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Dental calculus: A repository of
bioinformation indicating
diseases and human evolution
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Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan
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Dental calculus has long been considered as a vital contributing factor of

periodontal diseases. Our review focuses on the role of dental calculus as a

repository and discusses the bioinformation recently reported to be concealed

in dental calculus from three perspectives: time-varying oral condition,

systemic diseases, and anthropology at various times. Molecular information

representing an individual’s contemporary oral health status could be detected

in dental calculus. Additionally, pathogenic factors of systemic diseases were

found in dental calculus, including bacteria, viruses and toxic heavy metals.

Thus, dental calculus has been proposed to play a role as biological data

storage for detection of molecular markers of latent health concerns. Through

the study of environmental debris in dental calculus, an overview of an

individual’s historical dietary habits and information about the environment,

individual behaviors and social culture changes can be unveiled. This review

summarizes a new role of dental calculus as a repository of bioinformation,

with potential use in the prediction of oral diseases, systemic diseases, and

even anthropology.
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Introduction

Dental calculus is the plaque and sediment that has calcified or is calcifying on the

tooth surface or prosthodontic body. It can be divided into supragingival calculus and

subgingival calculus according to the location of deposition above or below the boundary

of the gingival margin (Akcalı and Lang, 2018). Calculus is formed by mineral salts, and it

has been reported that the main crystal form of calculus is calcium phosphate, including

octacalcium phosphate, hydroxyapatite, whitlockite and dicalcium phosphate dihydrate
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(Gron et al., 1967). In addition to inorganic components, there

are organic components such as proteins and carbohydrates

within it, and the outer layer of calculus is always covered with

viable plaque.

Bioinformatics, as related to genetics and genomics, is a

scientific subdiscipline that involves using computer technology

to collect, store, analyze and disseminate biological data and

information, such as DNA and amino acid sequences or

annotations about those sequences. By using databases that

organize and index such biological information, scientists and

clinicians can better understand health and disease. Dental

calculus has long been considered as one of the contributing

factors of periodontal diseases, while plant phytoliths in dental

calculus found by Armitage in 1975 indicated its potential as a

biological information database (Armitage, 1975). And with the

development of genomics, dental calculus, a relatively stable

repository of absorbates potentially as a bioinformation

database, has become a research hotspot in both archaeological

research and modern etiological research since 2013 (Adler et al.,

2013). According to these studies, the components deposited in

dental calculus seem to be clues that reflect different states oral

cavity or other organs. Given that the formation of dental

calculus includes the process of absorbing calcium and

phosphate from saliva or crevicular fluid over time, it is not

surprising that under a microscope, dental calculus has a

lamellar structure with absorbates, including oral bacteria and

its virulence factors, human proteins, viruses, toxic heavy metals,

environment debris and food remnants, deposited layer by layer.

Thus, the deposition of dental calculus may also reveal

information on the time dimension.

Our review is the first to conclude both the modern and the

ancient dental calculus, aiming to summarize the potential role

of dental calculus as a “storage library” in the past few years,

hoping to provide a new insight to depict the long process of

development of diseases and human evolution.
Key information about oral diseases
and time-varying oral conditions in
dental calculus

Many archaeological studies have revealed that calculus

performs a long-term repository of ancient microbial and host

biomolecules because DNA from the oral microbiome can be

deposited in dental calculus during its formation. As an

indicator, such molecular information, which could be

acquired from advanced biomolecular detection methods such

as metagenomics, metaproteomics and metabolomes, may

provide molecular information about the oral health status of

individuals (Warinner et al., 2015; Weyrich et al., 2015; Velsko

et al., 2017; Mackie et al., 2017; Jersie-Christensen et al., 2018;

Wright et al., 2021). In addition, pathogenic bacteria related to
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oral diseases such as caries and periodontitis and their virulence

factors were also reported to be well preserved in dental calculus.

To deduce whether the oral condition was diseased, identifying a

signature of specific oral pathogens in calculus became a widely

acceptable choice (Bravo-Lopez et al., 1812; Gupta et al., 2016;

Willmann et al., 2018; Neukamm et al., 2020). Christina

Warinner et al. identified several putative opportunistic

pathogens such as Streptococcus mutans associated with dental

caries and “Red Complex” involving Porphyromonas gingivalis,

Treponema denticola and Tannerella forsythia linked with

periodontitis in ancient dental calculus which could date back

to c. 950-1200 CE (Warinner et al., 2014). Compared with

samples in the Human Microbiome Project healthy cohort,

“Red Complex” were found at substantially higher frequency

in ancient dental calculus. Meanwhile, the group also detected

both the virulence gene and protein product of “Red Complex”

such as Msp/major sheath protein in T. denticola and Rgp/Arg-

gingipain in P. gingivalis and reconstructed genome of

T.forsythia based on 16S rRNA gene data from ancient dental

calculus.Besides, Christensen’s research on medieval samples

revealed an unhealthy oral state by detecting the dysbiotic oral

microbiome in calculus, which exhibited a number of peri-

pathogenic genera and virulence factors from the red complex

(Jersie-Christensen et al., 2018). The same group also paid

attention to the comparison among ancient calculus, modern

calculus and modern plaque. And they found out that ancient

calculus and modern calculus could not be classified from each

other but they could be separated from modern plaque by “Red

Complex” members P.gingivalis and T.forsythia (Velsko et al.,

2019). Moreover, Willmann et al. successfully identify

characteristic pathogens responsible for carious, periapical or

periodontal diseases presenting in bacterial communities from

individuals by combining macroscopic and radiologic analyses

with metagenomic analyses (Willmann et al., 2018).

In addition, the information in the calculus showed temporal

variations. Some studies on archaeal paleomicrobiology of dental

calculus revealed a secular core-microbiota transition in

accordance with human evolution, including shifts in dietary,

social, or geographic changes in populations (Huynh et al., 2016;

Ottoni et al., 2021). At the same time, another study by Eleonora

Casula et al. conducted on the samples in the same region of

Sardinian Island found out T. forsythia was notably higher in

modern calculus compared with the ancient. The team

attributed the result to antibiotics usage and the relation with

systemic diseases such as cardiovascular diseases in addition to

dietary changes (Casula et al., 2022). Based on this confirmed

role of preserving long-term transition information in calculus,

we infer that dental calculus can also function as a database

which has the ability to record an individual’s time-varying oral

conditions throughout one’s whole life. While the oral

microbiome reflects one’s current oral condition, the dental

calculus, a more stable substance bonded to teeth, whose
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formation process is dependent on the oral microbiome, may

represent the historical oral condition. Within earlier calculus

deposits, remote information can be provided.
Key information about systemic diseases
in dental calculus

According to recent studies, dental calculus can contain oral

bacteria, viruses, proteins and small molecules steadily over long

periods of time. In the past few years, an increasing number of

studies have demonstrated that these contents within dental

calculus could be directly linked to several systemic diseases,

implying a novel method to trace the causes of the diseases.

Dental calculus entrapped transient bacteria, which may

offer us a snapshot of disease exposure (Madhusoodanan,

2016), and particular species known to be involved in the

etiology of chronic diseases were detected from metagenomic

sequence data of ancient dental calculus. Warinner’s

work identified 40 putative opportunistic pathogens in

collected dental calculus dated to c. 950-1200 CE that may

pose risks of several systemic diseases for the elderly

and immunocompromised (Warinner et al., 2014), such as

Streptococcus pneumoniae , Streptococcus pyogenes ,

Haemophilus influenzae related to upper and lower respiratory

tract infection and Aggregatibacter actinomycetemcomitans,

Streptococcus mutans, Streptococcus mitis leading to

cardiovascular disease risk. Meanwhile, a metagenomic

sequencing study on dental calculus from a man died of lobar

pneumonia in 1930s St. Louis recovered the genomes of

Klebsiella pneumoniae, Acinetobacter nosocomialis, and

Acinetobacter junii which may reflect the lobar pneumonia

cause of death (Austin et al., 2022).

In addition to pathogenic bacteria, some viruses serving as

important roles in systemic diseases can also be traced in dental

calculus. By isolating DNA from dental calculus of people

diagnosed with oral squamous cell carcinoma (OSCC), the

presence of certain human papillomaviruses (HPVs) capable of

promoting malignant progression, a verified risk factor for

OSCC, was confirmed (Pranata et al., 2020). Likewise, in

archaeological research aimed at demonstrating the mouse-

man transmission of mouse mammary tumor virus (MMTV),

a human MMTV-like betaretrovirus linked with breast cancer

was confirmed to be present in ancient dental calculus (Lessi

et al., 2020).

Moreover, some studies found novel chemical components

in dental calculus connected with systemic diseases. Toxic heavy

metals were one of them. Exposure to heavy metals has become a

serious health concern in recent decades due to the ubiquity of

heavy metals in our daily environment, which may induce a

higher risk of cancer in multiple organs. Heavy metals own long

biological half-life and can accumulate in dental calculus during

calcification (Yaprak et al., 2017; Zhang et al., 2018; Zhang et al.,
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2019). Toxic heavy metals, including cadmium, arsenic, lead,

manganese and vanadium, were detected in dental calculus and

were present at significantly higher levels in smokers than in

nonsmokers (Yaprak et al., 2017). Another similar study on male

OSCC patients with betel-quid chewing habits came up with a

similar conclusion. The research indicated remarkably higher

cadmium levels in calcified dental calculus samples from patients

with habits of betel-quid chewing and smoking compared to

healthy individuals without a habit of betel-quid chewing and

with smoking. These studies recommended that a non-invasive

diagnostic biological material was feasible for monitoring heavy

metal exposure and the bioinformation in dental calculus might

establish a connection between cadmium and bad habits

contributing to increased risk of oral cancer (Zhang et al.,

2019). The findings showed that dental calculus may be a vital

depositor of information in OSCC and supplied an alternative

way for researchers to explore the complex etiology of oral

cancer. Moreover, new proteins related to systemic diseases were

also found in dental calculus. Lewy bodies and Lewy neurites are

the characteristic proteinaceous inclusions in Parkinson’s

disease and can also be found in various tissues of the

gastrointestinal tract. The protein alpha-synuclein (aSyn), a
major constituent of Lewy bodies, was detectable in dental

calculus. Although there was a low concentration of aSyn in

calculus, it may serve as a referable biomarker, and further

studies and advanced detection technology are needed (Schmid

et al., 2018).

Previous studies have supported the idea that there is

bioinformation related to some systemic diseases that may be

detected in calculus, which inspires us to use another way to find

hints about chronic diseases, such as cardiovascular diseases,

diabetes, and cancers. Thus, dental calculus may be a potential

biological data storage reservoir for detection of molecular

markers of latent pathogens, including bacteria, viruses and

some protein factors, or other pathogenic factors, such as toxic

heavy metals, in patients with systemic diseases (Figure 1). To

achieve such a function for dental calculus, more studies should

be pushed forward. Finding significant biomolecules and

detecting them accurately is important for application as

detection markers.
Key information about diet, environment,
individual behavior and social culture
changes in dental calculus

Dental calculus is in fact a “depositional environment

“(deposition of external information) as materials can enter

the mouth from a range of sources (Radini et al., 2017). In

terms of this aspect, we suppose that calculus contains clues

about dietary and environmental information (Hendy et al.,

1883; Hardy et al., 2017; Hardy et al., 2018; Sperduti et al., 2018;

Demetrowitsch et al., 2020). And through digging out the in-
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depth knowledge like ancient hominins’ diet, behavior and

culture, a new cognition of the long process of human

evolution and historical development will be discovered.

Microparticle analysis and stable isotope analysis used to be

the most common approaches to study environmental debris in

dental calculus. Also, with the development of bioinformatics

and advanced sequencing technology in recent decades, more

archaeological studies on calculus elucidating hominin dietary

habits, behavior and culture have been implemented.

By shotgun sequencing of ancient DNA from Neanderthal

dental calculus, Weyrich et al. described the differences in diet

matching with the characterization of regional differences in

Neanderthal ecology. The Spy Neanderthal diet was primarily

meat-based, including woolly rhinoceros and wild sheep

(mouflon), which is consistent with the characteristics of a

steppe environment (Bocherens et al., 2005). In contrast, the

El Sidrón Neanderthal diet contained no meat, while

mushrooms, pine nuts, and moss made up the dietary

components reflecting forest gathering. Additionally, such

differences in diet could give rise to a shift in the hominin’s

oral microbiota, might attributed to the meat consumption. Self-

medication was also detected in Neanderthals with dental

abscesses and chronic gastrointestinal pathogens. And the

differences in dietary habits between Spy and the El Sidron

neanderthals as well as self-medication suggested that hominin

diet and behavior were guided by local environment availability
Frontiers in Cellular and Infection Microbiology 04
(Fiorenza et al., 2015; Weyrich et al., 2017; Power et al., 2018;

Charlier et al., 2019).

Analogously, a recent study on hominins’ dental calculus in

the Eastern Alpine region of Italy compares the late paleolithic

and mesolithic diet. It provides a more balanced picture of three

foragers’ diet, underlining a possible contribution of plant

species as food at that time. In particular, starch granules

belonging to grass grains, which is of dietary importance, were

recovered in the analyzed dental calculus, hence providing the

direct evidence that local foragers consumed vegetal resources

during their life. Thus, these prehistoric hunter gatherers, as

well, were well adapted to the environment in which they lived

through exploiting many natural resources (Oxilia et al., 2021).

Starch dietary shift takes an important role in human dietary

evolution, which is still a major component of the human diet to

this day. Moreover, a deep research on dental calculus reveals the

link between starch dietary and oral biofilm by reconstructing

oral metagenomes and comparing functional adaptations in

nutrient metabolism (Fellows Yates et al., 2021). It indicates

that drive separation of Homo from nonhuman primates is

consistently related to that processing of carbohydrate, largely

derived from Streptococcus, are much more abundant in Homo.

The underlying mechanism can be attributed to the notable

ability of Mitis, Sanguinis, and Salivarius groups expressing

amylase-binding proteins to capture salivary alpha-amylase,

which they use for their own nutrient acquisition and dental
FIGURE 1

The absorbates in dental calculus, including oral bacteria and its virulence factors, human proteins, viruses, toxic heavy metals, environment
debris and food remnants, compose the “storage library”.
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adhesion. Alpha-amylase is the most abundant enzyme in

modern human saliva, and modern human express it at a

higher level than any other hominid. The increase in alpha-

amyla has been argued to be associated with dietary shifts during

human evolution, specifically an increased reliance on starch-

rich foods (Fellows Yates et al., 2021). Lipid, a versatile class of

molecule with a broad range of physiological properties and

actions, are some of the best-preserved metabolites in historic

calculus. A non-targeted assessment of metabolites presented in

dental calculus from both modern and historic samples

demonstrates the significant potential of calculus as a material

for metabolomics and lipidomic studies (Velsko et al., 2017;

Velsko et al., 2019).

More abundantly, a variety of debris was detected in the

dental calculus sample, including animal micro remains and

molecules, hairs, starch granules and other plant micro debris

such as fibers and phytochemicals (D’Agostino et al., 2019;

D’Agostino et al., 2020). Such an abundant diet indicated that

the studied population based its own subsistence on agriculture,

husbandry, beekeeping and hunting activities, which also

represented proof of the comprehension of food habits,

phytotherapeutic practices, and cultural traditions of early

colonists (D’Agostino et al., 2019; D’Agostino et al., 2020).

By analyzing historical dental calculus samples, some

historical events in the distant past may be reconstructed. To

reconstruct the notorious Great Famine of 1845 to 1852, a study

used microparticle and proteomic analysis of human dental

calculus samples from victims of the famine to elucidate the

variability of diet in mid-19th-century Ireland. This study

reveals the monotonous potato diet of the poor compared to

egg protein of the better-off social classes (Geber et al., 2019). Via

scanning electron microscopy with energy-dispersive x-ray

spectroscopy and micro-Raman spectra, Radini et al. reported

the discovery of lapis lazuli pigment preserved in the dental

calculus of a religious woman in Germany radiocarbon dated to

the 11th or early 12th century, suggesting medieval women’s

early involvement in manuscript production (Radini

et al., 2019).

Bleasdale’s research utilizing plant microparticles from dental

calculus as well as isotope analysis of human and animal remains

and charred food remains in Central Africa, spanning the early

Iron age to recent history, visually presented new dietary evidence

that revealed the long-period variation in the adoption of cereals

and the longevity of mosaic subsistence strategies in the region

(Bleasdale et al., 2020). And Millard outlined the life-stories of

Scottish soldiers experiencing the Battle of Dunbar 1650 from

joining the army to their imprisonment by varieties of detection

on calculus and bones remains (Millard et al., 2020).We hope that

multiple evidence extracted from dental calculus provides

unprecedented historical and biographical details for

archaeologically recovered individuals and a new insight of

process of anthropological evolution.
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Dental calculus could record the agelong information and allow

us to outline the subsistence pattern of ancient hominins and

reconstruct the significant historical event just as happened

yesterday with the help of omics and imaging techniques. In view

of this opinion, our further study focused on the historical dietary

information recorded in the calculus of patients with type II

diabetes. In the management and prevention of type II diabetes,

dietary factors are of paramount importance (Forouhi et al., 2018).

Interestingly, dental calculus may be able to play such a role as a

recorder, which records not only food debris or DNA in detail but

also metabolic patterns in relation to different diets. As a result, the

past dietary patterns of patients with diabetes could be deduced by

analyzing one’s calculus, which provides clinicians with a holistic

view of the etiological development of disease and allows them to

formulate a personalized nutrition approach and guidance for

diabetes management.
Discussion and conclusion

Dental calculus is the calcified plaque or sediment on the

tooth surface or prosthodontic body and has long been regarded

as the most important local contributing factor of periodontal

diseases. Therefore, in clinical treatment, removing this visible

risk factor by ultrasonic supragingival scaling and root planning

is a key part of initial periodontal therapy (Graziani et al., 2017).

In the past few years, dental calculus has become a research

hotspot in both archaeological and modern etiological research. By

analyzing calculus, a new material in archaeology, archaeologists

have provided persuasive inferences about the eating habits,

lifestyles and migration changes of people at different times.

These findings suggest that calculus can act as a relatively stable

repository of bioinformation because the dental calculus used in

archaeology usually has a history of hundreds or even thousands of

years. Thus, in modern etiological research, dental calculus appears

to be reliable for detection. On the one hand, dental calculus can be

a code for a state of health or illness, especially for an individual’s

oral condition. Using contemporary advanced inspection and

analysis technology such as metagenomics, metaproteomics and

metabolomics, a comprehensive microbial composition may be

achieved and therefore imply that the oral state is healthy. In

addition to being a hint for the condition of the oral cavity, dental

calculus is also connected with some diseases occurring away from

the mouth by means of detecting unique components within it,

including viruses, proteins and chemical material. The function as a

repository of biological information is illustrated in Figure 2.

Compared with plaque and saliva, calculus is more difficult to

alter by foreign substances or the environment due to its stable

crystal properties while they have the ability to store different kinds

of information (Table 1) Thus, dental calculus seems to be a

promising substance to speculate disease information and explore

the etiology of distinctive diseases. On the other hand, based on the
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confirmed role of reserving long-term transition information of

human evolution, including shifts in dietary, social, or geographic

changes in populations discovered in calculus by archaeologists, we

hypothesize that dental calculus also has the ability to record an

individual’s time-varying physiological or pathological conditions

throughout life in some fields. Like the rings of a tree, calculus may

contain information corresponding to time. Thus, when we

compare archaeological and modern calculus to understand the

human oral microbiome, we’re intended to find similarities and

differences, as well as the transition of core-microbiome, hoping to

explore the cause of the stabilization and alteration with the help of

other bioinformation analyzed from dental calculus such as unique

macromolecular substances. The development and wide application

of genomics, proteomics and metabolomics help us reveal the

hidden bioinformation in the dental calculus. However, for
Frontiers in Cellular and Infection Microbiology 06
ancient calculus, the degradation of certain substances, uncertain

biomolecular preservation and pollution from external

environment of long time may lead to the inaccuracy of the

result. Therefore, conducting an assessment of preservation and

ensuring enough samples are of vital importance in a study. And for

modern calculus to diagnose diseases, we need more studies to

figure out its accuracy compared with other methods and it’s

necessary for us to focus more on the changes in abundance of

pathogenic bacteria. In addition, many studies ignore bacterial

activity for that the sequencing data is the appearance of DNA so

that it’s not reliable to give a comprehensive conclusion only

depending on the sequencing data. Dental calculus is the calcified

formation of oral biofilm, thus whether the virulence of pathogenic

bacteria stay the same or not require more further studies in the

future and some in vitro experiments and cultures are necessary.
TABLE 1 Comparison of biological components in dental calculus, saliva, and plaque.

Owned by all Unique

Dental Calculus Bacteria, viruses and proteins (Warinner
et al., 2014; Warinner et al., 2015., Akcali
et al., 2018)
toxic heavy metals (Yaprak et al., 2017;
Zhang et al., 2018; Öner et al., 2020)
immune factors [Cole et al., 1981,
Warinner et al., 2014]
food debris [Muñoz-González et al., 2018,
D’Agostino et al., 2019, D’Agostino et al.,
2020]

the ancient DNA of bacteria and hominins, ancient environment debris (including molecules, hairs,
starch granules, fibers and phytochemicals) (Warinner et al., 2014; Warinner et al., 2015; D’Agostino
et al., 2019; D’Agostino et al., 2020)

Saliva several biomarkers indicating diseases (like adrenomedullin, nitric oxide, complement C3) [Castagnola
et al., 2017], tumor-specific DNA [Zhang et al., 2016]

Plaque Biofilm structure [Borisy et al., 2021]
FIGURE 2

The summary of biological information hidden in absorbates of dental calculus.
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