stool

defecation following the administration of activated carbon is

another indicator of the intestinal patency and peristalsis. We

found that the time to first black stool defecation was

significantly reduced in the EcN-5-HT treated group

(Figure 2D). Meanwhile, reduction in whole gut transit time

was observed after EcN-5-HT administration (Figures 2E, F).

Besides, the body weight of mice was also monitored. At the

endpoint, no acute body weight drop was observed from the

above treatments throughout experiment (Supplementary
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Figure 5). Together, our results suggest that administration of

EcN-5-HT reverses loperamide-induced disorders in

intestinal motility.
EcN-5-HT administration increases 5-HT
accumulation and 5-HT receptors
expression in mice

To further explore the mechanisms of EcN-5-HT strain in

regulation of GI motility, we first detected the concentration of

5-HT in vivo. UPLC-MS/MS measurements revealed that

engineered EcN treatment led to a significant increase of 5-HT

yield in mice colon (Figure 3A). Colon tissue samples were

further processed for immunofluorescence assay and confirmed

that content of 5-HT in colon was increased by EcN-5-HT
Frontiers in Cellular and Infection Microbiology 05
administration, whereas enteroendocrine cells identified by anti-

chromogranin A showed no significant group differences in

variances (Figure 3B). 5-HTR4 is an important therapeutic

target for treatment of chronic constipation (Hoffman et al.,

2012b; Gwynne and Bornstein, 2019). After different modalities

of treatment in healthy or gastrointestinal function disturbed

rodent models, the secretion of 5-HT increases, and the

expression of 5-HTR4 receptor is upregulated, suggesting that

5-HT and 5-HTR4 receptors may be correlated (Orlando et al.,

2020; Yaghoubfar et al., 2020; Zhu et al., 2020). Given the effect

of EcN-5-HT on the 5-HT level in colon, we investigated the

expression of 5-HTR4 gene. The results showed that expression

of 5-HTR4 gene was significantly increased in EcN-5-HT group

(Figure 3C). On the other hand, the concentration of 5-HT in

the serum showed no significant increase in EcN-5-HT group,

suggesting that the effect of EcN-5-HT is more significant locally

in the intestine (Figure 3D). Collectively, the elevated level of 5-
A

B

D

E

C

FIGURE 1

Engineer Escherichia coli Nissle 1917 (EcN) to synthesis of human neurotransmitter 5-HT. (A) Schematic summarizing the design strategy to
engineer EcN-5-HT. (B) Growth curve of the three engineered EcN in LB medium. (C, D) Measurement of 5-HT production by UPLC-MS/MS.
(E) Growth curve of the engineered EcN-5-HT in LB medium. Mean values ± SDs are presented, p values were calculated using unpaired t-test,
**p < 0.01, ****p < 0.0001, n.s: not significant. Data are pooled from three independent experiments with n = 3 per group.
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HT and upregulated 5-HT receptors in EcN-5-HT treatment

group leads to positive effects on intestinal motility.
Amelioration of depression-like
behaviors in loperamide induced
constipation mouse model

It has been reported that loperamide-treated mice exhibited

significant depressive symptoms (Xu et al., 2018). Therefore, we
Frontiers in Cellular and Infection Microbiology 06
also tested the behavioral parameters to evaluate the potential

role of EcN-5-HT on depressive-like behaviour. Open field test,

elevated plus maze test, tail suspension test, and forced swim test

are widely used for assessing anxiety-like behaviors and

cognitive function. As shown in Figures 4A, B, loperamide-

treated mice exhibited significantly reduced movement and

spent significantly less time in the central region of the open

field compared to normal mice. Besides, the model group spent

notable less time in the open arms in the EPMT (Figures 4C, D)

and showed a significantly increased immobility time in the TST
A

B D

E F

C

FIGURE 2

EcN-5-HT improved gastrointestinal motility in a loperamide‐induced constipation model. (A) Experimental setup. (B) Fecal water relative
content. (C) Fecal pellet number per hour. (D) Time to first black stool defecation. (E) GI transit. (F) Representative images of small intestine after
treatment with activated carbon by gavage. Mean values ± SDs are presented, p values were calculated using unpaired t-test, *p < 0.05,
**p < 0.01, ***p < 0.001 and ****p < 0.0001 n.s, not significant. Data are pooled from three independent experiments with n = 8 mice per
group.
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(Figure 4E). No significant difference was observed between the

model and normal groups in FST (Supplementary Figure 6). The

administration of EcN-5-HT modulated locomotor activity in

the OFT and restored the mobility of loperamide-treated mice to

control levels (Figures 4A, B). On the EPMT, animals in EcN-5-

HT group spent significantly more time in the open arms than

saline and EcN WT-fed model animals (Figures 4C, D).

Additionally, EcN-5-HT treatment led to decreased immobile

time in TST compared to control mice (Figure 4E). Notably,

EcN-5-HT showed a better anti-depression effect than

prucalopride in TST, suggesting possibly different underlying

mechanisms between them. These results indicate that EcN 5-

HT ameliorated depression-like behaviors induced by
Frontiers in Cellular and Infection Microbiology 07
loperamide in mice, suggesting that microbe derived 5-HT can

perform anxiolytic effects in host gastrointestinal tract.
Improvement of gut microbiota dysbiosis
by microbiota derived 5-HT

Increasing studies have reported that the microbiota plays

important roles in gut motility (Chandrasekharan et al., 2019;

Obata et al., 2020). To investigate the influence of microbiota

derived 5-HT on gut microbiota composition, we collected the

stools from mice at the end of the treatment. Then, microbial

DNA extraction and 16S rRNA gene sequencing were
A

B

DC

FIGURE 3

EcN-5-HT led to an increase of 5-HT concentration in constipation mice model. (A) Measurement of colon 5-HT by UPLC-MS/MS. n = 8 mice
per group (B) Fluorescent microscope pictures of colon showing CgA antibody staining (red), 5-HT antibody staining (green) and cell nuclei
(blue). (C) 5-HTR4 mRNA expression in colon tissue. n = 3 mice per group. (D) Measurement of serum 5-HT by LC-MS. n = 8 mice per group.
Mean values ± SDs are presented, p values were calculated using unpaired t-test, *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001. n.s,
not significant.
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conducted. Interestingly, EcN-5-HT treatment significantly

increased gut microbiota alpha diversity, including Shannon

and Simpson diversity (Figure 5A), while the prucalopride

treatment resulted in a significant lower alpha diversity

(Figure 5A). Principal coordinate analysis (PCoA) on OTU

levels was also performed to further examine the composition

change of gut microbiota between different treatments. The

results clearly showed an apparent clustering separation

between the normal group and the model group (Figure 5B).

After EcN-5-HT treatment, the abundance and composition of

gut microbiota was more similar to that of the normal group

(Figure 5B). Classification of OTUs at each phylogenetic level

revealed distinct taxonomic patterns between normal mice and

constipation mice (Figure 5C). To further elucidate the

mechanisms of the effect exerted by altered gut microbiota

after EcN-5-HT treatment, we performed LEfSe analysis to

identify representative abundant bacterial communities among

the groups (Figure 5D). Results showed that EcN-5-HT treated

mice harbored distinctively higher abundances of the genera

such as Alistipes, Odoribacter and Clostridia (Figure 5D).

Relative abundance of Alistipes exhibited remarkable and
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negative correlations with the time of the first black stool and

showed significant and positive correlations with GI transit rate,

stool water relative content, and stool frequency (Figure 5E).

Together, these data indicated that EcN-5-HT treatment can

improve gut moti l i ty by regulat ing the intest inal

microbiota composition.
Discussion

The role of 5-HT in human health and disease has been

widely studied (Lesurtel et al., 2008; Manocha and Khan, 2012;

Agus et al., 2018). However, most of the research have focused

on host-derived 5-HT. Previous studies have reported that some

gut microbes have the ability to produce 5-HT (Özoğul, 2004;

Ozogul et al., 2012; O'mahony et al., 2015). The role of gut

microbe-derived 5-HT in the gut has not been studied in detail.

Although substantial recent evidence has now confirmed that

ablation of endogenous 5-HT does not lead to major changes in

gastrointestinal transit (Li et al., 2011; Sia et al., 2013; Spencer

and Keating, 2022), the findings of the current study imply that
A B

D

E

C

FIGURE 4

EcN-5-HT ameliorated loperamide-induced behavior disorders. (A) Open field test (OFT). (B) Representative tracking plots of the open field.
(C) Elevated plus maze test (EPMT). (D) Representative tracking plots of the elevated plus maze test. (E) Tail suspension test (TST). Mean values ±
SDs are presented, p values were calculated using unpaired t-test. *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001, n.s.: not significant.
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FIGURE 5

Effects of EcN-5-HT on intestinal microbiota in a constipation mice model. (A) Alpha diversity boxplot analysis. (B) Principal coordinate analysis
(PCoA) profile of microbial diversity. (C) Relative abundance of microbial community at different taxonomic levels. (D) LDA score computed from
features differentially abundant between the groups. (E) Spearman correlation analysis. Red and blue colors represent significant positive correlations
and negative correlations. The color depth represents the correlation coefficient, and the darker the color, the greater the correlation coefficient.
Mean values ± SDs are presented, p values were calculated using unpaired t-test, *p < 0.05, n.s: not significant. Data are pooled from three
independent experiments with n = 4 mice per group.
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synthesis of EcN 5-HT can lead to modifications in GI transit in

vivo. The mechanisms by which this occurs remains unclear. In

our present study, we proved that 5-HT-producing gut microbes

can significantly impact gut motility. Our results suggest that

microbial 5-HT metabolism could have more implications for

GI health, which is barely discussed previously.

Since the 1950’s from work of Bulbring & Crema (Bulbring

and Crema, 1959) had provided circumstantial evidence that

endogenous 5-HT maybe important in GI motility and transit.

However, more recent studies have shown that in fact ablation of

endogenous 5-HT has only minor or no effects on GI transit and

motility (Spencer and Keating, 2022). Current evidence does not

suggest endogenous 5-HT plays a major role, nor is required for

control of gut motility or transit in vivo. Alterations in the 5-HT

pathway are commonly reported in various constipation-related

disease conditions. In patients with IBS-C, the content of

mucosal 5-HT, the transcription expression of tryptophan

hydroxylase 1 transcription and serotonin transporter

transcription, and the immunoreactivity of serotonin

transporter were all reduced significantly, without any change

in the number of enterochromaffin cells (Coates et al., 2004;

Wang et al., 2007). In IBS-C patients, postprandial levels of

plasma 5-HT were also significantly decreased compared to

controls and patients with IBS-D, which may result in

significantly delayed gastrointestinal transit (Dunlop et al.,

2005; Choi et al., 2014). In colonic inertia patients, lower

serotonin receptors in muscular mucosa and circular muscle

may contribute to delayed colonic transit (Zhao et al., 2003). In

this study, we found no difference in the colonic CgA+ ECs

between loperamide-treated mice and normal mice, suggesting

that the decreased release of 5-HT by loperamide was not due to

the density of ECs (Figure 3B).

A number of studies reported a decreased concentration of

colon 5-HT in constipation patients, which is consistent with

our results (Figures 3A, B). Alternatively, several studies also

reported higher content of 5-HT in patients with constipation

than in normal patients (Lincoln et al., 1990; Costedio et al.,

2010). Circulating 5-HT, which represents the 5-HT that is not

captured by serotonin transporter (SERT) in the epithelial cells,

was used to evaluate the 5-HT availability in the mucosa. More

studies on the SERT function in constipation patients are needed

in order to guide precise medication of 5-HT-related drugs.

In addition, gut microbiota were involved in 5-HT-related

physiology in host. Using antibiotics-depleted microbiota mice

model, Ge et al. observed a decreased tryptophan hydroxylase 1

transcriptional expression, 5-HT production, and constipation-

like symptoms (Ge et al., 2017). Fecal microbiota from

constipation patients led to the same symptoms, including

upregulated expression of SERT, and decreased concentration

of 5-HT in mice (Cao et al., 2017). These studies suggest that gut
Frontiers in Cellular and Infection Microbiology 10
microbiota is involved in host 5-HT biosynthesis, and intestinal

dysbiosis may contribute to the development of chronic

constipation. In this study, by comparing 5-HT producing

microbe (EcN-5-HT) with its original strain (EcN WT), we

show that gut microbiota-derived 5-HT could improve 5-HTR

expression and ameliorated constipation symptoms (Figures 2,

3C). Meanwhile, we observed that EcNWT itself can also lead to

an increase of 5-HT in colon and serum (Figures 3A, D). It has

been reported that EcN is able to enhance host 5-HT

bioavailability in intestinal tissues (Nzakizwanayo et al., 2015).

This explanation may account for the increase of 5-HT

concentration in EcN WT treated mice treated. As shown in

Figure 3C, there are no significant differences in relative

expression of 5-HTR4 between the model and the EcN WT

group. It is possible that the colon concentration of 5-HT needs

to be high enough in order to activate the 5-HT receptors. The

improved GI motility by EcN WT (Figure 2E) suggested an

additional mechanism independent of 5-HTR4.

Prucalopride, a highly selective 5-HTR4 agonist, is a first-in-

class drug for severe chronic constipation treatment (Jiang et al.,

2015). Prucalopride treatment can improve stool frequency and

consistency, enhanced colonic transit in chronic constipation

patients (Müller-Lissner et al., 2010). However, prucalopride

side effects have been also reported, such as abdominal pain and

diarrhea (Bassotti et al., 2016). In this paper, we observed that

prucalopride treatment significantly reduced microbiota alpha

diversity (Figure 5A) and disrupted microbiota homeostasis

(Figure 5C). Our results showed that the effects of EcN-5-HT

in relieving constipation symptoms are comparable to that of

prucalopride (Figure 2), along with a positive regulation on the

microbiota composition (Figure 5). Microbe-derived 5-HT has

better effects than prucalopride in the improvement of

depression and anxiety induced by constipation (Figure 4E),

implying different mechanisms between pharmacologic

treatment and microbial-derived 5-HT treatment, which

requires further investigation.
Conclusions

Although recent studies have confirmed that endogenous 5-

HT has a minor role in GI-motility and transit in vivo, our data

here demonstrate that a genetically engineered probiotic strain

(EcN-5-HT) producing 5-HT is able to significantly improve

intestinal motility in a murine constipation model (Figure 6).

EcN-5-HT treatment also greatly improved the gut microbiota

homeostasis and significantly relieved depression-like behaviors.

Our results suggested that engineered 5-HT producing microbe

maybe a promising alternative to the treatment of constipation

and related behavior disorders.
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FIGURE 6

EcN-5-HT improved GI motility and ameliorate behavior disorder in loperamide-induced constipation mice model. EcN-5-HT increased the
concentration of 5-HT in colon and activated 5-HT receptors, triggering the peristaltic reflex in the gastrointestinal tract and promoting the GI
motility. Meanwhile, EcN-5-HT modified the composition of the intestinal microbiota in loperamide-treated mice.
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